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Abstract 

This paper presents a method to predict the relative objective weighting scheme necessary to 

cause arbitrary members of a Pareto solution set to become optimal.  First, a polynomial 

description of the Pareto set is constructed utilizing simulation and high performance computing.  

Then, using geometric relationships between the member of the Pareto set in question, the 

location of the utopia point and the polynomial coefficients, the weighting of the performance 

metrics which causes a particular member of the Pareto set to become optimal is determined.  The 

use of this technique, termed the Scaling Method, is examined using a sample problem from the 

field of vehicle dynamics optimization.  The Scaling Method is based on the Colinearity Theorem 

which is also presented in the paper. 
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1 Motivation 

It is widely recognized that design is a series of compromises.  Compromises are made using 

tradeoffs between performance, cost, risk, and quality attributes.  In a multiattribute design 

problem there are typically an infinite number of “optimal” solutions, based on the preferences 

and risk assessments of the designer(s).  The final design will be a result of numerous tradeoffs, 

many times ad-hoc, each aimed at making a compromise decision between conflicting attributes.  

Viewing design formally as a collection of compromise decisions, however, is only a very recent 

evolution.  Indeed, interest in decision theory can be traced back to the 1950’s (e.g., Luce and 

Raiffa, 1957), but the application of decision theory to multidisciplinary design is relatively 

recent and reviewed in Lewis and Mistree (1998). 

 

In decision theory, and more specifically in decision-based design, there are two primary steps: 

generate the option space, and select the best option (Hazelrigg, 1996).  The option space is the 

accumulation of all potential design solutions.  Choosing from among this space is certainly not 
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trivial but rather a function of tradeoffs and compromises.  In this work, we are concerned with 

both of these steps.  The decision making environment for this work is multiattribute design 

problems where there is more than one attribute under question.  Also, we are dealing with 

mathematical representations of design problems and therefore are working with multiobjective 

optimization problems.  This does not exclude the results of this paper from non-mathematic 

representations, such as look-up tables or logical rule-based models, but we focus on 

mathematical models specifically.  We intend on providing decision support for determining the 

optimal solution, given a set of operating conditions, assumptions, risk profiles, and preferences.  

We do not intend to construct risk profiles or model preferences, but simply acknowledge that 

they must play a role in this kind of decision making problem. 

 

In multiobjective optimization problems, there are two primary approaches to finding the 

preferred, if not optimal, design.  The first involves determining relative importance of the 

attributes and aggregating the attributes into some kind of overall objective.  Then, solving the 

optimization problem presumably would generate the optimal solution for a given set of attribute 

importances.  The second approach involves populating a number of optimal solutions along the 

Pareto frontier and then selecting one based on the values of the attributes for a given solution.  In 

both cases, there are complications.  First, coming up with exact relative attribute weights is a 

daunting task with complicated ramifications (Messac, 2000).  Only in the rarest of circumstances 

can this approach be taken and relied upon.  Second, while selecting from a set of Pareto 

solutions may seem straightforward once a set of preferences are established, it may result in a 

non-optimal design for a certain design operating conditions.  It is difficult to relate the choice of 

Pareto solution to any kind of optimal criteria.  In this work, we develop a technique that can 

provide decision support for both of the approaches to multiobjective optimization problems.  In 

the next section, we provide the necessary background about Pareto Sets for the development of 

the technique.   

 

2 Pareto Set Background 

Since multiobjective optimization problems are in question, we make use of the concept of Pareto 

sets, an efficient frontier of solutions in the performance space.  There continue to be two 

principal challenges in Pareto sets: populating the Pareto set or finding Pareto solutions, and 

selecting from among the Pareto solutions.  These challenges parallel the challenges of decision-

based design.  They are analogous to determining potential solutions and selecting from among 

the solutions.  In Pareto analysis, there are added restrictions on the criteria for deciding upon a 
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solution’s inclusion in the set.  A design vector x* is a Pareto optimum if and only if, for any x 

and i, 

 
 )()(;,...,1),()( ** xfxfijmjxfxf iijj ≥⇒≠=≤  (1) 
 
We address both of these challenges in this work, although most of the paper is focused on the 

second challenge.  In the next sections, we address both challenges and the current research in 

each area. 

 

2.1 Population of the Pareto Set 

The notion of an efficient frontier of solutions is not new (e.g., Luce, 1957), but methods of 

generating Pareto sets continue to be a topic of research.  The weighted sum method of generating 

Pareto sets was shown to work well with convex problems decades ago by Geoffrion (1968) and 

while it is still a very popular method its deficiencies have been noted.  Messac (2000) has 

effectively illustrated the problems associated with choosing weights for an aggregate objective 

function and has derived conditions that predict which Pareto solutions can be found using 

weights (Messac, et al. 2000).  Dennis (1997) notes that, even with convex problems, taking an 

even spread of weights will not result in an even spread of points in the Pareto set, making some 

sections of the Pareto set difficult to populate.  Koski (1985) emphasizes the weighted sum 

method’s inadequacies when dealing with non-convex problems.  Athan and Papalambros (1996) 

also look at using non-linear weights to better capture the non-convex Pareto set.   

 

An alternative to these methods, compromise programming, was developed in the 1970’s and it, 

too, is a subject of continuing research.  This approach has the advantage of being able to 

generate many points on the efficient frontier.  It works from a stationary utopia point and, 

through variation of a vector of weights, intersects points in the Pareto set.  Chen, et al. (1999) 

use this method in an approach to robust design with reasonable success, although 

implementation of compromise programming is notably more difficult than the weighted sum 

method.  Tappeta and Renaud (1999) use compromise programming to find an initial Pareto 

solution, construct local approximations to the Pareto surface and iteratively present the decision 

maker with a set of solution options to choose from. 

 

Yoo and Hajela (1999) effectively use an immune-based genetic algorithm (GA) to generate the 

Pareto-Edgeworth solutions in one run of the GA.  Narayanan and Azarm (1999) improve 
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multiobjective GA’s using filtering, mating restrictions, and the idea of objective constraints in 

order to detect Pareto solutions in the non-convex region of the Pareto set. 

 

This work will use yet another method to determine the Pareto set:  a grid search of the design 

space.  Efficient points from the grid search are fit by a polynomial to approximate the Pareto set, 

resulting in several advantages over other methods.  This is pursued in Section 3.  Once the 

Pareto set has been generated, the next challenge is choosing the best solution from among the 

set–the subject of the next section. 

 

2.2 Selection from among the Pareto Solutions 

Just as several methods exist to determine what solutions compose the Pareto set of efficient 

solutions there are several techniques to determine which member of the Pareto set is the optimal 

solution.  Similar to decision-based design, the simplest method is to choose a solution based on 

the values of the objectives and how well they match the preferred values.  This method is used in 

(Nelson, et al. 1999) when manipulating multiple Pareto solution sets in product platform design.  

Das (1999) introduces the concept of “order of efficiency” as an attempt to create a meta-metric, 

stronger than the Pareto conditions, to rank order Pareto solutions.  Hazelrigg (1996) argues that 

the selection from a set of solutions should be guided by a “meta-objective” of maximizing profit.  

Designer preferences can be accommodated by using utility theory to establish a rank-ordering of 

solutions based on uncertain and changing individual and group preferences (Callaghan and 

Lewis, 2000).  Horn, et al. (1994) use Multi-Attribute Utility Analysis to select the preferred 

solution from the Pareto set of solutions.  Eschenauer, et al. (1990) describes the most widely 

used method: Lp norms.  This technique minimizes the distance from the Pareto set to an ideal 

solution (i.e. utopia point) to find the optimal solution according to the following formula: 
 

 Minimize ( ) pm
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Typical applications of the Lp norm are the L1, L2 and L∞ norms (where p = 1, 2 and ∞, 

respectively).  A fine summary of solution techniques is provided by Azarm, et al. (1998) should 

the reader desire a more in-depth exploration of the subject. 

 

In this work, we utilize the L2 norm (p = 2) to derive a technique for finding the optimal attribute 

weights necessary to make any member of the Pareto set optimal.  Said another way, we 

determine what design conditions are required to make a certain Pareto solution the preferred 
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solution.  In  Section 3, we present a theorem, the Colinearity Theorem, in a general sense and 

then apply it in a method called the Scaling Method in Section 4.  This is followed by the use of 

these techniques in a vehicle dynamics design example.  First, however, it is instructive to step 

back and examine the performance space in more detail.  This is done in the next section. 

 

2.3 A Conceptual Look at the Performance Space and Axis Scaling 

Pareto Set analysis typically takes place in the performance space.  This is the space created by 

considering the design objectives as coordinate axes.  On these axes the performance of each 

possible design is plotted, one point per design.  Each design has associated with it a specific 

performance or outcome on each objective.  In general, the plot of possible outcomes appears as a 

region in the performance space, as depicted in a general two objective problem in Figure 1. 
 

Objective I (minimize)

Objective II
(minimize)

Possible
Outcomes

Objective II
Optimum

Objective I
Optimum

 
Figure 1:  A Generic Performance Space 

 

Figure 1 notes that the intention is to minimize both objectives.  The individual optimum for each 

objective is also noted.  These correspond to the best possible performance for each given 

objective.  Unfortunately, two distinct points appear–one for each objective.  Since both 

objectives cannot be simultaneously optimized, any attempt to choose a single design to perform 

well across both objectives will necessarily be a compromise design.  Optimal performance on 

any one objective implies sub-optimal performance on the other. 

 

Figure 2 shows how a certain distance measure, the L2 norm, determines the optimal compromise 

design.  First, the range of possible designs is narrowed significantly through the concept of a 

Pareto set, a subset of the set of possible outcomes shown in Figure 1.  The Pareto set has the 

property that, for any point in the Pareto set, there does not exist another point in the set of 

possible outcomes with a better performance on both objective axes simultaneously.  As such, the 
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Pareto set is sometimes referred to as the “efficient frontier” of the performance space.  Whatever 

compromise design is chosen, it must be a member of the Pareto set–the remainder of possible 

outcomes can be ignored.  They represent design points that give sub-optimal performance on 

both axes simultaneously. 
 

 

Objective I

Objective II

Possible
Outcomes

Utopia
 Point

Optimal Compromise Solution 

Pareto Set

 
Figure 2:  Optimal Compromise Solution Using the L2 Norm 

 

The concept of utopia point is important when using distance functions, such as the L2 norm.  It is 

the theoretical best performance point that can be achieved.  While more than one method for 

locating the utopia point exists (e.g. Miettinen, (1999)), this discussion presents the definition 

which agrees with the vehicle dynamics problem presented later.  In this case, the utopia point is 

taken to reside at the origin of the coordinate system.  While we present the results of the example 

using this utopia point location, the derivation in Section 4 is general.  The development can be 

used with other utopia point definitions. 

 

Now, according to the L2 norm method (Eschenauer et al. 1990), the optimal compromise design 

is the member of the Pareto set which lies geometrically closest to the utopia point, calculated in 

terms of vector distance in the performance space.  Figure 2 locates the optimal point using the L2 

norm method.  A vector is drawn from the utopia point to the optimal point on the Pareto set.  To 

emphasize that this is, indeed, the closest point, a circle centered on the utopia point with the 

radius of the vector is included.  Since no other points on the Pareto set appear within this circle 

the point shown must be the closest to the utopia point. 

 

This sample problem has been investigated  with an arbitrary baseline weighting of the 

performance objectives.  That is, a certain relative importance (ratio of objective weights) is 

assumed to produce Figures 1 and 2.  At this point the precise ratio used is not important.  What 
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is important, however, is how Figure 2 changes if the relative importance of the weights changes.  

Suppose the scenario in Figures 1 and 2 is generated by considering the two objectives to have 

equal importance.  If the importance placed on objective I doubles (such that objective I is twice 

as important as objective II) a different compromise design may be the optimal solution. 

 

Figure 3 shows how this change in relative importance of the objectives is handled.  Compared 

with Figure 2, the objective I axis in Figure 3 is stretched to twice its original length, reflecting 

the doubling of the importance on that axis.  This reshapes or “rescales” the set of possible 

outcomes and the Pareto set.  As a result, the member of the Pareto set which is closest to the 

utopia point is different than that in Figure 2.  A new optimal compromise design is located using 

the L2 norm in Figure 3 for the case when objective I is twice as important as objective II. 

 

Objective I

Objective
II

Possible
Outcomes

Utopia
Point

Pareto Set

Optimal Compromise Solution

 
Figure 3:  Rescaled Performance Space Doubling the Importance of Objective I 

 

It is important to note that the design points composing the Pareto Set are no different in Figure 3 

than they were with the baseline weighting of the objectives.  By definition Pareto Set points are 

independent of the relative importance of the design objectives.  The only difference is the way 

these points are plotted in the performance space.  In Section 4 this geometric interpretation of 

objective weighting is applied in the Scaling Method. 

 

Through the use of this generic example, a conceptual summary of performance space analysis 

has been presented.  In the next section the Colinearity Theorem is introduced and a proof is 

given.   

 

3 Mathematical Basis:  The Colinearity Theorem 
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When analyzing problems involving compromise decisions, the construction of a Pareto set is 

useful in identifying all possible “good” solutions from the set of possible designs.  Each member 

of the Pareto set is potentially the optimal solution to the problem at hand, depending on the 

relative weights of the objectives.  Deciding which Pareto set member is optimal requires these 

weights to be known so that existing methods, such as the Lp-norm and utopia point concept, can 

be applied—thereby determining the optimal solution.  Definitions of these decision theory terms 

and techniques are summarized by Palli, et al. (1998), many of which follow from the early game 

theory and compromise decision work described by Luce and Raiffa (1957).   

 

A substantial number of analysis techniques exist, as reflected by Chen, et al. (1999).  Every 

technique studying compromise decisions which strives to identify an optimum point is 

constrained by a given set of performance metrics.  That is, had the relative objective weighting 

been different, the point chosen from the Pareto set as optimal would likely also have been 

different.  While the designs composing the Pareto Set are, by definition, independent of any 

specific objective weighting, the optimal Pareto Set solution is necessarily a function of the 

particular objective weighting under discussion. 

 

This section states and proves a new theorem termed the Colinearity Theorem.  It has been 

developed as an extension of the L2 norm in the performance space.  The L2 norm locates the best 

point in a Pareto set as the one which lies geometrically closest to the utopia point.  This is 

visualized as a circle, centered at the utopia point, which determines the optimum point as the 

first design point encountered as the radius of the circle is increased.  Instead, the Colinearity 

Theorem relates the best point in a Pareto set to the utopia point in terms of another geometric 

construct—the shape of the Pareto set itself.  It is the inclusion of information regarding the shape 

of the Pareto set which gives the Colinearity Theorem its value.  While the L2 norm and 

Colinearity Theorem are in agreement in that they always determine the same Pareto point to be 

the optimal solution, the Colinearity Theorem lends itself more readily to expansion and 

generalization.  Indeed, the Colinearity Theorem is the underlying mathematical premise for the 

Scaling Method, developed in Section 5. 

 

3.1 Development of the Colinearity Theorem 

For the time being assume that the Pareto Set is described by a line l  in the performance space 

whose equation or mathematical representation is known.  A technique for determining this 
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representation of the Pareto Set is given in Section 3.2.  With this information the Colinearity 

Theorem can be defined as follows: 

 
The Colinearity Theorem: 

An internal point B of a Pareto set l  is an optimal point if and only if the utopia point, 
point B and the instantaneous center of curvature of the Pareto Set l  at point B are 
collinear, provided the instantaneous center of curvature of the Pareto Set at point B does 
not lie between point B and the utopia point.   
Exception:  If the Pareto set does not have a continuous slope at B or if B is an endpoint 
(i.e. “non-internal” point) of the Pareto set then this condition need not be met for point B 
to be optimal. 

 
As an aid to the proof to this theorem, consider Figure 4 where 

 l is a curve representing a Pareto set 

 A is the utopia point 

 B is the point on l closest to the utopia point 

 C is the instantaneous center of curvature of l at B 

 T is the tangent to l at B. 

A

B

C

l

T

f2

f1  
Figure 4:  Geometry Associated with the Colinearity Theorem 

 

A proof of the Colinearity Theorem is now presented.  Three points are said to be collinear if they 

are points on the same line, according to elementary geometry.  Additionally, a line drawn 

between any two points on a line will have the same slope as the original line.  If A, B and C in 

Figure 4 are colinear then line segment AB and line segment BC must have the same slope as line 

segment AC.  By verifying this is the case the colinearity of A, B and C can be proven. 

 
Proof 

Because C is the instantaneous center of curvature of l at point B the line segment BC is, by 
definition, perpendicular to the tangent of l at B.  The tangent to l at point B is denoted T in 
Figure 4. 
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By the definition of optimal point using the L2 norm, point B is known to be the closest 
member of l to the utopia point, A.  Thus, a circle drawn about A with radius AB will touch line l 
only at point B. 

Since the circle and the line at point B have continuous slopes the circle centered at A must 
be tangent to l at B. The tangent to l at B is T.  A circle’s radius is always perpendicular to a 
tangent on the circumference, so line segment AB must be perpendicular to T. 

Both AB and BC are perpendicular to T and therefore parallel to each other.  Parallel line 
segments, by definition, have the same slope.  Since point B is common to both line segments we 
know that A, B and C must be members of the same line.  This completes the proof of the 
Colinearity Theorem for internal Pareto set points. 
 
At points where the slope of the Pareto set is discontinuous or where the optimal point is a Pareto 

set endpoint the Colinearity Theorem does not need to be satisfied for optimality to exist—thus 

the reference to “internal points” of the Pareto set.  Non-internal points can be corners, jumps or 

endpoints of the Pareto set.  These points do not have a continuous derivative.  As such, these 

points do not have an instantaneous center of curvature and cannot satisfy the Colinearity 

Theorem for optimality.  Non-internal points are typically few and can easily be checked 

individually.  Through the use of the Scaling Method they can often be readily examined without 

additional analysis. 
 

This proof has assumed that the objectives are being minimized.  This is not a requirement, but 

presented for illustrative purposes.   

 

3.2 Polynomial Description of the Pareto Set 

The approach of the Colinearity Theorem is based upon knowledge of the shape of the Pareto Set.  

It is the local curvature of the Pareto Set which determines what relative objective weighting will 

cause a local Pareto Set member to become optimal.  Section 2.1 presented various techniques to 

populate the Pareto Set.  Our approach centers on a grid search of the design space followed by a 

polynomial fit in the performance space.  First, a discretization of the design space is conducted.  

Each combination of design variables is evaluated to determine the corresponding performance 

with respect to the design objectives.  The results are then plotted in the performance space and, 

in a manner similar to that shown in Figure 2, the points which satisfy the criteria for the Pareto 

Set are identified. 

 

Despite the fact that most of the design points chosen will not be members of the efficient frontier 

there are distinct advantages to the grid search approach.  Perhaps key among these are the fact 
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that the entire Pareto Set, both convex and non-convex regions, is guaranteed to be located given 

a fine enough discretization of the design space.  This overcomes a principal shortcoming of any 

of the techniques of Section 2.1.  Furthermore, advanced grid search techniques may be employed 

to enhance the efficiency of the search, although this has not been addressed by the authors. 

 

With a representative number of Pareto Set points determined by the grid search, the process of 

polynomial fitting can begin.  In a two-objective problem, one objective is represented as a 

function of the other and a polynomial fit applied in the performance space.  Since a polynomial 

has two fewer inflection points than the order of the polynomial, the use of a high order is 

important to capture both the convex and non-convex regions in the approximation.  The result is 

a simple, continuous description of the Pareto Set.   

 

The fitting of a polynomial allows information about the shape of the Pareto Set to be easily 

accessed as required by the Colinearity Theorem.  While it has not been pursued, a series of 

splines–done properly–would also satisfactorily represent the Pareto set for use with the 

Colinearity Theorem.  Also, when dealing with three or more objectives the Pareto set is no 

longer a line but rather a hyperplane.  In such problems a response surface would be fit to the 

Pareto Set.  This, too, is the subject of future research. 

 

4 Application of the Colinearity Theorem:  The Scaling Method 

Now that the Colinearity Theorem is stated and proven, it is developed into a method to predict 

the scaling of the objective weights needed to cause a member of the Pareto set to become the 

optimal solution.  This procedure, termed the Scaling Method, has been developed to realize the 

information the Colinearity Theorem makes available.  The goal is to predict the relative 

objective weighting required to cause any member of the Pareto set to become the optimal 

solution on the basis of the information contained in the shape of the Pareto set. 

 

Figure 5a presents the performance space for a general compromise decision problem.  The point 

(f1*, f2*) is the optimal solution for a baseline weighting of the objectives on the abscissa and 

ordinate.  This baseline weighting of objectives f1 and f2 is arbitrary, although for simplicity it is 

convenient to weight the objectives equally.  Other important points on this figure are the utopia 

point, denoted (f1u, f2u), the instantaneous center of curvature at the optimal point, denoted (f1c*, 

f2c*), and a non-optimal point on the Pareto set, (f1, f2). 
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(f1u, f2u)

f1

Pareto Set

(f1*, f2*)

f2

(f1*c, f2*c)

(f1, f2)

(kf1u, f2u)

kf1

OLD (f1*, f2*)
now (kf1*, f2*)

f2
(kf1c, f2c)

(kf1,f2)
new optimum

Pareto Set

 
 Figure 5a:  Relating The Colinearity Theorem Figure 5b:  Rescaled Abscissa  
 to Pareto Set Terminology by an Amount k 
 
Stretching or “rescaling” the f1-axis by an appropriate amount k will, in general terms, cause 

Figure 5a to look like Figure 5b.  The point (f1, f2) is now (kf1, f2).  Because of the value of k 

selected the formerly sub-optimal point (f1, f2) is now the optimal point (kf1, f2).  The previously 

optimal point is now sub-optimal. 

 

The Colinearity Theorem allows the appropriate value of k to be determined.  Three points—the 

utopia point, the point we wish to make optimal (f1, f2) and the center of curvature of the Pareto 

set at (f1, f2) from Figure 5a—must be colinear for optimality to occur.  Equating slopes between 

the first pair of points and the second pair of points (refer to Figure 5b) and considering objective 

f2 to be a function of objective f1, gives the relationship: 

 

  2 2
'

1 1 2

1−
= −

−
u

u

f f
kf kf f

 (3) 

 

See the Appendix for a detailed explanation of how relationships change when the abscissa is 

rescaled.  Solving for k, the only unknown, gives: 

 

  
'

2 2 2

1 1

( )−
= −

−
u

u

f f fk
f f

 (4) 

 

Through the use of (4) the change in relative objective weights, k, needed to change a sub-

optimal member of the Pareto Set (f1, f2) into the optimal point can be determined.  

Implementation of (4) to predict under what preferences a member of the efficient frontier 

becomes the optimal solution is termed the Scaling Method.  It is an extension of the Colinearity 
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Theorem and it predicts the change in relative weighting of the objectives, k, from the baseline 

condition as a function of: 

 

 1.  The original (unscaled) location of the point of interest on the Pareto Set (f1, f2) 

 2.  The original slope, ′f2 , of the Pareto set at the point of interest (f1, f2), and 

 3.  The original location of the utopia point (f1u, f2u) 

 

This approach is illustrated in the vehicle design problem that follows. 

 

5 Case Study: Vehicle Dynamics Design 

Whether it is NASCAR, CART, Formula One, or even local racetracks, the difference between 

winning a race and not winning comes down to the ability of a driver to get the most out of his or 

her racecar.  While having a talented driver is always desirable, even the most talented driver can 

do nothing more than realize the full potential of the vehicle.  The core vehicle design, how it is 

“set-up” and the “tuning” done by a race team are aimed at an optimal compromise that allows 

the driver to repeatedly turn fast lap times at a particular racetrack.  Any advantage gained though 

vehicle design and tuning, however small, increases the vehicle’s potential and, with a talented 

driver, will translate into an increase in on-track performance.  Vehicle simulations are now used 

not only prior to and during a race weekend to guide tuning of the race car, but also in the design 

phase where parameters which are not adjustable must be set and optimized.   

 

The scope of vehicle simulation continues to grow.  Advances in the memory and speed of 

computers have led to the use of increasingly complex vehicle models with an ever expanding 

scope.  The modeling of performance around a single corner has developed into full lap analysis.  

Even further, it is now possible to analyze all the tracks on the season schedule when designing a 

new car and attempt to optimize core design parameters—those which are not easily changed 

once the car is built—before the car even exists.  An example of one such variable is the 

longitudinal (fore/aft) center of gravity location.  The range of possible adjustment on this 

variable throughout a season is very small.  It must be optimized in the design stage before the car 

is constructed.  Further importance is placed on the use of vehicle simulations as racing 

sanctioning bodies impose tighter restrictions on the amount of on-track testing teams are allowed 

to do. 
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Vehicle design is considered an excellent example of a multidisciplinary design optimization 

problem.  There are vehicle dynamicists, aerodynamicists, tire designers, engine builders, shock 

absorber specialists, mechanics, a driver–all of whom have different outlooks and control over the 

performance of the car.  Furthermore, during a lap at a typical race, a driver sees a number of 

different types of corners and straights.  In Figure 6, the configuration for the Indianapolis Motor 

Speedway Roadcourse, site of the Formula One United States Grand Prix in September 2000 is 

shown.  There are many turns and straight-aways, each with its own optimal vehicle 

characteristics.  The optimal car for the sweeping final corner, an 840 foot radius turn on the 

lower right, is different than the tight 114 foot radius turn in the upper center of the track.   

Figure 6: Indianapolis Motor Speedway Roadcourse Configuration 

 

Designing a car to perform well across turns of all radii on a single track involves a set of 

complicating tradeoffs.  Simulating these tradeoffs is a difficult task, as a complete vehicle 

simulation is very complex and computationally challenging to run efficiently.  In this paper we 

use a simplified vehicle model to illustrate the use of the techniques introduced in Sections 3 and 

4 to this type of problem and to predict under what race conditions (combination of radii) a 

particular vehicle design will be optimal. 

 

The vehicle model is based on the classic Bicycle Model in Milliken and Milliken (1995) which 

has been expanded to include four individual wheels.  Equations of motion are written for lateral 

acceleration, longitudinal acceleration and yaw acceleration.  The tires, which may be different 

front and rear, are modeled using tabular tire data measured on a state-of-the-art tire testing 

machine and represent numerous tire non-linearities such as load sensitivity and slip angle 

saturation.  Wheel loads are calculated based on static load, aerodynamic downforce and lateral 

load transfer.   

 

Through computer simulation, the vehicle is entered into a special race for which the 

compromises involved can be easily studied.  This race is defined as the time to complete “x laps 
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on a small radius (100 foot radius) circle and y laps on a large (400 foot radius) radius circle”, 

each at best steady-state speeds.  This abstraction of a true racetrack is especially well-suited to 

highlighting how the objectives have competing optimal designs.  Since the vehicle cannot be 

optimized for both radii simultaneously due to vehicle aerodynamics, tire performance and other 

speed dependent vehicle behaviors a compromise design is needed.  This compromise design is 

one which allows the vehicle to perform optimally for the race, not just an individual circle.  The 

ratio of x to y, denoted k, can be viewed as the weighting of two design objectives, the elapsed 

times on each individual radius.  The shortest time to complete the total distance around both 

radii will win the race. 

 

For this study, the vehicle has two design variables.  These variables, roll stiffness distribution 

(K') and weight distribution (a'), are two of the three “magic numbers” Wright (1998) identifies as 

being fundamental to race car design and performance.  They are used by the vehicle designer 

and vehicle dynamicist to “tune” the car’s handling in an attempt to optimize performance.  The 

analysis begins with a grid search of the design space from which the performance space is 

plotted and the Pareto set identified.  The design space has been discretized into 546 (a', K') pairs.  

Each design pair results in a certain level of performance on each of the two radii.  Figure 7 plots 

the performance space for the vehicle for a baseline race defined as one lap on each radius (k = 

1).  This gives each radius equal importance.  Thus, the axes are the time required to complete 

one lap on each of the 100 foot radius and the 400 foot radius. 
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Figure 7:  Grid Search Results in the Performance Space 
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From Figure 7 the optimum lap times for each radius are easily located.  For the 100 foot radius 

the leftmost point on this figure gives the optimum where the vehicle can do no better than 

approximately an 8.88 second lap.  Likewise, for the 400 foot radius the bottommost point in the 

plot gives the optimum.  This point indicates approximately a 9.1 second lap as the best possible.  

These two points are consistent with the detailed vehicle simulations in Kasprzak (1998).  The 

two optimums do not occur at the same point so the race definition, combining laps on each 

radius, will need a compromise solution to arrive at the optimal design and performance.  

 

Figure 8a shows the grid search points which are members of the Pareto set along with the results 

of fitting a seventh-order polynomial via least-squares criteria.  The polynomial gives a 

representative description of the Pareto set throughout the range of the Pareto set, except at the far 

right end where the fit acquires a positive slope.  As a result, analysis of this Pareto set for cases 

where the 400 foot radius design dominates the compromise design can be expected to produce 

slightly inaccurate results.  While the use of an eighth order fit resolves this inaccuracy, the 

seventh-order fit is presented here to highlight potential errors caused by a fit which does not 

fully represent the Pareto set. 
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 Figure 8a:  The Pareto Set with  Figure 8b:  Corresponding Optimal  
 Seventh-Order Polynomial Scaling Predicted by (4) 
 
Figure 8b presents the outcome of applying the Scaling Method (4) to the seventh-order fit Pareto 

set.  This figure associates the optimal race definition k with the vehicle performance on the 100 

foot radius.  Note that since the origin (0,0) is being used as the utopia point, (4) reduces to a 

simple form.  Since Figure 8a shows a one-to-one correspondence of performance on the 100 foot 

radius to that on the 400 foot radius, Figure 8b also specifies the optimal 400 foot radius 

performance for any race definition k.  Furthermore, since each point on the Pareto set is the 
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result of a unique combination of design variables, a relationship between race definition and 

vehicle design is also acquired for the entire range of k values. 

 

Consider the case of a race definition k = 15.  That is, the race will contain 15 laps on the 100 

foot radius and one lap on the 400 foot radius, each at best steady-state performance.  Figure 8b 

predicts an optimal performance on the 100 foot radius circle of 8.894 seconds per lap or 

133.4117 seconds total time on the 100 foot radius.  If the abscissa of Figure 8a is rescaled by an 

amount equal to k (15) then Figure 9a is generated.  It shows the shape of the Pareto set in terms 

of the elapsed time on each radius for an k = 15 race.  A circle drawn about the utopia point (0,0), 

representative of the L2 norm technique for locating an optimum point, identifies 113.4117 

seconds as the optimum performance on the 100 foot radius, identical to that predicted by the 

Scaling Method.  The L2 norm and the Scaling Method each predict the same optimal 

performance, as desired. 

 

Close examination of Figure 8b reveals a region where the scaling k is associated with more than 

one performance criteria on the 100 foot radius.  One such value is k = 8.4.  For this race 

definition three optimal 100 foot radius performance points are predicted:  8.9198, 8.9114 and 

8.9031 seconds per lap on the 100 foot radius.  These are denoted by the dashed lines in Figure 

9b.  Rescaling the original Figure 8a by k (8.4) produces Figure 9b.  In this figure the circle about 

the utopia point touches only two of the three points.  The middle point is not an optimum point.  

For the central, non-optimal point, the center of curvature of the Pareto set lies between the Pareto 

set and the utopia point.  This point does not satisfy the Colinearity Theorem and is therefore not 

a candidate to be an optimal point, even though (4) produces this point as a solution.  Thus, the 

Scaling Method and the Colinearity Theorem are best used in tandem to arrive at optimal 

solutions in the Pareto set.  Calculation of the center of curvature in addition to the use of (4) 

gives a more complete picture of the Pareto set’s behavior. 
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 Figure 9a:  Verification of Theoretical  Figure 9b:  Theoretical Optimal 
 Optimal Scaling when k = 15 Scaling when k = 8.4 

 
The other two points identified in this k = 8.4 example are indeed optimal design points and 

produce identical race times to one another.  The leftmost optimum results in a race time of 

(8.4×8.9031) + 9.1688 = 83.9545 seconds while the rightmost optimum gives (8.4×8.9198) + 

9.0282 = 83.9545 seconds.  These are identical, optimal race times.  In contrast, the center point 

gives a race time of (8.4×8.9114) + 9.2459 = 84.102 seconds, nearly 0.15 seconds slower than the 

other two design points.  As predicted by the Colinearity Theorem, because the center of 

curvature of the Pareto set is between the utopia point and the Pareto set, this point is not optimal. 

 

These two race definitions serve to show the validity and usefulness of the Scaling Method and 

Colinearity Theorem.  A more detailed discussion of this example is provided in Kasprzak, et al. 

(1999).  Additional comments about these techniques are provided in the next section. 

 

6 Comments on the Scaling Method 

When using the Scaling Method, arriving at a polynomial which describes the Pareto set 

accurately is critical.  Use of a high-order polynomial is desirable so that both the concave and 

convex regions of the Pareto set can be represented.  A polynomial curve has two less inflection 

points than the order of the polynomial and these inflection points may not all fall within the 

range of the Pareto set.  It is very important that the polynomial chosen meets the criteria used to 

specify the Pareto set.  As noted earlier, the seventh-order fit presented above violates a Pareto set 

criterion by reversing the sign of its slope near the right end of the fit.  This results in negative 

scaling values being predicted for this region, seen at the right end of the trace in Figure 8b.  

These negative values have no physical meaning and lead to solution inaccuracies.  The use of an 

eighth-order fit with this example, while not presented here, provides a better representation of 

the Pareto set. 
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The polynomial fit can only be as good as the data to which it is applied.  A sufficiently fine grid 

search of the design space is required to populate the Pareto set.  While this method has the 

distinct advantage of finding the entire Pareto set, both concave and convex regions, the search 

increment may be very small and require a large number of points to be calculated.  Since most 

points calculated will not be Pareto set points this method may, at first glance, be deemed 

inefficient.  Still, the grid search technique is guaranteed to find the entire Pareto set, given a fine 

enough discretization.  This alone is a key point.  The combination of a grid search and 

polynomial to describe the Pareto set has the ability to provide an accurate, smooth and 

continuous description of the whole Pareto set, regardless of the existence of both convex and 

non-convex regions. 

 

The Colinearity Theorem and Scaling Method exploit the use of this grid search and polynomial 

description of the Pareto set.  These techniques pull a vast amount of information out of the 

polynomial fit.  The optimal objective performances can be calculated for any and all ratios of 

objective weights with ease via (4).  To be of real use to the designer, relating these performance 

results to their corresponding design variables is desirable.  While these results appear in the 

performance space, another method has been developed, termed the Contour Method, which 

relates these results to the design space.  This method, presented in Kasprzak and Lewis (2000), 

further enhances the utility of the Scaling Method and Colinearity Theorem. 

 

7 Conclusions 

Starting with a grid search of the design space, the Pareto set is populated and then approximated 

using a least-squares fit polynomial.  This Pareto set is based on a baseline goal definition with 

equally weighted objectives, referred to as k = 1.  The Colinearity Theorem states that any 

internal member of the Pareto set is optimal only if the utopia point, the point of interest in the 

Pareto set and the instantaneous center of curvature of the Pareto set at the point of interest are 

colinear.  From this the Scaling Method is derived, which allows the relative objective weighting 

to be predicted for any point on the Pareto set, based on the polynomial fit.  Alternatively, the 

optimal performance for all ratios of objective weights can be readily determined.  Thus, from a 

grid search of the design space the shape of the entire Pareto set can be determined, as well as the 

entire mapping of the optimum Pareto set solution to the relative objective weighting.  This 

provides a vast amount of information and practical insight to the problem under consideration.  
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Verification of this method against results obtained using an L2 norm shows the new methods 

produce results complementary to the established technique. 

 

While the method presented here addresses only two-objective compromise decision making, the 

merits of extending the Colinearity Theorem and the Scaling Method to multiple dimensions are 

clear.  Describing the Pareto set as a hyperplane in n-dimensions and applying the Colinearity 

Theorem in n-dimensional space appear to be possible.  While the concepts involved remain 

unchanged, the mathematical expression of these ideas in n-dimensions will be more complicated 

than in two dimensions. 
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Appendix 

Table 1 supports the development in Section 4.  It shows how various Pareto Set parameters 

change with rescaling of the abscissa in the performance space by an amount k. 

 
 
 

Table 1. Effects of Abscissa Scaling on Pareto Set Attributes 
 

 Before rescaling After rescaling by k 
Sub-optimal Point of Interest on Pareto Set ( )1 1,x y  ( )1 1,kx y  

Instantaneous slope of Pareto Set  
at Point of Interest 

1m  1m k  

Equation of Line Tangent to Pareto Set 
at Point of Interest 

1 1 1 1= +y m x b  ( )1
1 1 1

1 1 1 1

= +

= +

my kx b
k

y m x b
 

Slope of Line Normal to Pareto Set 
at Point of Interest 

11− m  11− m  
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