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Abstract—Machine learning is inherently a multiobjective task.
Traditionally, however, either only one of the objectives is adopted
as the cost function or multiple objectives are aggregated to a scalar
cost function. This can be mainly attributed to the fact that most
conventional learning algorithms can only deal with a scalar cost
function. Over the last decade, efforts on solving machine learn-
ing problems using the Pareto-based multiobjective optimization
methodology have gained increasing impetus, particularly due to
the great success of multiobjective optimization using evolutionary
algorithms and other population-based stochastic search meth-
ods. It has been shown that Pareto-based multiobjective learning
approaches are more powerful compared to learning algorithms
with a scalar cost function in addressing various topics of ma-
chine learning, such as clustering, feature selection, improvement
of generalization ability, knowledge extraction, and ensemble gen-
eration. One common benefit of the different multiobjective learn-
ing approaches is that a deeper insight into the learning problem
can be gained by analyzing the Pareto front composed of multi-
ple Pareto-optimal solutions. This paper provides an overview of
the existing research on multiobjective machine learning, focus-
ing on supervised learning. In addition, a number of case studies
are provided to illustrate the major benefits of the Pareto-based
approach to machine learning, e.g., how to identify interpretable
models and models that can generalize on unseen data from the ob-
tained Pareto-optimal solutions. Three approaches to Pareto-based
multiobjective ensemble generation are compared and discussed in
detail. Finally, potentially interesting topics in multiobjective ma-
chine learning are suggested.

Index Terms—Ensemble, evolutionary multiobjective optimiza-
tion, generalization, machine learning, multiobjective learning,
multiobjective optimization, neural networks, Pareto optimization.

I. INTRODUCTION

M
ACHINE learning is concerned with the development

of computer algorithms and techniques that are able to

learn, i.e., to improve automatically through experience [1],

[2]. Any machine learning method consists of two steps, i.e.,

selecting a candidate model, and then, estimating the parameters

of the model using a learning algorithm and available data. Very

often, model selection and parameter estimation are combined in

an iterative process, and in many cases, model selection has been

done only once intuitively and empirically. In other words, the

user chooses a model empirically, and then, employs a learning

algorithm to estimate the parameters of the model.

Machine learning algorithms can largely be divided into three

categories. One large category is supervised learning, where

the model should approximate the mapping between the input
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and output of the given data, typically known as regression

or classification. Unsupervised learning belongs to the second

category of learning algorithms. Data clustering is a typical

unsupervised learning method, where a given set of data is to

be assigned to different subsets (clusters) so that the data in

each subset share some common trait (similarity) defined by a

distance measure. The third category is reinforcement learning,

which aims to find a policy for an agent to take actions that

maximize the cumulated rewards in a given environment.

All learning algorithms perform model selection and param-

eter estimation based on one or multiple criteria. In supervised

learning, the common criterion is an error function that reflects

the approximation quality, whereas in clustering, the similarity

between the elements in the same cluster (intercluster similar-

ity) should be maximized and the similarity of the elements in

different clusters (intracluster similarity) should be minimized.

In reinforcement learning, the criterion is a value function that

predicts the reward to perform a given action in a given state.

Therefore, all learning problems can be considered as an opti-

mization problem. Hereafter, we restrict our discussions mainly

to supervised learning and data clustering, since little work has

been reported on multicriterion reinforcement learning with few

exceptions [3]. In addition, we term any learning criterion an

objective because we are going to discuss learning problems

from the optimization point of view.

A categorization of the existing supervised learning algo-

rithms from the optimization point of view is provided in Sec-

tion II according to how many objectives are considered in

the learning algorithms and whether a scalarized or Pareto-

based multiobjective optimization approach is adopted. A brief

overview of representative research on Pareto-based multiobjec-

tive supervised and unsupervised learning is given in Sections III

and Section IV, respectively. To illustrate the benefits of the

Pareto-based approach to machine learning, a few illustrative

examples are presented in the next sections. The experimental

setup of the case studies, including the neural network model,

the multiobjective evolutionary algorithm (MOEA), and three

benchmark problems are outlined in Section V. Case studies on

how to identify interpretable models from the achieved Pareto

front, how to select models that are most likely to generalize on

unseen data, and how to generate ensembles using the Pareto-

based approach are described in Section VI. A summary and

outlook of the paper is provided in Section VII.

II. SINGLE- AND MULTIOBJECTIVE LEARNING

We divide learning algorithms into three categories, namely,

single-objective learning, scalarized multiobjective learning,

and Pareto-based multiobjective learning.

1094-6977/$25.00 © 2008 IEEE
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A. Single-Objective Learning

By single-objective learning, we mean learning algorithms in

which only one objective function is optimized. Take supervised

learning as an example, a single-objective learning algorithm

often minimizes the mean squared error (MSE) on the training

data

f =
1

N

N
∑

i=1

(y(i) − yd(i))2 (1)

where y(i) and yd(i) are the model output and the desired

output, respectively, and N is the number of data pairs in the

training data. Several other error measures can also be used as

the objective function.

The most often used data clustering algorithm is the k-means

clustering algorithm, where the following objective function is

minimized:

f =
K

∑

j=1

∑

x∈C j

||x − cj ||
2 (2)

where || · || is a chosen distance measure between a data point

x and the center (cj ) of cluster Cj , K is the number of clusters.

B. Scalarized Multiobjective Learning

Learning is inherently multiobjective. In supervised learning,

memorizing the training data is not the only target. Several other

objectives have often to be taken into consideration. In regres-

sion and classification, a learning model should not only have

good approximation performance on the training data, but also

on unseen data from the same problem. But this target cannot

be achieved by minimizing the single objective in (1) or any

other similar error measures. In fact, only minimizing the ap-

proximation error on the training data can result in overfitting

the training data, which means that the model is likely to per-

form poorly on unseen data. In other words, the model is not

able to generalize to unseen data. To prevent the model from

overfitting the training data, the complexity of the model must

be controlled. Another common objective that often needs to

be taken into account is the comprehensibility or interpretabil-

ity of the learned model, which is particularly important when

supervised learning is used for knowledge discovery from data.

As suggested in [4], interpretability of machine learning models

depends strongly on the complexity of the model, and in general,

the lower the complexity, the easier it is to understand the model.

In both cases, a second objective reflecting the complexity of the

model must be considered too. To control the complexity, the

two objectives can be aggregated into a scalar objective function

f = E + λΩ (3)

where E is a common error function such as the one defined

in (1), Ω is a measure for the model complexity, such as the

number of free parameters in the model, and λ > 0 is a posi-

tive hyperparameter to be defined by the user. In this way, the

learning algorithm is able to optimize two objectives, though

the objective function is still a scalar function.

The scalarized multiobjective learning approach has been

widely adopted in machine learning, such as regularizing

neural networks [5], creating interpretable fuzzy rules [6], [7],

and generating negatively correlated ensemble members [8].

Unlike neural networks and fuzzy systems for regression and

classification, where complexity control is not a must, some

learning models, like support vector machines [9], sparse

coding [10], or learning tasks, such as receiver operating

characteristics (ROC) analysis [11], explicitly consider more

than one objective, which naturally fall into the category of

scalarized multiobjective learning.

Similar to supervised learning, multiple objectives can be

considered in data clustering as well. On the one hand, it is well

recognized that the objective function defined in (2) is strongly

biased toward spherically shaped clusters. For data with differ-

ent types of cluster structures, other objective functions may be

more appropriate [12]. On the other hand, it is also suggested

that stability, which reflects the variation in the clustering so-

lutions under perturbations should be considered in developing

clustering algorithms [13].

There are two main weaknesses if a scalarized objective func-

tion is used for multiobjective optimization. First, the determina-

tion of an appropriate hyperparameter λ that properly reflects the

purpose of the user is not trivial. Second, only a single solution

can be obtained, from which little insight into the problem can be

gained. This is particularly important if the multiple objectives

conflict with each other, and consequently, no single optimal

solution exists that optimizes all the objectives simultaneously.

This is particularly true for multiobjective learning, e.g., reduc-

ing the approximation error often leads to an increase of the

complexity of the model. In addition to the aforementioned two

drawbacks, it has been pointed out from the optimization point

of view that a desired solution may not be achieved using a

scalar objective function even if the hyperparameter is speci-

fied properly [14]. Note, however, that this weakness can be

addressed in part if the hyperparameter is changed dynamically

during optimization [15].

An additional, potential advantage of the Pareto-based learn-

ing approach is that multiobjectivization may help the learning

algorithm from getting out of local optima, thus improving the

accuracy of the learning model. Some empirical evidence has

been reported in [16] and [17]. However, a rigorous proof of the

favorable change to the learning curve by multiobjectivization

remains to be shown.

C. Pareto-Based Multiobjective Learning

Using the Pareto approach to address multiple objectives in

machine learning is actually a natural idea. However, this ap-

proach has not been adopted until a decade ago and has become

popular only very recently. The reason is, in our opinion, that tra-

ditional learning algorithms, and most traditional optimization

algorithms are inefficient in solving multiobjective problems

using the Pareto-based approach. In a Pareto-based approach to

multiobjective optimization, the objective function is no longer

a scalar value, but a vector. As a consequence, a number of

Pareto-optimal solutions should be achieved instead of one sin-

gle solution.
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Pareto-optimality is the most important concept in Pareto-

based multiobjective optimization. Consider the following m-

objective minimization problem:

min F (X),

F = {f1(X), f2(X), . . . , fm (X)}.

A solution X is said to dominate a solution Y
if ∀j = 1, 2, . . . , m, fj (X) ≤ fj (Y ), and there exists k ∈
{1, 2, . . . , m} such that fk (X) < fk (Y ). Solution X is called

Pareto-optimal if it is not dominated by any other feasible so-

lutions. As previously mentioned, there often exists more than

one Pareto-optimal solution if the objectives are conflicting with

each other. The curve or surface composed of the Pareto-optimal

solutions is known as the Pareto front. In practice, we often do

not know where the global Pareto front of a real-world opti-

mization problem lies, and therefore, nondominated solutions

achieved by an MOEA are not necessarily Pareto-optimal. How-

ever, nondominated solutions achieved by multiobjective opti-

mization algorithms are loosely called Pareto-optimal solutions.

Pareto-based multiobjective learning follows the Pareto-

based multiobjective optimization approach to handle learning

problems. For example, the scalarized biobjective learning prob-

lem in (3) can be formulated as a Pareto-based multiobjective

optimization as follows:

min {f1 , f2} (4)

f1 = E (5)

f2 = Ω. (6)

The most popular error measure is the MSE defined in (1).

The complexity of a neural network model can, among others,

either be the sum of the squared weights

Ω =

M
∑

i=1

w2
i (7)

or the sum of the absolute weights

Ω =
M
∑

i=1

|wi | (8)

where wi , i = 1, . . . , M is a weight in the neural model, and

M is the number of weights in total. The aforementioned two

complexity measures are often used for neural network regular-

ization and (7) is known as the Gaussian regularizer and (8) the

Laplacian regularizer.

Comparing the scalarized multiobjective learning described

by (3) and the Pareto-based multiobjective learning described

by (4), we find that we no longer need to specify the hyper-

parameter in the Pareto-based multiobjective learning. On one

hand, this spares the user the burden to determine the hyper-

parameter before learning, on the other hand, the user needs

to pick out one or a number of solutions from the achieved

Pareto-optimal solutions according to the user’s preference af-

ter learning. One question may arise: Where is then the dif-

ference between the scalarized multiobjective learning and the

Pareto-based multiobjective learning? As we will show in the

next sections, Pareto-based multiobjective learning algorithms

are able to achieve a number of Pareto-optimal solutions, from

which the user is able to extract knowledge about the problem

and make a better decision when choosing the final solution.

In the following sections, selected existing research on Pareto-

based supervised and unsupervised learning algorithms will be

briefly reviewed. For an updated and more detailed account of

the existing research on multiobjective learning, the reader is

referred to [18].

III. MULTIOBJECTIVE SUPERVISED LEARNING

A. Earlier Ideas

The first ideas to formulate supervised learning as a Pareto-

based multiobjective optimization were reported in the mid of

1990s. One of the earliest work in which the neural learning

problem was formulated as a multiobjective optimization prob-

lem was reported in [19], where two error measures (L2-norm

and L∞-norm) and one complexity measure (the number of

nonzero elements) of a Volterra polynomial basis function net-

work and a Gaussian radial basis function network were mini-

mized using the min–max approach

f1(W ) = ||y(W ) − yd(W )||2 (9)

f2(W ) = ||y(W ) − yd(W )||∞ (10)

f3(W ) = C (11)

F (W ) = minW {max{f ′
1(W ), f ′

2(W ), f ′
3(W )}} (12)

where C is the number of nonzero weights, f ′
1(W ),

f ′
2(W ), f ′

3(W ) are the normalized values of f1(W ), f2(W ),
f3(W ), W is the weight matrix of the neural network. Unfortu-

nately, a single-objective genetic algorithm has been employed

to implement the learning process, and as a result, only one

solution has been achieved.

The weakness of the scalarized approach to handling com-

petitive objectives in learning and the necessity to consider the

tradeoff using the Pareto-based approach has been discussed

in [20]. An important step forward was made in [21], where

the training of a multilayer perceptron network was formulated

as a biobjective optimization problem. The MSE and the num-

ber of hidden nodes of the network were taken into account. A

branch and bound algorithm was employed to solve the mixed

integer multiobjective problem. Due to the limited ability of the

branch-and-bound algorithm, the advantage of the Pareto-based

approach to machine learning was not fully demonstrated in the

paper.

With the increasing popularity of MOEAs [22], the idea of

employing MOEAs to learning problems became more and more

practical. Existing research on Pareto-based approaches to su-

pervised learning can roughly be divided into three categories

according to their motivations.

B. Generalization Improvement

One major concern in supervised learning is to generate learn-

ing models that not only have good approximation performance

on training data, but can also generalize on unseen data. To
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achieve this, several objectives in addition to the training error

can be taken into account. Inspired from neural network regu-

larization, the training error and the sum of the absolute weights

were minimized using an ǫ-constraint-based multiobjective op-

timization method [17]. The Tikhonov regularization term was

used as a second objective for a parameter identification problem

in [23] and the biobjective problem was solved by a multiob-

jective real-coded evolutionary algorithm. Similar to [21], the

training error and the number of hidden nodes of a feedforward

neural network are minimized using a Pareto-based differential

evolution algorithm [24]. The influence of three different regu-

larization terms on complexity minimization has been discussed

in [25] using an multiobjective optimization approach. Differ-

ent to the conclusion drawn from gradient-based regularization

algorithms, it is shown that the Gaussian regularizer is also able

to efficiently reduce the network complexity like the Laplacian

regularizer when an evolutionary method is used [26].

Another idea to improve the generalization performance of

neural networks is to minimize different, potentially conflicting

error measures [27], such as the Euclidian error, and the robust

error, which can be defined by

Er = exp(λ|�y − �y d |p) (13)

where λ and p are two parameters to be defined. In [28], two

different methods for determining nondominated solutions were

investigated, one using a validation dataset rather than the train-

ing set, and the other using a boosting approach.

Cooperative coevolution of neural networks based on multiple

objectives has been studied in [29]. Two populations coevolve

in the algorithm, the module (subnetwork) population and the

network population. The module population consists again of

a number of subpopulations, each of which evolves both the

structure and weights of a subnetwork (a subcomponent of a

neural network). The chromosome of the network population

encodes which subcomponents should be picked out to construct

the whole neural network. A steady-state genetic algorithm is

used for the network population. For coevolutionary algorithms,

it is not straightforward to determine the fitness value of the

individuals in the module population. In [29], several criteria

for evaluating the fitness of the modules are discussed. The first

criterion is concerned with the performance of the modules,

which can again be determined in different ways. For example,

the performance of a module can be the mean fitness value of a

number of best neural networks in which the model participates.

Alternatively, the performance of a module can be determined

by the average fitness change of the best neural networks when

the module is replaced or removed. The second criterion is the

number of neural networks the module is present in, which is to

be maximized during the optimization. The third criterion is the

complexity of the module, including the number of connections

(NC), the number of nodes, and the sum of the absolute value

of the weights. Two objectives are considered for the network

population, namely, the performance and the fitness of each

module.

In addition to feedforward neural networks, tradeoff between

accuracy and complexity using the Pareto-based approach has

also been considered for generation of radial-basis neural net-

works [30], [31], support vector machines [32]–[34], decision

trees [35], and classifier systems [36]. Interesting applications

of Pareto-based multiobjective learning to face detection [37],

feature extraction [38], robotics [39], and text retrieval [40] have

been reported.

C. Interpretability Enhancement in Rule Extraction

Extraction of logic or fuzzy rules from data or from trained

neural networks is an important approach to knowledge discov-

ery. One critical issue here is the interpretability, also known as

understandability or transparency of the generated rules. Several

aspects can be highly related to the interpretability of rules [41],

such as the compactness (number of rules, number of premises)

and the consistency of the rules. For fuzzy rules, the partition

of the fuzzy subsets should be well distinguishable so that a

meaningful term can be attached to the fuzzy subsets. Differ-

ent aspects of interpretability have been coped with using the

scalarized multiobjective optimization [6], [7].

The first idea to improve understandability of rule systems

is to select a small subset from a large number of rules gen-

erated from data. A Pareto-based multiobjective genetic algo-

rithm (MOGA) was used to generate fuzzy rules by trading off

the classification error against the number of rules [42]. Similar

work has also been reported in [43] and [44]. A step further

is to include a third objective that minimizes the rule length

(number of premises) [45], or the number of selected input vari-

ables [46]. To improve the distinguishability of the fuzzy parti-

tion, the maximum similarity between the fuzzy subsets has also

been minimized in addition to accuracy and compactness [47].

To further improve the distinguishability of the fuzzy partition,

similar subsets are merged, singletons are removed, and over-

lapped subsets are separated in multiobjective optimization of

fuzzy rules considering accuracy and compactness with appli-

cation to both classification and regression problems [48], [49].

Several objectives have to be optimized in extracting logic

rules from trained neural networks, such as coverage, i.e., the

number of patterns correctly classified by a rule set, error, i.e., the

number of the patterns that are misclassified, and compactness

[50].

The main advantage of the Pareto-based approach to gener-

ating interpretable fuzzy rules is that the user is able to choose

a preferred solution from a number of Pareto-optimal solutions.

D. Diverse Ensemble Generation

An ensemble of learning models performs much better than

a single learning model, if the members of the ensemble are

sufficiently different [51]. However, there is a tradeoff between

accuracy and diversity and it is essential that the ensemble mem-

bers are highly diverse and sufficiently accurate [52], [53]. Previ-

ously, the diversity of the ensemble members has been promoted

through the use of different data, different learning algorithms

or different learning models [54]. An alternative approach is to

develop a learning algorithm that reduces the training error and

minimizes the correlation among the outputs of the ensemble

members. Traditionally, the approximation error and the output

correlation between the ensemble members are summed up to
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a scalar objective function [8], [55]. In [52], the Pareto-based

approach is adopted to generate diverse and accurate ensembles,

where the following two objectives are minimized,

f1 =
1

N

N
∑

i=1

(y(i) − yd(i))2 (14)

f2 =
N

∑

i=1

(yk (i) − y(i))





M
∑

j �=k,j=1

(yj (i) − y(i))



 (15)

where yk (i) is the output of the kth ensemble member, y(i) is

the output of the ensemble for the ith training sample, N is the

number of training samples, and M is the number of members

in the ensemble. This research has been extended to a frame-

work for evolving ensembles that is composed of three levels of

evolution [56]. On the first level, a mixture of learning models,

such as multilayer perceptrons, radial basis function networks,

and support vector machines are evolved. On the second level,

different training datasets are used for evolving the hybrid en-

sembles produced on the first level. On the third level, all subsets

of homogenous learning models of the hybrid ensembles gen-

erated on the second level are evolved separately to minimize

training error and correlation between the ensemble members.

In each iteration, the current ensemble, which consists of each

of the different types of models, is archived if it dominates the

previous best ensemble based on training error and test error.

The ensemble in the archive serves as the final hybrid ensemble.

A different idea to take advantage of Pareto-based learning

for ensemble generation has been presented in [57], where the

training data is divided into two sets and the errors on the two

datasets are used as two objectives for learning

f1 =

N1
∑

i=1

(

y(i) − yd
1 (i)

)2
(16)

f2 =

N2
∑

i=1

(

y(i) − yd
2 (i)

)2
(17)

where yd
j are the training data in dataset j, j = 1, 2, N1 and N2

are the size of the datasets. One should take care that the neural

network model used should be sufficiently small in order not to

overfit both datasets.

Another idea suggested for generating neural network en-

sembles is to include the complexity measure as the second

objective [25], [26]

f1 =

N
∑

i=1

(y(i) − yd(i))2 (18)

f2 = C (19)

where C is the NC in the neural network. In this way, the diver-

sity of the networks is achieved in terms of different network

structures, which is ensured by the fact that ensemble members

always have different NC. Simulation results on both regression

and classification problems show that the approach is effective

in generating neural network ensembles. It should be noticed,

however, that very simple Pareto-optimal neural networks will

be generated whose error on the training data can be very large.

These networks should not be included in the ensemble if mod-

els of high accuracy are targeted. One question that has not been

answered in [25] and [26] is how to choose ensemble members

from the nondominated solutions. We will come back to this

issue again in the case studies.

The method for multiobjective cooperative coevolution of the

neural networks in [29] has also been applied to generating neu-

ral network ensembles [58]. In case of ensemble generation, one

population evolves single neural networks and the other evolves

neural network ensembles. For the population evolving single

networks, objectives with respect to the performance of the sin-

gle network, the performance on difficult patterns (measured,

e.g., by the number of ensembles misclassifying it), and the

average performance of the ensembles in which the network is

present can be taken into account for evaluating the performance

of the single networks. In addition, network complexity, ability

to cooperate, and diversity are other objectives to consider. In ad-

dition to the correlation measure used in [52], functional diver-

sity, which measures the average Euclidean distances among the

outputs of two neural networks, mutual information between the

output of two networks, and the Yule’s Q statistics [59], which

measures the correlation of the errors made by two models, are

also considered. For the ensemble population, performance and

ambiguity are two objectives to optimize. It has been shown that

the generalization performance of the ensembles generated us-

ing the multiobjective approach is significantly better than that

of the ensembles generated by classical approaches.

Pareto-based generation of ensembles for radial basis func-

tion networks [60] and fuzzy rule systems [61] have also been

reported.

E. Miscellaneous

Much early work on Pareto-based multiobjective learning

has been motivated by specific applications, where multiple

objectives have to be considered even without thinking about

generalization. For example, in generating the ROC curve for

classifiers, both the true positive rate (TPR) and the false positive

rate (FPR) are to be minimized. In [62], the Niched Pareto

GA [63] was employed to generate the ROC curves of neural

network classifiers [62]. It has been shown that better results

can be obtained by using the Pareto-based approach compared

to the traditional method for generating ROC curve usually by

changing the threshold of the neural classifier after training.

Notice that traditionally, ROC analysis is just a method for

evaluating a given classifier, but in the Pareto-based approach,

the classifiers on the ROC curve are different. Most recently, the

generalization ability of neural classifiers using the Pareto-based

approach to ROC curve generation has been studied in [64], and

Pareto-based multiobjective multiclass ROC analysis has been

investigated in [65].

Systems control is another area in which multiple objectives

need to be satisfied. In [66], Pareto-based evolutionary pro-

gramming was used to minimize the undershooting and overall

tracking error of a neural-network-based controller. A number
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of Pareto-optimal solutions are obtained and the control perfor-

mance of some typical Pareto-solutions is analyzed.

Supervised feature selection is one of the machine learning

tasks where a tradeoff between the number of selected features

and the performance of the learning model using the features

must be considered. As a result, the Pareto-based multiobjective

learning has been investigated [67]–[69].

IV. MULTIOBJECTIVE UNSUPERVISED LEARNING

In this section, we discuss existing research work on Pareto-

based multiobjective unsupervised learning, mainly multiobjec-

tive data clustering. In [70], four objectives are considered in

Pareto-based evolutionary data clustering. The first objective is

concerned with the cluster cohesiveness, which favors dense

clusters, the second objective is to maximize the separateness

between the clusters measured by their distance from the global

centroid, the third objective is meant to reduce the number of

clusters, and the fourth one minimizes the number of selected

features. Rather than combining the objectives, a Pareto-based

evolutionary algorithm has been employed to achieve multi-

ple Pareto-optimal solutions. Through analyzing the individual

Pareto-optimal solutions, significant features and an appropriate

number of clusters can be identified.

The advantage of Pareto-based data clustering has been con-

vincingly demonstrated in [71], where the number of clusters

can be determined automatically by analyzing the Pareto front.

In that paper, two objectives are minimized to reflect the com-

pactness of clusters and the connectedness of data points. The

cluster compactness is described by the overall deviation of a

partitioning and the connectedness checks the degree to which

data points in a neighborhood are assigned to the same cluster

f1 =
∑

Ck ∈C

∑

x i ∈Ck

||xi − ck ||2 (20)

f2 =

N
∑

i=1

L
∑

j=1

γij (21)

where C = {C1 , C2 , . . . , CK } is a union of all clusters, ck is the

center of cluster Ck , k = 1, 2, . . . , K, xi is a data point assigned

to cluster Ck , K is the number of clusters, L is the number of

data points in a predefined neighborhood, and γij is defined by

γij =







1

j
, if xi and NNj (xi) are not in the same cluster

0, otherwise
(22)

where NNj (xi) is the jth nearest neighbor of data point xi .

The Pareto-optimal solutions trading off between deviation

and connectivity are plotted in such a way that the number of

clusters contained in the Pareto-optimal solutions increases from

left to right. It is argued that the overall deviation decreases with

the increasing number of clusters and when the cluster number

is larger than the “true” number of clusters, the gain in devia-

tion minimization will be minor while the cost in connectivity

increases rapidly. Thus, the Pareto-optimal solution that deliv-

ers the maximal gain in performance against the increase in the

Fig. 1. Coding of the structure and parameters of neural networks using a
connection matrix and a weight matrix.

Fig. 2. Example of a connection matrix and its corresponding neural network
structure.

number of clusters provides the correct number of clusters, as

suggested in [72].

V. CASE STUDIES: EXPERIMENTAL SETUP

A. Neural Network Model

Feedforward neural networks with one hidden layer are used

in the case studies. The hidden neurons are nonlinear and the

output neurons are linear. The activation function used for the

hidden neurons is as follows:

g(z) =
x

1 + |x|
. (23)

In the optimization, the maximum of hidden nodes is set to 10.

Weights are initialized between −0.2 and 0.2.

B. Evolutionary Algorithms for Pareto-Based Learning

1) Coding of Neural Networks: A connection matrix and

a weight matrix are employed to describe the structure and

the weights of the neural networks, see Fig. 1. The connection

matrix specifies the structure of the network, whereas the weight

matrix determines the strength of each connection. Assuming

that a neural network consists of M neurons in total, including

the input and output neurons, then the size of the connection

matrix is M × (M + 1), where an element in the last column

indicates whether a neuron is connected to a bias value. In the

connection matrix, if element cij , i = 1, . . . , M, j = 1, . . . , M
equals 1, it means that there is a connection between the ith and

jth neuron and the signal flows from neuron j to neuron i. If

j = M + 1, it indicates that there is a bias in the ith neuron.

Fig. 2 illustrates a connection matrix and the corresponding

network structure. It can be seen from the figure that the network
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Fig. 3. Framework for evolutionary multiobjective optimization of neural
networks.

has two input neurons, two hidden neurons, and one output

neuron. Besides, both hidden neurons have a bias.

2) Mutations of Structure and Weights: Evolutionary algo-

rithms have widely been employed to optimize both the struc-

ture and parameters of neural networks, often combined with a

gradient-based local search method [73]. The framework for

evolutionary multiobjective optimization of neural networks

employed in our case studies is shown in Fig. 3. In compar-

ison to conventional evolutionary optimization, we note that

only mutation operations are used in the framework for vary-

ing the structure and parameters of neural networks, which are

specific to neural networks, including inserting a new neuron or

deleting an existing neuron, adding or removing a connection

between two neurons. A Gaussian mutation is applied to the

weights

∆wij = N(0, σw ) (24)

where wij denotes the weight connecting neuron j and

neuron i, σw is the standard deviation of the Gaussian

distribution.

3) Lifetime Learning: After mutation, lifetime learning us-

ing an improved version of the Rprop algorithm [74] has been

employed to fine tune the weights. After lifetime learning, the

fitness of each individual regarding the approximation error (f1)

is updated. In addition, the weights modified during the lifetime

learning are encoded back to the chromosome, which is known

as the Lamarckian type of inheritance.

The Rprop learning algorithm [75] is believed to be a fast

and robust learning algorithm. In each iteration, the weights are

modified in the following manner

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

∆
(t)
ij (25)

where sign(·) is the sign function, ∆
(t)
ij ≥ 0 is the step size,

which is initialized to ∆0 for all weights. The step size for each

weight is adjusted as

∆
(t)
ij =



























ξ+∆
(t−1)
ij , if

∂E(t−1)

∂wij
×

∂E(t)

∂wij
> 0

ξ−∆
(t−1)
ij , if

∂E(t−1)

∂wij
×

∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

(26)

where 0 < ξ− < 1 < ξ+ . To prevent the step sizes from becom-

ing too large or too small, they are bounded by ∆min ≤ ∆ij ≤
∆max .

After the weights are updated, it is necessary to check if the

partial derivative changes sign, which indicates that the previous

step might be too large, and thus, a minimum has been missed.

In this case, the previous weight change should be retracted

∆w
(t)
ij = −∆

(t−1)
ij , if

∂E(t−1)

∂wij
×

∂E(t)

∂wij
< 0. (27)

Recall that if the weight change is retracted in the tth iteration,

the ∂E(t)/∂wij should be set to 0.

In reference [74], it is argued that the condition for weight

retraction in (27) is not always reasonable. The weight change

should be retracted only if the partial derivative changes sign and

if the approximation error increases. Thus, the weight retraction

condition in (27) is modified as follows:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij
×

∂E(t)

∂wij
< 0 and

E(t) > E(t−1) . (28)

It has been shown on several benchmark problems that the

modified Rprop (termed as Rprop+ ) exhibits consistently better

performance than the Rprop algorithm [74].

4) Selection: The most significant difference of multiobjec-

tive optimization to scalar optimization is the selection method.

In our research, the selection method from NSGA-II [76] is

adopted, which consists of four major steps. First, the parent and

offspring populations are combined. This implies that NSGA-II

is an elitism. Second, the combined population is sorted ac-

cording to the nondominance ranks. During the ranking, non-

dominated solutions in the combined population are assigned

a rank 1, which belongs to the first nondominated front. These

individuals are removed temporally from the population, and

the nondominated individuals in the rest of the population are

identified, which consists of the second nondominated front of

the population and are assigned a rank 2. This procedure repeats

until all individuals in the combined population are assigned

with a rank from 1 to R, assuming that R nondominated fronts

can be identified in total. Third, a crowding distance reflecting

the crowdedness in the neighborhood of a particular solution is

calculated. The crowding distance of solution i in the nondom-

inated front j, (j = 1, . . . , R) is the distance between the two

neighbors of solution sj
i in the objective space

dj
i =

m
∑

k=1

|fk (sj
i−1) − fk (sj

i+1)| (29)
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TABLE I
PARAMETER SETTINGS OF THE ALGORITHMS

where m is the number of objectives in the multiobjective op-

timization problem and solutions sj
i−1 and sj

i+1 are the two

neighboring solutions of solution sj
i . A large distance is as-

signed to the boundary solutions in each nondominated front.

Here, the larger the crowding distance, the less crowded around

the solution sj
i it is. Fourth, a tournament selection that leverages

between nondominated ranking and crowdedness is conducted.

Given two randomly chosen individuals, the solution with the

better (lower) rank wins the tournament. If the two solutions

have the same rank, the one with the larger crowding distance

wins. If the two solutions have the same rank and the same

crowding distance, choose a winner randomly. This procedure

continues until the required number of offspring is generated.

The parameter settings used in the simulations are summa-

rized in Table I.

C. Benchmark Problems

1) Wisconsin Breast Cancer Data: The Wisconsin breast

cancer diagnosis problem in the University of California at

Irvine (UCI) repository of machine learning database was col-

lected by Dr. W. H. Wolberg at the University of Wisconsin-

Madison Hospitalics [77]. The benchmark problem contains 699

examples, each of which has nine inputs and two outputs. The

inputs are: clump thickness (x1), uniformity of cell size (x2),

uniformity of cell shape (x3), marginal adhesion (x4), single ep-

ithelial cell size (x5), bare nuclei (x6), bland chromatin (x7 ), nor-

mal nucleoli (x8), and mitosis (x9). All inputs are normalized,

to be more exact, x1 , . . . , x9 ∈ {0.1, 0.2, . . . , 0.8, 0.9, 1.0}.

The two outputs are a complementary binary value, i.e., if the

first output is 1, which means “benign,” then the second output

is 0. Otherwise, the first output is 0, which means “malignant,”

and the second output is 1. Therefore, only the first output is

used.

2) Diabetes Data: The Pima Indians Diabetes Data consists

of 768 data pairs with eight attributes normalized between 0
and 1 [77]. The eight attributes are number of pregnant (x1),

plasma glucose concentration (x2), blood pressure (x3), triceps

skin fold thickness (x4), 2 h serum insulin (x5), body mass

index (x6), diabetes pedigree function (x7), and age (x8). In this

database, 268 instances are positive (output equals 1) and 500

instances are negative (output equals 0).

3) Iris Data: The third dataset we looked at is the Iris data

[77]. The dataset contains three classes of 40 instances each,

where each class refers to a type of Iris plant. The three classes

are: Iris setosa (class 1, represented by−1), Iris versicolor (class

2, represented by 0), and Iris virginica (class 3, represented by

1). Four attributes are used to predict the Iris class, i.e., sepal

length (x1), sepal width (x2), petal length (x3), and petal width

(x4), all in centimeters. Among the three classes, class 1 is

linearly separable from the other two classes, and classes 2 and

3 are not linearly separable from each other. To ease knowledge

extraction, we reformulate the data with three outputs, where

class 1 is represented by {1, 0, 0}, class 2 by {0, 1, 0}, and class

3 by {0, 0, 1}.

VI. CASE STUDIES: RESULTS

Based on the MOEA described in the previous section, we

show in this section how one can benefit from Pareto-based mul-

tiobjective learning. We generate a number of Pareto-optimal

neural network models that trade the accuracy on training data

off against the network complexity. We show on the three bench-

mark problems how to identify interpretable neural networks

from which understandable logic rules can be extracted, and

networks that are most likely to generalize on unseen data,

from the achieved Pareto-optimal solutions. Afterwards, we

compare three methods for generating neural network ensem-

bles using the Pareto-based multiobjective learning, which are

suggested by Abbass [57], Chandra and Yao [52], and Jin

et al. [26].

A. Identifying Interpretable Models

As suggested in [4], interpretability of neural networks is

mainly determined by their complexity. The simpler a network,

the easier it is to understand the knowledge embedded in the

neural network. This is also true if we look at the definition of

interpretability of fuzzy systems [6], [41].

When we minimize both accuracy and complexity of the net-

works in a Pareto-based approach, we are able to achieve a num-

ber of Pareto-optimal solutions with a complexity ranging from

very simple networks to highly complex ones. We argue that the

simple Pareto-optimal neural networks on the Pareto front are

actually the interpretable models from which understandable

logic rules can be extracted. Before providing examples on the

benchmark problems, we first briefly describe the rule extrac-

tion method we adopted in this case study, which is similar to

the one used in [78]. Consider a simple neural network with one

single input, one hidden neuron, and one output neuron, refer

to Fig. 4. For binary classification problems, we usually assume

that an instance is labeled as class 1 if the output is smaller than

0.5. Otherwise, it is labeled as class 2. To have more confidence

in decision making, we can also define a stronger criterion, for

instance:

If y ≥ 0.75, then class 1

If y ≤ 0.25, then class 2

If 0.25 < y < 0.75, undecided.

(30)
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Fig. 4. Typical simple network for extracting logic rules.

In the following, we will show how to derive rules from

neural networks using the defined thresholds. Let the output of

the hidden neuron be z, then a rule that defines class 1 should

satisfy

w3 z + w4 ≥ 0.75. (31)

Then, we get

z ≥
(0.75 − w4)

w3
, if w3 > 0

z ≤
(0.75 − w4)

w3
, if w3 < 0.

Consider the first case and define (0.75 − w4)/w3 = θ1 > 0,

we have

w1 x + w2

1 + |w1 x + w2 |
≥ θ1 . (32)

Since θ1 > 0, w1 x + w2 must also be larger than zero to satisfy

the conditions for class 1. Consequently,

w1 x + w2

1 + w1 x + w2
≥ θ1 (33)

and

x ≥
θ1 − w2(1 − θ1)

w1(1 − θ1)
, if w1(1 − θ1) > 0 (34)

x ≤
θ1 − w2(1 − θ1)

w1(1 − θ1)
, if w1(1 − θ1) < 0. (35)

Let [θ1 − w2(1 − θ1)]/[w1(1 − θ1)] = θ2 , either of the follow-

ing two rules can be extracted that defines the condition for

class 1:

If x ≥ θ2 , then class 1, if w1(1 − θ1) > 0

If x ≤ θ2 , then class 1, if w1(1 − θ1) < 0.

Note, however, that it can happen that no rule can be extracted

from the neural network. For instance, if ∀z, w3 z + w4 < 0.75.

In this case, the neural network is not able to separate the two

classes.

1) Wisconsin Breast Cancer Data: For rule extraction, all

available data are used for training the neural network. The

Pareto-optimal solutions from a typical run are plotted in Fig. 5.

Fig. 5. Typical Pareto-front obtained for the breast cancer data composed of
41 solutions.

Fig. 6. Simplest Pareto-optimal network model for the breast cancer data,
which exactly learns the mean of the training data.

Fig. 7. Pareto-optimal network model with four connections for the breast
cancer data.

As we will show later on, the simplest Pareto-optimal neural

networks achieved from different runs are almost identical.

Let us now look at the simplest Pareto-optimal neural net-

works. The simplest neural network has three connections in

total, in which no input is selected. In other words, the input of

the neural network is constant, refer to Fig. 6. Interestingly, this

neural network learns exactly the mean output of the training

data.

The second simplest network is presented in Fig. 7, which

has four connections. Of the nine input attributes, only x2 (uni-

formity of cell sizes) is selected, which implies that x2 might be

the most important feature for determining whether an instance

is benign or malignant. The MSE of the network is 0.051. From

the network, the following two rules can be extracted using the

previously described rule extraction method:

If x2 ≤ 0.2, then benign

If x2 ≥ 0.4, then malignant.

With these two simple rules, the correct classification rate is

97.0% on 602 instances with the rest 97 instances undetermined,

recalling that the thresholds are set to 0.75 and 0.25 to make sure

that the decision is confident enough. However, if we set the
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Fig. 8. Pareto-optimal network model with five connections for the breast
cancer data.

Fig. 9. Typical Pareto-front obtained for the diabetes data composed of 37
solutions.

classification threshold to 0.5, the following rule can be obtained

with a correct classification rate of 92.4% on all instances.

If x2 ≤ 0.3, then benign

otherwise malignant.

The next simple Pareto-optimal neural network has five con-

nections, in which both x2 and x6 are chosen as input features

(see Fig. 8). The MSE of the model is 0.029. From this neural

network, the following two rules can be extracted:

If 14x2 + 8.55x6 ≤ 5.81, then benign

If 14x2 + 8.55x6 ≥ 7.55, then malignant.

Using these two rules, the correct classification rate is 97.2%

on 680 instances with the rest 19 instances undetermined. If the

threshold is set to 0.5, the following rule can be obtained with a

correct classification rate of 96.4% on all instances:

If 14x2 + 8.55x6 ≤ 6.45, then benign

otherwise malignant.

2) Diabetes Data: The same empirical study is conducted

on the diabetes data. The achieved Pareto front is shown in

Fig 9.

Same as the breast cancer data, the simplest Pareto-optimal

solution contains three connections and learns the mean of the

output value. The two simple Pareto solutions with at least

one attribute chosen are plotted in Figs. 10 and 11, respec-

tively. The MSEs of the two simple network models are 0.17

and 0.16.

Fig. 10. Pareto-optimal network model with four connections for the diabetes
data.

Fig. 11. Pareto-optimal network model with five connections for the diabetes
data.

From the neural network with four connections (see Fig. 10),

the following two rules can be extracted:

If x2 ≤ 0.83, then positive

If x2 ≥ 0.56, then negative.

By applying the aforementioned two rules, we are able to

make a decision on 413 instances with a correct classification

rate of 85.4%. The rest 355 instances cannot be determined with

these two rules.

If we set the threshold to 0.5, the following rule is obtained:

If x2 ≤ 0.72, then positive

otherwise negative.
(37)

The correct classification rate using the aforementioned rule is

75.0% on all 768 instances.

The following rules can be obtained for the neural network in

Fig. 11, when the threshold is set to 0.75 and 0.25:

If 3.77x2 + 2.67x6 ≤ 4.54, then positive

If 3.77x2 + 2.67x6 ≥ 3.46, then positive.

With these two rules, the correct classification rate is 85.4%

with the rest 308 instances undecided. If the threshold is set to

0.5, we then have the following rule:

If 3.77x2 + 2.67x6 ≤ 3.97, then positive

otherwise negative.
(38)

From the aforementioned rule, the correct classification rate on

all 768 instances is 77.0%.

3) Iris Data: The Pareto front from the Iris data is presented

in Fig. 12, which consists of 20 solutions (two Pareto optimal

solutions have the same MSE and complexity). Again, the sim-

plest network with seven connections approximates the mean

value of the output.

The two Pareto-optimal networks with eight connections are

plotted in Figs. 13 and 14, respectively. From the figures, we
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Fig. 12. Typical Pareto-front obtained for the Iris data composed of
20 solutions.

Fig. 13. Pareto-optimal network model with eight connections for the Iris
data. In this model, x3 is chosen as the input.

Fig. 14. Pareto-optimal network model with eight connections for the Iris
data. In this model, x4 is chosen as the input.

notice that only one of the attribute (either x3 or x4) is cho-

sen. From the network in Fig. 13, the following rule can be

extracted:

If x3 ≤ 2.4, then Iris setosa. (39)

Similarly, the following rule can be extracted form the network

in Fig. 13:

If x4 ≤ 0.80, then Iris setosa. (40)

It can be easily verified that both rules are able to separate

Iris sesota from the other two classes correctly.

Fig. 15. Pareto-optimal network model with 13 connections for the Iris data.
x4 is chosen as the input.

The neural network model with 13 connections is shown in

Fig. 15. Interestingly, only x4 is used for classification. From

this neural network, we can extract the following three rules:

If x4 ≤ 0.6, then Iris setosa

If 1.1 ≤ x4 ≤ 1.6, then Iris versicolor

If x4 ≥ 1.7, then Iris virginica.

The correct classification rate is 91.3% on all instances. Note

that the classification rate is almost the same when the threshold

is set to 0.5 on the Iris data.

From the three benchmark problems, we can conclude that

by trading off accuracy against complexity, the Pareto-based

multiobjective optimization algorithm is able to find the sim-

plest structures that solve the problem best. Besides, the sim-

ple Pareto-optimal networks are able to capture the main

knowledge embedded in the data so that interpretable logic

rules can be extracted. Compared to other methods used in

extracting rules from trained neural network [79], [80], the

Pareto-based approach is very straightforward and efficient. Be-

sides, the multiple interpretable yet Pareto-optimal solutions

provide additional knowledge that can help the user under-

stand the problem, as we have shown on the three benchmark

problems.

B. Model Selection by Analyzing the Pareto Front

Model selection is a well-studied topic in machine learn-

ing [81], [82]. If sufficient data are available, the best approach

to model selection is to split the data into three subsets, where

the first subset (training data) is for constructing models, the

second one (validation data) is used to estimate prediction er-

ror for selecting a model, and the third one (test data) for ac-

cessing the generalization error of the selected model. In case

of insufficient data, which is often the case in real-world ap-

plications, either analytical methods such as the information-

theoretic criteria [81], [82], e.g., the Akaike’s information crite-

rion (AIC) and the Bayesian information criterion (BIC), or

resampling techniques like k-fold cross-validation [82], are

used.

In this section, we show that the Pareto approach to han-

dling the accuracy–complexity tradeoff provides an empirical,

yet interesting alternative to selecting models that have good
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Fig. 16. Accuracy versus complexity of the Pareto-optimal solutions from two
independent runs: breast cancer data. Dots denote training data and circles test
data.

generalization on unseen data. The basic argument is that the

complexity of the model should match that of the data to be

learned and the ability of the learning algorithm. When the

complexity of the model is overly large, learning becomes sen-

sitive to stochastic influences, and results on unseen data will be

unpredictable, i.e., overfitting can happen. Inspired by the work

on determining the correct number of clusters in multiobjective

data clustering [71], the appropriate complexity of the data can

be determined by the normalized performance gain (NPG)

NPG =
MSEj − MSEi

Ci − Cj
(41)

where MSEi , MSEj , and Ci , Cj are the MSE on training data,

and the NC of the ith and jth Pareto optimal solutions. When

the solutions are ranked in the order of increasing complexity,

the following relationships hold:

Ci+1 > Ci

MSEi+1 ≤ MSEi .

We hypothesize that if the model complexity is lower than that

of the data, an increase in complexity will result in significant

increase in performance (NPG). As the complexity continues

to increase, the NPG decreases gradually to zero. At this point,

the complexity of the model matches that of the data. Further

increase in complexity will probably bring about further en-

hancement in performance on the training data, but with the

increasing risk of overfitting the training data.

We are now going to verify empirically the suggested method

for model selection on the three benchmark problems. In this part

of the simulations, available data are split into a training dataset

and a test dataset. For the breast cancer data, 525 instances are

used for training and 174 instances for test. The training set

of the diabetes data contains 576 samples and the test set 192

samples. Finally, 120 instances are used for training and the rest

30 instances for test for the Iris data.

The Pareto fronts generated from two independent runs on the

three benchmark problems are presented in Figs. 16, 17, and 18,

respectively. The dots denote the results on the training dataset,

while the circles the results on test data. The NPG from the two

Fig. 17. Accuracy versus complexity of the Pareto-optimal solutions from two
independent runs: diabetes data. Dots denote training data and circles test data.

Fig. 18. Accuracy versus complexity of the Pareto-optimal solutions from two
independent runs: Iris data. Dots denote training data and circles test data.

independent runs for the three problems are plotted in Figs. 19,

20, and 21, respectively.

We first analyze the results on the breast cancer data. From

Fig. 19, we notice that the NPG decreases to 0 after the first peak

in performance gain when the NC is between 12 and 14. Mean-

while, it can be seen from Fig. 16 that the learning performance

on the training data from different runs begins to fluctuate when

the NC is larger than 17. These two facts suggest that the ap-

propriate complexity of the neural network for this problem is

between 12 and 17. We can see from Fig. 16 that the error on

the test data is well controlled when the complexity is in the

suggested range.

Similar observations can be made on the diabetes data and

the Iris data. For the diabetes data, the NPG first drops to 0

when the NC of the neural networks is around 10. In addition,

a discrepancy between the two runs becomes large after the NC

reaches 13. From these two observations, we conclude that the

complexity of the neural network on the diabetes data should

be around 8–10. For the same reasons, the NC of the neural

network should be between 16 and 18 for the Iris data.

The proposed method for model selection is empirical and

needs to be verified on more problems. For clarity, we only

plot results from two independent runs in the aforementioned
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Fig. 19. NPG from two independent runs for the breast cancer data.

Fig. 20. NPG from two independent runs for the diabetes data.

Fig. 21 NPG from two independent runs for the Iris data.

analyses. The results of ten independent runs are plotted in

Figs. 28–30. From these results, we can confirm that the gener-

alization performance of the neural network is good when the

learning performance on the training data is stable in different

runs.

It is difficult to select one single model using our empirical

method. Instead, it will be more reliable if multiple models

of potentially good generalization performance are chosen to

construct an ensemble. This topic will be discussed in the next

section.

C. Generating Diverse and Accurate Ensemble Members

In this section, we compare three Pareto-based multiobjec-

tive approaches to ensemble generation. The first approach is
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Fig. 22. Achieved nondominated solutions using Abbass’s approach: breast cancer data. (a) Lifetime learning is switched between two datasets. (b) Lifetime
learning applied on the combination of the data.

presented in Abbass [57], where the accuracies on two datasets

serve as two objectives. The second one is described in Chandra

and Yao [52], where a tradeoff between accuracy and diversity

is taken into account to generate ensembles. The final approach

studied in the section is suggested in Jin et al. [25], [26], in which

the accuracy and the NC of the neural network are adopted as

two conflicting objectives. The experimental setup is the same

as in the previous studies, except that in the Abbass’ approach,

the training data of the three benchmark problems are equally

divided into two datasets so that the approximation errors on the

two datasets can be computed as the two objectives.

Another issue, which has not been explicitly addressed in

Abbass [57], is the lifetime learning under the context of mul-

tiobjective learning. Note that RProp is adopted as the lifetime

learning algorithm, which works for single-objective learning

only. This is not a problem in Chandra’s as well as in Jin’s

approach in that the lifetime learning is applied to one of the ob-

jective only. However, when both objectives are approximation

errors, multiobjective lifetime learning should be applied, which

is not straightforward for gradient-based learning algorithms. In

Jin et al. [83], it is suggested that the lifetime learning should

be switched randomly between the two objectives to achieve di-

verse Pareto-optimal solutions. In this study, lifetime learning is

switched between the two objectives at an equal probability. For

comparison, simulations are also conducted where the lifetime

learning is of single-objective nature, i.e., the RProp is applied

on the combination of the two datasets.

The Pareto-optimal solutions from ten runs on the breast can-

cer data are plotted in Fig. 22(a), where the lifetime learning

is switched between the two datasets, and Fig. 22(b), where

the lifetime learning is applied on the combination of the two

datasets. In the figures, the dots denote the results on the training

data and the circles the results on test data. From these results,

we can make the following observations. First, by switching

the lifetime learning between the two datasets, more diverse

solutions can be achieved. Second, good performance on the

training data does not ensure good performance on the test data.

As suggested in [53], ensemble members should be both ac-

curate and diverse. In other words, ensembles whose members

are of poor accuracy cannot perform well. This indicates that if

the Pareto-optimal solutions are used as ensemble members, the

quality of the ensemble will be poor. Third, lifetime learning on

the combination of the data results in serious overfitting.

Very similar results are obtained for the diabetes data and

the Iris data, which are plotted in Figs. 23 and 24, respectively.

Again, it is difficult to choose proper ensemble members from

the Pareto-optimal solutions.

The simulation results using Chandra and Yao’s approach for

the three benchmark problems are presented in Figs. 25, 26, and

27, respectively. Again, the results on the training and test data

are denoted by dots and circles. From the figures, we find that

the achieved Pareto-optimal network models tend to overfit the

data regardless the diversity, particularly on the diabetes data

and the Iris data.

Finally, we take a look at Jin et al.’s approach, which ensures

the diversity of the ensemble members by generating neural

networks with different complexities. The results are presented

in Figs. 28, 29, and 30, respectively. From the figures, we can

see that in all the three examples, the MSE on the test data is

well constrained when the complexity of the neural network

is appropriately low. As suggested in the previous section, the

required complexity that matches the data can be estimated using

the NPG. By choosing these networks as ensemble members,

we are able to have a neural network ensemble whose members

are both accurate and diverse. The diversity of the networks is

guaranteed by the difference in the complexity of the neural

networks.

Comparing the three Pareto-based approaches to ensemble

generation, we conclude that it is not straightforward to choose

ensemble members from the achieved Pareto-optimal solutions

for constructing ensembles in Abbass’ as well as in Chandra and

Yao’s approaches. To ensure good performance on unseen data

of the ensemble, additional methods such as cross-validation

must be employed. In contrast, it is rather easy to identify neural

networks that can be used as ensemble members when Pareto-

optimal solutions are generated using Jin et al.’ approach. An-

other important point is that in Abbass’ and Chandra and Yao’s

approaches, the achieved solutions from the ten independent
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Fig. 23. Achieved nondominated solutions using Abbass’s approach: diabetes data. (a) Lifetime learning is switched between two datasets. (b) Lifetime learning
applied on the combination of the data.

Fig. 24. Achieved nondominated solutions using Abbass’s approach: Iris data. (a) Lifetime learning is switched between two datasets. (b) Lifetime learning
applied on the combination of the data.

runs are rather different along the whole Pareto front, which

means that these two methods are quite sensitive to stochastic

influences. Opposite to that, the results from the ten independent

runs are quite stable in Jin et al.’s approach when the complexity

is low.

VII. SUMMARY AND OUTLOOK

Pareto-based approach to machine learning provides us a new

point of view for studying machine learning problems. By means

of Pareto-based optimization, we are able to gain a deeper in-

sight into different aspects of machine learning, and thus, de-

velop new learning algorithms. The power of the Pareto-based

approach is made more attractive due to the successful applica-

tion of evolutionary algorithms to Pareto-based multiobjective

optimization.

This paper provides an up-to-date yet not necessarily com-

plete review of the existing research on Pareto-based multiob-

jective learning algorithms. We illustrate, on three benchmark

problems, how we can address important topics in machine

learning, such as generating interpretable models, model se-

lection for generalization, and ensemble generation, using the

Pareto-based multiobjective approach. We show that the sim-

plest Pareto-optimal model without any input selected approx-

imates the mean of the training data, while the simple Pareto-

optimal models with one or two most important features se-

lected capture the essential knowledge in the data. In addition,

we demonstrate empirically that by analyzing the Pareto-optimal

solutions in terms of performance and complexity, and the learn-

ing performance w.r.t. model complexity in independent runs,

we are able to choose models that are most likely to exhibit good

performance on unseen data. Finally, we compare three Pareto-

based approaches to the generation of neural ensembles and

indicate that the method by trading off accuracy and complexity

can provide reliable results.

Many issues remain to be resolved and new areas could

be opened up in the field of Pareto-based multiobjective ma-

chine learning. One interesting question is how the Pareto-based

approach to machine learning influences the learning behav-

ior, e.g., the property of the learning curve [84], [85]. It has
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Fig. 25. Achieved nondominated solutions using Chandra and Yao’s approach:
breast cancer data.

Fig. 26. Achieved nondominated solutions using Chandra and Yao’s approach:
diabetes data.

Fig. 27. Achieved nondominated solutions using Chandra and Yao’s approach:
Iris data.

been empirically disclosed in general optimization problems

that the number of local optima can be reduced by convert-

ing multimodal single-objective problems into multiobjective

ones [86], [87]. If we are able to show that the same happens in

Fig. 28. Achieved nondominated solutions using Jin et al.’s approach: breast
cancer data.

Fig. 29. Achieved nondominated solutions using Jin et al.’s approach: diabetes
data.

Fig. 30. Achieved nondominated solutions using Jin et al.’s approach: Iris
data.

machine learning, it is then more convincing to argue that the

Pareto-based multiobjective learning is able to improve learning

performance.

Most topics discussed so far are mainly concerned with the

bias–variance tradeoff in machine learning. Another important
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topic in machine learning, as well as in human memory sys-

tems, is the plasticity–stability tradeoff, which is also known as

online learning [88], incremental learning [89], or catastrophic

forgetting [90]. A preliminary attempt has been made in [83]

to address catastrophic forgetting using the Pareto-based ap-

proach. It has been shown that the multiobjective approach is

more promising in alleviating forgetting than its single-objective

counterpart. The idea of Pareto-optimality can also be extended

to the study on connectivity and complexity [91], [92] of general

networks, and to the research on structure and functionality of

spiking neural networks [93], [94].
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