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Abstract. In this paper, we study the set of thresholds that the protag-
onist can force in a zero-sum two-player multidimensional mean-payoff
game. The set of maximal elements of such a set is called the Pareto
curve, a classical tool to analyze trade-offs. As thresholds are vectors
of real numbers in multiple dimensions, there exist usually an infinite
number of such maximal elements. Our main results are as follow. First,
we study the geometry of this set and show that it is definable as a
finite union of convex sets given by linear inequations. Second, we pro-
vide a Σ2P algorithm to decide if this set intersects a convex set defined
by linear inequations, and we prove the optimality of our algorithm by
providing a matching complexity lower bound for the problem. Further-
more, we show that, under natural assumptions, i.e. fixed number of
dimensions and polynomially bounded weights in the game, the prob-
lem can be solved in deterministic polynomial time. Finally, we show
that the Pareto curve can be effectively constructed, and under the for-
mer natural assumptions, this construction can be done in deterministic
polynomial time.

1 Introduction

Two-player zero-sum games played on graphs are adequate models for open
reactive systems [12], i.e. systems maintaining a continuous interaction with
their environment. In such model, Eve (the protagonist) models the system,
Adam (the antagonist) models the environment, and a winning strategy for Eve
in this game represents a controller that enforces a good property (modeled as the
winning condition in the game) against all possible behaviors of the environment.
Recently, there has been a large effort to study quantitative extensions of those
graph games, see e.g. [6]. Those extensions are useful to model quantitative
aspects of reactive systems such as mean energy or peak energy consumption,
mean response time, etc. In practice, a system is most often exhibiting several
such quantitative aspects, and they may be conflicting, e.g. one may need to
consume more energy in order to ensure of a lower mean response time. This is
why there is a clear need to study multi-dimensional quantitative games.

In [15], the threshold problem for multi-dimensional mean-payoff games is
studied, i.e. given a d-dimensional value vector v ∈ R

d, does Eve have a strategy
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D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 251–267, 2015.
DOI: 10.1007/978-3-319-21668-3 15



252 R. Brenguier and J.-F. Raskin

against all strategies of Adam to enforce values larger or equal to v. As weights
in the game are given as vectors in multiple dimensions, there are usually an
infinite number of incomparable thresholds that Eve is able to enforce. The set
of maximal thresholds that Eve can enforce is called the Pareto curve, it is the
classical tool to analyze trade-offs. Another application of the Pareto curve is the
study of multiplayer games. For instance to compute Nash equilibria, a multi-
player game with mean-payoff objectives is transformed into a multidimensional
mean-payoff two-player game [2], and the Pareto curve of this multidimensional
game allows us to compute the equilibria of the original multiplayer game. In
this paper, we study the Pareto curve and the set of thresholds that Eve can
enforce in a multidimensional mean-payoff games.

Contributions. To effectively analyze the trade-offs in systems formalized by
multidimensional mean-payoff games, we need algorithms to answer queries
about Pareto curves or to compute an effective representation of them. This
is the subject of this paper. Our main contributions are as follows.

First, we characterize the geometry of the set of thresholds that Eve can
force: we show that this infinite set can be effectively represented as a (finite)
union of convex sets defined by linear inequations. We obtain this result both
for games where the mean-payoff is given dimension by dimension using lim inf
(Theorem 4), and for a mixture of lim inf and lim sup (Theorem 10). Using this
symbolic representation as a finite union of convex sets, it is now possible for
instance to optimize linear functions by calls to linear programming.

Second, we study the computational complexity of natural associated deci-
sion problems. We provide a Σ2P algorithm to decide if this set of thresholds
intersects a convex set defined by linear inequations, and we prove the optimal-
ity of our algorithm by providing a matching complexity lower bound for the
problem (Theorem 6). To obtain this result and several others in our paper,
we extensively use techniques from discrete geometry [9] but we also need to
establish new non-trivial results. In particular, we provide new results on the
complexity of manipulating and querying linear sets defined by sets of linear
inequations (Theorem 3). We believe that those results are of interest on their
own. Equipped with those new results, we show that, even if the Pareto curve is
represented by an exponential number of convex sets, each of them being defined
by an exponential number of linear inequations, they are well behaved. Indeed,
all the inequations that are needed to represent the Pareto curve and its down-
ward closure (the set of thresholds that can be forced by Eve), have encoding
that are bounded by polynomial functions in the size of the game.

Third, we show that it is possible to answer queries on the set thresholds
that Eve can force (Theorem 7) and to construct the Pareto curve (Theorem 8)
in deterministic polynomial time for fixed number of dimensions and polynomi-
ally bounded weights. Those results are of practical relevance as the number
of dimension while multiple is often quite low in practice, and polynomially
bounded weight is also a reasonable assumption, see [4,8,16] for papers where
those two properties are exploited.
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Related Works. In [1], Alur et al. consider languages of infinite words definable
by Boolean queries over multidimensional mean-payoff automata. They study the
accumulation points of infinite runs as a way to define an acceptance condition.
They do not consider the construction of the Pareto curves associated to lan-
guages. Here, we show how to construct the Pareto curves in the more general
and challenging setting of multidimensional mean-payoff games.

In [11], Papadimitriou et al. define a general procedure to construct approx-
imations of Pareto curves. For models with fixed number of dimensions, they
identify conditions that are sufficient to ensure that this approximation can
be constructed in polynomial time. This technique has been used e.g. to provide
approximate constructions of the Pareto curves for discounted sum Markov deci-
sion processes [7]. With the technique of [11], we can obtain approximations of
the Pareto curves of multidimensional mean-payoff games in polynomial time for
fixed number of dimensions. Here we provide a stronger result as we show how
to construct exact representations of the Pareto curves (and not only approx-
imations!) of multidimensional mean-payoff games in deterministic polynomial
time for fixed number of dimensions.

Structure of the Paper. Section 2 defines the problems that we solve. Section 3
establishes general complexity results on the geometric objects that we use in the
core of our paper. Section 4 solves the lim inf case. We concentrate on this case
first as it exhibits all the difficulties of the general case with simpler notations.
Section 5 deals with the construction of a concrete representation of the Pareto
curve. In Sect. 6 we solve the general problem in which lim inf and lim sup are
mixed.

For lack of space, the technical proofs are omitted, and can be found in [3].

2 Preliminaries

Arenas. We define arenas for two players that we call Eve and Adam. An arena A
is a tuple 〈States∃,States∀,Edges〉, where:

– States = States∃�States∀ is a finite set of states partitioned between the states
of Eve and those of Adam;1

– Edges ⊆ States × States is the set of edges. W.l.o.g. we assume that for all
s ∈ States, there exists s′ ∈ States such that (s, s′) ∈ Edges.

A play proceeds as follows. Whenever we arrive at a state s: if s ∈ States∃,
then Eve selects a state s′ such that (s, s′) ∈ Edges; if s ∈ States∀, then Adam
selects a state s′ such that (s, s′) ∈ Edges. The game then continues from s′

and this is repeated to form an infinite sequence of states. Formally, a play
in the arena A is an infinite sequence of states ρ = ρ0ρ1 · · · such that for all
i ≥ 0, (ρi, ρi+1) ∈ Edges. We write ρ≤ n for the prefix ρ0 · · · ρn. A history h
of the arena A is a (finite and non-empty) prefix of a play, i.e. an element of
States∗ · States.
1 We will write |States| for the cardinal of States.
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Strategies. Let A be an arena, a strategy for Eve maps histories ending in a
state of States∃ to a successor of that state. Formally, it is a function σ∃ : States∗ ·
States∃ → States, such that for all histories h and states s, (s, σ∃(h · s)) ∈ Edges.
Similarly, a strategy for Adam is a function σ∀ : States∗ · States∀ → Actions, such
that for all for all histories h and states s, (s, σ∀(h · s)) ∈ Edges. A strategy σ∀ is
memoryless if for all histories h and h′, and all states s, σ∀(h ·s) = σ∀(h′ ·s). We
write M for the (finite) set of memoryless strategies of Adam. Let σ∃ be a strategy
for Eve, a play ρ is compatible with the strategy σ∃ if, for all k ≥ 0, if ρk ∈ States∃
then ρk+1 = σ∃(ρ≤ k). We write OutcomeA(s, σ∃) for the set of plays in A that
are compatible with strategy σ∃ and have initial state s (i.e. ρ such that ρ0 = s).
These plays are called outcomes of σ∃ from s. We simply write Outcome(s, σ∃)
when A is clear from context. The set of outcomes OutcomeA(s, σ∀) of a strategy
of Adam is defined symmetrically.

Weighted Game. A weighted game G = 〈A, w, I, J〉 is an arena A equipped
with a weight function w : Edges 
→ Z

d, and a partition of the set of dimensions
[[1, d]] = {1, 2, . . . , d} into I � J = [[1, d]]. We call d the dimension of G. Given
a weight function w, we write wi for the projection to the i-th dimension of
the function w. We write WG for the maximal absolute value appearing in the
weights: WG = max{|wi(e)| | i ∈ [[1, d]], e ∈ Edges}. The mean-payoff inferior
and mean-payoff superior over dimension i of a play ρ are given by:

MPi(ρ) = lim inf
n→∞

1
n

∑

0≤k<n

wi(ρk, ρk+1),

MPi(ρ) = lim sup
n→∞

1
n

∑

0≤k<n

wi(ρk, ρk+1).

The goal of Eve is to maximize the mean-payoff inferior for the dimensions
in I, and the mean-payoff superior for the dimensions in J . Let G be a weighted
game, s a state of G, and v ∈ R

d, we say that a strategy σ∃ ensures thresholds
v from state s if for all outcomes ρ ∈ OutcomeA(s, σ∃), for all dimensions i ∈ I,
MPi(ρ) ≥ vi, and for all dimensions j ∈ J , MPj(ρ) ≥ vj .

Pareto Optimality. We are interested in strategies of Eve that ensure thresh-
olds as high as possible on all dimensions. However, since the weights are mul-
tidimensional, there is not a unique maximal threshold in general. We use the
concept of Pareto optimality to identify the most interesting thresholds. To define
the set of Pareto optimal thresholds, we first define the set of thresholds that
Eve can force:

value(G, s) =
{

v ∈ R
d | ∃σ∃ · ∀ρ ∈ Outcome(s, σ∃) · ∀i ∈ I : MPi(ρ) ≥ vi

∧∀j ∈ J : MPj(ρ) ≥ vj

}
.

A threshold v ∈ R
d is Pareto optimal from s if is maximal in the set value(G, s).

So the set of Pareto optimal thresholds is defined as:

PO(G, s) = {v ∈ value(G, s) | ¬∃v′ ∈ value(G, s) : v′ > v}.
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We refer to this set as the Pareto curve of the game. Our goal is to compute a
representation of this curve. Note that the set of thresholds that Eve can force
is exactly equal to the downward closure of the Pareto optimal thresholds, i.e.
value(G, s) =↓ PO(G, s).

Linear Inequations. Let a ∈ Q
d be a vector in d dimensions. The associated

linear function αa : R
d 
→ R is the function αa(x) =

∑
i∈[[1,d]] ai ·xi that computes

the weighted sum relative to a. A linear inequation is a pair (a, b) where a ∈
Q

d\{0} and b ∈ Q. The half-space satisfying (a, b) is the set 1
2space(a, b) = {x ∈

R
d | αa(x) ≥ b}. A linear equation is also given by a pair (a, b) where a ∈ Q

d\{0}
and b ∈ Q but we associate to it the hyperplane hplane(a, b) = {x ∈ R

d |
αa(x) = b}. If H = 1

2space(a, b) is a half-space, we sometimes write hplane(H)
for the associated hyperplane hplane(a, b). A system of linear inequations is a
set λ = {(a1, b1), . . . , (al, bl)} of linear inequations. The polyhedron generated by
λ is the set polyhedron(λ) =

⋂
(a,b)∈λ

1
2space(a, b).

A natural problem, is to try to optimize the threshold we can ensure with
respect to a linear function α : R

d 
→ R. We are looking for a strategy σ∃ which
ensures a threshold v ∈ R

d, and such that there is no σ′
∃ which ensures a thresh-

old v′ ∈ R
d, with α(v′) > α(v). To make this into a decision problem, we fix a

real b, and ask if it is possible to ensure threshold v such that α(v) ≥ b. We con-
sider a generalization of this problem which considers a set of linear inequations
instead of a single one.

Polyhedron Value Problem. Given a mean-payoff game G, a set of linear
inequations λ over elements of R

d, the polyhedron value problem asks whether
there is a strategy σ∃ and a value v ∈ polyhedron(λ) such that σ∃ ensures v.
Note that this is equivalent to ask whether polyhedron(λ) intersects value(G, s).

Remark 1. Other works ([8,15] for instance) focus on the 0-value problem, which
is a special case of the polyhedron value problem (take as polyhedron the set
R

d
+). This special case is simpler: we will show that the polyhedron value problem

is Σ2P-complete while the 0-value problem is coNP-complete [15].

Consider a system with n resources R1, . . . , Rn that are shared among d
agents A1, . . . , Ad. Two agents cannot access the same resource at the same
time and can request one resource at any time. We want to control the access to
the resources in a way that minimizes the time that is spent during the waiting
period by the different agents. This situation can be seen as a d dimensional
game, in which if Ai is waiting then the reward is −1 on the i-th dimension
and 0 otherwise. A situation with two agents and one resource is represented in
Fig. 1.

On each dimension, the average corresponds to the opposite of the average
waiting time of each agent. For limit inferior objectives the controller cannot
ensure a payoff of 0 on all dimensions. However, it can ensure thresholds like
(−1, 0), (0,−1), or (− 1

2 ,− 1
2 ), and in fact all the thresholds on the line segment

from point (−1, 0) to (0,−1), or below it (this set is the set of feasible thresholds).
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A1 waits R1 A1 waits R1

A2 waits R1 A2 waits R1

A1 and A2 wait R1 A1 and A2 wait R1

0, 0

0, 0

0, 0

−1, 0

0, 0

0,−1

−1, 0

0,−1

−1,−1

Fig. 1. A two-dimensional mean-payoff game. Rounded
states belong to Eve and rectangles to Adam.

(0,−1)

(−1, 0)

Fig. 2. Pareto curve
of the game of Fig. 1.

Figure 2 shows the Pareto curve of the game. To illustrate the polyhedron value
problem, assume we want a strategy which gives at least − 1

3 on the first dimen-
sion, at least − 3

4 on the second one: this corresponds to solution of the problems
with λ = ((1, 0),− 1

3 ), ((0, 1),− 3
4 ). The frontier of this polyhedron is represented

by dotted lines on the figure. This polyhedron has a non-empty intersection with
the set of feasible thresholds, which means the problem has a solution.

3 Geometrical Representations

Since our typical reader may not be familiar with all the notions of discrete
geometry that we need, we summarize in this section useful notions and prop-
erties related to convex sets which are useful for our characterization of the sets
PO(G, s) and value(G, s). For an introduction to discrete geometry, we refer the
interested reader to [9]. We also prove new results in Theorems 1, 2 and 3 on
manipulating and querying polytopes and systems of linear inequations. Those
results are necessary to prove the main theorems of our paper, and we believe
that they are of interest on their own.

To allow computational complexity measure, the size of the representations
of geometrical objects is relevant. We give here the number of bits required to
represent the objects that we manipulate. The size of a rational number r = p

q ∈
Q where p ∈ Z, q ∈ N, p and q are relatively prime, is: ||r|| = 1+�log2(|p|+1)�+
�log2(q + 1)�. The size of a vector v = (r1, . . . , rd) is ||v|| = d +

∑
i∈[[1,d]] ||ri||.

The size of an equation (a, b) is ||(a, b)|| = ||a|| + ||b|| and the size of a system of
equations λ is ||λ|| =

∑
(a,b)∈λ ||(a, b)||.

A bounded polyhedron is called a polytope. A face F of P is a subset of P of
the form F = P ∩HF , where HF is a half-space such that P ⊆ HF . In that case,
say that HF defines face F of P . A face of dimension 1 is called a vertex. If P has
dimension d′, then a face of dimension d′ − 1 is called a facet. Given a polytope
P , a complete set of facet-defining half-spaces F contains for each facet F a half-
space HF = 1

2space(aF , bF ) such that P ∩ hplane(aF , bF ) = F and P ⊆ HF .
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We will write F(P ) for such a set. The convex hull of a set of points X ⊆ R
d

is the set conv(X) =
{∑

x∈X tx · x | ∀x ∈ X. tx ∈ [0, 1] ∧ ∑
x∈X tx = 1

}
. The

downward closure of a set of points X ⊆ R
d, is the set ↓ X = {x | ∃x′ ∈ X. ∀i ∈

[[1, d]]. xi ≤ x′
i}.

If X is a finite set of points, the convex hull P = conv(X) can be written
as a finite intersection of half-spaces [9], it is therefore a polytope. It can be
represented either by its extremal points or as the intersection of its facet-defining
half-spaces.

For our algorithms, it is important to be able to go from the half-space
representation to the extremal point representation and vice-versa. We need
also to bound the complexity of the objects that we obtain, i.e. we want to
ensure that the half-spaces are defined with inequations of polynomial size and
the extremal points to be representable with polynomial encodings. We will show
in Theorem 3 that this is possible.

Small Solutions of Large Systems of Equations. The following theorem
establishes that if a system of linear equations has a solution, then it also has a
solution with a small encoding.

Theorem 1. There is a polynomial function P1 such that for all system
of equations λ of R

d, if
⋂

(a,b)∈λ hplane(a, b) �= ∅, then there exists x ∈⋂
(a,b)∈λ hplane(a, b) whose representation has size smaller than P1(d) · (1 +

max{||(a, b)|| | (a, b) ∈ λ}).

The proof given in long version of this paper relies on a result of [10] that we
extend to non-singular, and non-square matrices of rational numbers rather than
integers. Note also that our bound depends on the number of dimension d but
not on the number of equations as in [10].

Fig. 3. Illustration of
Lemma 1 in the case of
two dimensions: In this
example, the possible
witnesses of the property
are circled.

Small Witnesses of Large Systems of Inequa-
tions. To decide the polyhedron value problem, our
algorithm nondeterministically constructs solutions of
large systems of inequations. We show in Theorem 2
that we can restrict the guesses to points whose rep-
resentation is of polynomial size. The proof relies on
Lemma 1 that says that if a system of inequations has
a solution, then there is one at the intersections of at
most d of the hyperplanes defined by the associated
equations. This is illustrated in Fig. 3: in two dimen-
sions, if a collection of half-spaces (i.e. half-planes
here) intersect (green shaded area in the picture), then
either there is a point at the intersection of two bound-
ary lines which is in the intersection (this is the case
in our example for the blue points), or one of these lines is included in the
intersection (this would be the case for instance if we only took parallel lines).
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Lemma 1. Let H1, . . . , Hn be n inequations of R
d. If

⋂n
i=1

1
2space(Hi) �= ∅

then there are k ≤ d indexes i1, . . . , id such that:

1.
⋂k

j=1 hplane(Hij ) �= ∅, and
2.

⋂k
j=1 hplane(Hij ) ⊆ ⋂n

i=1
1
2space(Hi).

From Lemma 1, we conclude that small solutions always exists for systems
of linear inequations independently of the number of inequations. Note that the
main difference between the next theorem and Theorem 1 is that we consider
here systems of inequations rather than equations.

Theorem 2. There is a polynomial function P1 such that for all systems
of inequations λ of R

d, if polyhedron(λ) �= ∅ then there is a point
x ∈ polyhedron(λ) whose representation has size smaller than P1(d) · (1 +
max{||(a, b)|| | (a, b) ∈ λ}).

Size Obtained When Changing the Representation of Polyhedra. As
already recalled, it is well known that we can represent a polytope either as the
intersection of half-spaces (solutions of a system of inequations) or by the finite
set of its vertices (extremal points). Theorem 3 characterizes the complexity of
one representation w.r.t. the other. Point 1 tells us how to bound the size of
the inequations in the half-spaces representation as a function of the size of the
representation of the points in the vertices representation. Point 2 does the same
for the downward closure of the convex hull of the set of points. Point 3 tells us
how to bound the size of the representation of the vertices as a function of the
size of the inequations in the half-space representation. Proofs can be found in
the long version of this paper.

Theorem 3. There are polynomial functions P2 and P3 such that:

1. given a finite set of points V = {v1, . . . , vn}, there are k ≤ nd inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2 +
log2(max{||v|| | v ∈ V })) and such that

⋂
i∈[[1,k]]

1
2space(ai, bi) = conv(V ).

2. given a finite set of points V = {v1, . . . , vn}, there are k ∈ N inequations
(a1, b1), . . . , (ak, bk) whose representations have size smaller than P2(d) · (2+
log2(max{||v|| | v ∈ V })) and such that

⋂
1≤i≤k

1
2space(ai, bi) =↓ conv(V ).

3. given a polytope P (i.e. a bounded polyhedron) represented by a system
of inequations λ, such that P =

⋂
(a,b)∈λ

1
2space(a, b), there is a finite

set V of points whose representations have size smaller than P3(d) · (2 +
log2(max{||(a, b)|| | (a, b) ∈ λ})) and such that conv(V ) = P .

4 The Limit Inferior Case

Let us fix for this section a weighted game G = 〈States∃,States∀,Edges, w, I, J〉
with J = ∅, i.e. the averages for all dimensions are defined using lim inf. In this
case, the set of thresholds that can be ensured by Eve from state s ∈ States is:

value(G, s) =
{
v ∈ R

d | ∃σ∃. ∀ρ ∈ Outcome(s, σ∃). ∀i ∈ [[1, d]]. MPi(ρ) ≥ vi

}
.
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To obtain a geometrical characterization of this set, we first study the set of
thresholds that Eve can ensure when Adam plays according to a fixed memoryless
strategy. Then, we show that the set value(G, s) is the intersection of those sets
for all the memoryless strategies of Adam. With the results of previous section, we
deduce that if there is a solution to the polyhedron value problem, then there is
one of bounded size which allows us to justify the correctness of a Σ2P-algorithm
for this problem. Finally, we show that this algorithm has optimal worst-case
complexity by providing a matching Σ2P-lower bound.

Playing Against Memoryless Strategies of Adam. Memoryless strategies
for Adam are important as they are optimal for the threshold problem [15], i.e. if
Adam has a strategy to prevent Eve from ensuring some threshold v then he has
a memoryless one to do so. Our analysis relies on simple cycles. Let S ⊆ States
be a subset of states of the arena of G. A simple cycle within S is a finite
sequence of states s0 · s1 · · · sn ∈ S∗, such that s0 = sn, and for all i and j,
0 ≤ i < j < n, si �= sj . We write C(S) for the set of simple cycles of A within S.
Let σ∀ ∈ M be a memoryless strategy for Adam, this strategy induces the graph
G(σ∀) = 〈States,Edgesσ∀〉 where Edgesσ∀ = {(s, s′) ∈ Edges | s ∈ States∃ ∨ (s ∈
States∀ ∧ σ∀(s) = s′)} which is a subgraph of the game arena in which Adam
plays according to the memoryless strategy σ∀. We denote by SCC(s, σ∀) the set
of strongly connected components accessible from s in G(σ∀).

Lemma 2. For all σ∀ ∈ M, for all infinite paths ρ = ρ0ρ1 . . . ρn . . . in G(σ∀),
let S ∈ SCC(ρ0, σ∀) be such that Inf(ρ) ⊆ S, then

MP(ρ) ∈↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
.

Proof. An accumulation point of a sequence x0, x1, . . . , xn, . . . of vectors in R
d

is a vector x ∈ R
d such that for every open set containing x, there are infi-

nitely many elements in the sequence which belong to the open set. It is proved
in [1] that if a run ρ gets trapped for ever in the SCC S (i.e. Inf(ρ) ⊆ S)
the set of accumulation points of the sequence ( 1

n · w(ρ≤ n))≤n is included in

conv
({

1
|c| · w(c) | c ∈ C(S)

})
. Now, let us show that MP(ρ) is smaller than

any accumulation point of the infinite sequence of vectors ( 1
n · w(ρ≤ n))≤ n.

Indeed, if x be an accumulation point of that sequence, then for all dimension
i the sequence 1

nwi(ρ≤ n) comes infinitely often arbitrarily close to xi. This
implies that lim inf 1

nwi(ρ≤ n) is smaller than xi for all dimensions i. Therefore

MP(ρ) ≤ x and MP(ρ) ∈↓ {x} ⊆↓ conv
({

1
|c| · w(c) | c ∈ C(S)

})
. ��
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s11, 0 0, 1

Fig. 4. Example of a game
where MP(ρ) does not belong to

conv
({

1
|c| · w(c) | c ∈ C(S)

})
for

all path ρ.

Note that it is not always the case
that MP(ρ) is in the convex hull of{

1
|c| · w(c) | c ∈ C(S)

}
. The example Fig. 4

shows that the downward closure operator is
necessary. In this example, the sequence of
vectors (1, 0)2

1 · (0, 1)2
2 · (1, 0)2

3 · (0, 1)2
4 · · ·

which can be obtained with a path ρ that
cycles on state s1 is such that MP(ρ) = (0, 0)
which is not in the convex hull of (1, 0) and (0, 1) (this convex hull is the set of
points (t, 1 − t) with t ∈ [[0, 1]]).

Lemma 3. For all σ∀ ∈ M, for all s ∈ States, for all S ∈ SCC(s, σ∀), for
all v ∈ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, there exists an infinite path ρ of G(σ∀)

starting from s such that MP(ρ) = v.

Proof. Let {c1, c2, . . . , cn} be a set of simple cycles in S such that v =∑n
i=1 λi

1
|ci| · w(ci), with

∑n
i=1 λi = 1, and λi ∈ [0, 1], i.e. v is a linear combina-

tion of the average weights of the simple cycles. It is proved in [15, Lemma 11],
that we can build a path ρ that starts in s, reaches the SCC S and then cycles
within S between the simple cycles c1, c2, . . . , cn in such a way that the MP on
each dimension j, 1 ≤ j ≤ d is equal to vj =

∑n
i=1 λi

1
|ci| · w(ci)j . ��

Characterizing the Feasible Thresholds. As Adam can play optimally with
memoryless strategies, the set of feasible thresholds that Eve can force is obtained
by considering the intersection of all the sets of thresholds that she can enforce
against those memoryless strategies of Adam.

Theorem 4. Let G be a game and s a state of G:

value(G, s) =
⋂

σ∀∈M

⋃

S∈SCC(s,σ∀)

↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})

Proof. For the left to right inclusion. Assume that σ∃ is a winning strategy of Eve
for the threshold v. For all memoryless strategies σ∀ ∈ M of Adam, we have that
ρ = Outcome(s, σ∃, σ∀) is such that MP(ρ) ≥ v. By Lemma 2, MP(ρ) belongs to
the set ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
, and as this set is downward closed it

contains v.
For the right to left inclusion. Take any v in the set on the right. By Lemma 3,

for all memoryless strategy σ∀ ∈ M of Adam, we know that there exists an
infinite path ρ starting from s in the graph G(σ∀) and such that MP(ρ) = v.
This is equivalent to say that there exists a strategy σ∃ for Eve such that
MP(Outcome(s, σ∃, σ∀)) = v. So, this means that memoryless strategies of Adam
cannot force from s an outcome with MP which is not at least equal to v. As
memoryless strategies of Adam are optimal, it means that Adam cannot obtain
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from s an outcome with MP which is not at least equal to v, no matter the strat-
egy that he plays. As multidimensional mean-payoff games are determined [15],
it means that Eve has a strategy to force outcomes from s with a MP at least
equal to v, which in turn implies that v ∈ value(G, s). ��
Remark 2. As a corollary of Theorem 4, notice that the set value(G, s) is closed.

Small Witnesses for Polyhedron Value Problem. We now show that if
value(G, s) ∩ polyhedron(λ) �= ∅, then there is a witness whose representation
is polynomial.

Theorem 5. There is a polynomial function P4 such that, for all weighted
game G, for all states s, and system of linear inequations λ, if value(G, s) ∩
polyhedron(λ) �= ∅ then there exists x ∈ Q

d such that:

1. x ∈ value(G, s) ∩ polyhedron(λ)
2. ||x|| ≤ P4(d)·(2+max{||(aj , bj)|| | (aj , bj) ∈ λ}+log2((WG+1)·(|States|+1))).

Proof. It follows from Theorem 4 that value(G, s) ∩ polyhedron(λ) �= ∅

if, and only if, there is a function f : M 
→ 2States, such that f(σ∀) ∈
SCC(s, σ∀) for all strategy σ∀ and polyhedron(λ) intersects

⋂
σ∀∈M

↓
conv

({
1
|c| · w(c) | c ∈ C(f(σ∀))

})
. The values 1

|c| · w(c) such that c ∈ C(S)
for some SCC S, are such that their numerator is smaller in absolute
value than WG · (|States| + 1) and their denominator is smaller in absolute
value than |States| + 1. Let a = (WG + 1) · (|States| + 1). We know by
Theorem 3.3 that the set ↓ conv

({
1
|c| · w(c) | c ∈ C(S)

})
can be written as

the intersection of half-spaces H1, . . . , Hk whose representation have size smaller
than P2(d) · (2 + log2(a)). We conclude using Theorem 2 that there is a value
x ∈ value(G, s) ∩ polyhedron(λ) whose representation have size smaller than
d · P1(d) · (1 + max{||Hi||, ||(aj , bj)|| | i ∈ [[1, k]], (aj , bj) ∈ λ}) which is smaller
than d · P1(d) · (1 + P2(d) · (2 + log2(a) + max{||(aj , bj)|| | (aj , bj) ∈ λ})). We
obtain the result for P4(d) = d · P1(d) · (1 + P2(d)). ��

Based on this property, we design a non-deterministic algorithm and charac-
terize the complexity of our decision problem.

Theorem 6. The polyhedron value problem is Σ2P-complete for mean-payoff
inferior.

Proof. Easiness. Based on Theorem 5, our algorithm is: 1. guess in polynomial
time a value v; 2. check in deterministic polynomial time that it satisfies the set of
linear equations λ (see e.g. [14, Theorem 3.3]); and 3. check in non-deterministic
polynomial time that v belong to value(G, s). This last check is based on the
following result for the threshold problem: it is proved in [15, Theorem 7.2] that
given a weighted game G, a state s, and a threshold v ∈ Q

d, the problem of
deciding whether Eve has a winning strategy for the objective {ρ | MP(ρ) ≥ v}
is coNP-complete. Our algorithm is thus in Σ2P= NPNP = NPcoNP.
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Eve

C1Adam C2Adam C3Adam

x1

x2

¬y1

x1

¬x2

¬y1

¬x1

¬x2

y1

(1,0,1,1,0,0)

(1,1,1,0,0,0)

(1,1,1,1,−1,1)

(1,0,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,−1,1)

(0,1,1,1,0,0)

(1,1,0,1,0,0)

(1,1,1,1,1,−1)

Fig. 5. Example of the encoding of QSAT2 into the polyhedron value problem, for
formula φ = ∃x1.∃x2.∀y1. (x1 ∧ x2 ∧ ¬y1) ∨ (x1 ∧ ¬x2 ∧ ¬y1) ∨ (¬x1 ∧ ¬x2 ∧ y1). In a
vector (v1, v2, v3, v4, v5, v6), v1 is associated to x1, v2 to ¬x1, v3 to x2, v4 to ¬x2, v5 to
y1, and v6 to ¬y1.

Hardness. We illustrate the reduction on an example. The full proof that
the polyhedron value problem is Σ2P-hard can be found in the long version
of this paper.

Consider a QSAT2 formula: φ = ∃x1. · · · ∃xn. ∀y1. · · · ∀ym. C1 ∨ · · · ∨ Cp

where each Ci is the conjunction of at most three literals Ci = �i,1 ∧ �i,2 ∧ �i,3

and literals are of the form: xj , ¬xj , yj , or ¬yj . The construction of the game is
illustrated in Fig. 5. There is one dimension for each literal of the formula. We
consider the constraint λ that enforces than on each dimension associated to a
literal yj or ¬yj the mean-payoff should be greater than 0, and the sum on the
dimension associated to xj and ¬xj (for j fixed) should be 1. It is possible to
show that the polyhedron value problem is true if, and only if, the formula φ
is valid.

Intuitively, if φ is valid, there is a partial valuation of the x variables that
makes the remainder of the formula hold. From this partial valuation, we define a
vector v that is 1 on dimensions associated to x literals that are true and 0 on the
other dimensions. Such a vector satisfies the constraints λ. For each memoryless
strategy of Adam, we can construct a counter strategy of Eve that is winning,
and this is enough to show that Eve has a winning strategy. To construct this
strategy, first notice that if the strategy of Adam chooses one literal in some
clause and its negation in another clause, Eve can win by alternating between
the two (this ensures 0 for this literal and 1 for the others). We can now assume
that the strategy of Adam defines a valuation for the literals y, by setting those
that are reachable to true. Then because φ is valid, Eve can choose a clause that
holds under the valuation that we defined. Then Adam will always chose a literal
that is true under this valuation and this ensures a payoff above v. ��

Polynomial Time Algorithm for Fixed Number of Dimensions. We
have seen in the previous paragraphs that the polyhedron value problem is
Σ2P-complete. Now, we show that the problem has a much better worst-case
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complexity for fixed number of dimensions and polynomially bounded weights,
two hypotheses which are reasonable in practice.

Theorem 7. The polyhedron value problem is solvable in polynomial time for
mean-payoff inferior with fixed number of dimensions, polynomially bounded
weights and a system a linear constraints with polynomially bounded numera-
tors and denominators.

Proof. Thanks to Theorem 5, for the polyhedron value problem, there are
no more than 2P4(d)·(2+max{||(a,b)|||(a,b)∈λ}+log2((WG+1)·(|States|+1))) candidate wit-
nesses. This quantity is equal to (4 · 2max{||(a,b)|||(a,b)∈λ} · ((WG + 1) · (|States| +
1)))P4(d). Note that the size of equations in λ are logarithmic in the values of
numerators and denominators that appear in it, so 2max{||(a,b)|||(a,b)∈λ} is polyno-
mial with respect to these values (but exponential with respect to d). The bound
on the number of candidates is polynomial when the number of dimensions d
is fixed and W is polynomially bounded. As the threshold problem for mul-
tidimensional weight mean-payoff games is solvable in polynomial time when
the number of dimensions is fixed and the weights are polynomially bounded
[8, Theorem 1], we obtain a polynomial time algorithm by simply testing all the
polynomially many witnesses. ��

5 Constructing the Pareto Curve

Let G be a game of dimension d, we define the set of half-spaces HG and points
VG that are relevant for the representation of value(G, s). HG and VG are defined
as the set of half-spaces and points with representation size bounded by P2(d)·
(2+ log2((WG +1) · (|States|+1))). The following lemma explains why those sets
are relevant.

Lemma 4. Let G be a game of dimension d and s a state of G. The set
value(G, s) can be written as a finite union of polyhedra, each of them definable
as the intersection of half-spaces H1, . . . , Hk ∈ HG. Moreover if H1, . . . , Hk are
half-spaces of HG and ∩1≤j≤kHj �= ∅ then the intersection ∩1≤j≤kHj contains
a point of VG.

Equivalence Classes. We say that two points x and y are equivalent with
respect to the set of half-spaces H, written x ∼H y, if they satisfy the same set
of equations and inequations defined by H. Formally x ∼H y if for all H ∈ H,
x ∈ H ⇔ y ∈ H and x ∈ hplane(H) ⇔ y ∈ hplane(H). Given a point x, we
write [x]H = {y | x ∼H y} the equivalence class containing x. These equivalence
classes are known in geometry as cells [13]. We write C(H) the set of cells
defined by H. The following lemma, says that cells which intersect value(G, s)
are included in it.
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Lemma 5. Let c ∈ C(HG) be a cell, c ∩ value(G, s) �= ∅ if, and only if, c ⊆
value(G, s).

From this we deduce a method to compute a representation of the set
value(G, s) as a finite union of cells in C(HG). Given a tuple of at most
d + 1 points X ⊆ VG with |X| ≤ d + 1, we consider the geometrical center
b(X) =

∑
x∈X

1
d+1 · x. We write B(VG) the set of all these point, it contains

at most |VG |d+1 points. The following lemma states that value(G, s) can be
represented as the union of all cells that contain a point in B(VG) which is in
value(G, s). Note that the fact that we do not need many points to cover each
cell is coherent with Buck’s theorem [5,13].

Lemma 6. Let G be a game of dimension d, s a state of G, We have that:

[−WG ,WG ]d ∩ value(G, s) = [−WG ,WG ]d ∩
⋃

x∈B(VG)∩value(G,s)

[x]HG

As a corollary, we obtain an effective procedure to compute a representation
of the set value(G, s). The complexity of this procedure is given in the following
theorem both for the general case, and for fixed number of dimensions and
polynomially bounded weights.

Theorem 8. There is a deterministic exponential time algorithm that given a
game G and a state s, constructs a effective representation of [−WG ,WG ]d ∩
value(G, s) as a union of cells. Moreover, when the dimension d is fixed and
weights are polynomially bounded in the size of G, then the algorithm works in
deterministic polynomial time.

Proof. The algorithm is based on the result of Lemma 6. We enumerate all
subsets of d + 1 points in VG . Because of their size, the number of points in
VG is bounded by 2P4(d)·(2+log2((WG+1)·(|States|+1))) which equals (4 · (WG + 1) ·
(|States| + 1))P4(d). The number of subsets of d + 1 points is thus bounded by
(4 · (WG +1) · (|States|+1))P4(d)·(d+1). Note that it is exponential in general, but
with polynomially bounded weights, WG is polynomial in the sizes of the input,
so that with d fixed this number of subsets is polynomially bounded.

Now for each of these subsets, we compute the geometrical center x, and test
whether it is in value(G, s). Thanks to [8, Theorem 1], there is an algorithm
that works in time O(|States|2 · |Edges| · d · WG · (d · |States| · WG)d2+2·d+1) to
determine whether a point is in value(G, s). This is exponential in general, but
polynomial when the number of dimension is fixed and weights are polynomially
bounded.

Then, to determine the cell corresponding to the geometrical center x, we
test for each H ∈ HG whether x ∈ H: the intersection of the half-spaces that
contain x and the complement of those that do not contain is equal to the cell
containing x. Since the sizes of the half-spaces in H are bounded by P2(d) · (2 +
log2((WG + 1) · (|States| + 1))), we can test that x belongs to one of them in
polynomial time and there are no more than (4 · (WG + 1) · (|States| + 1))P2(d)

such half-spaces. Therefore testing all half-spaces can be done in exponential
time in general, and in polynomial time with fixed dimension and polynomially
bounded weights. ��
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Pareto Curve. The Pareto curve is composed of the maximal points in
[−WG ,WG ]d ∩ value(G, s). To describe this curve, we need to refine the cells
in C(HG): we add to HG the half-spaces that are necessary to represent the
downward closure of cells in C(HG) (details can be found in the long version of
this paper).

Theorem 9. There is a deterministic exponential algorithm, that given a game
G and a state s, computes an effective representation of PO(G, s) as a union of
cells. Moreover, when the dimension d is fixed and the weights are polynomially
bounded then the algorithm works in deterministic polynomial time.

Proof (Sketch). The algorithm works by computing a representation of
value(G, s) as a union of cells. Then, for each of these cells we check that there
is no cell above by using the downward closure operator: this is where refining
the cells is required. The number of those cells is exponential so these checks
can be done in exponential time. Moreover in the case where the dimension is
fixed and weights are polynomially bounded, this number is polynomial so the
algorithm works in polynomial time. ��

6 General Case

We now consider the general case in which the average of dimensions in I ⊂ [[1, d]]
are defined using lim inf and the average of dimensions in J ⊆ [[1, d]] are defined
using lim sup. We give a characterization of the feasible thresholds as we did
in Theorem 4. While the main ideas are similar, the characterization here is
substantially more complicated and relies on a notion of subgame defined as
follows. A subarena for Eve is a tuple 〈States′∃,States′∀,Edges′〉 with States′ ⊆
States, Edges′ ⊆ Edges and such that ∀s ∈ States′∀. (s, s′) ∈ Edges ⇒ (s, s′) ∈
Edges′ (i.e. it does not restrict actions of Adam). The game 〈A′, w′, I ′, J ′〉 is a
subgame for Eve of 〈A, w, I, J〉 if A′ is a subarena for Eve of A and w′ = w,
I ′ = I, and J ′ = J . We write Sub(G, s) the set of subgames for Eve which contain
the state s.

Theorem 10. Let G be a weighted game and s a state of G, then value(G, s)
equals:

⋃

G′∈Sub(G,s)

⋂
s′∈States′

↑J

⎛
⎝ ⋂

σ∀∈M

⋃

S′∈SCC(s′,G′(σ∀))

↓ conv

({
1

|c| · w(c) | c ∈ C(S′)
})⎞
⎠

where ↑J X = {x ∈ R
d | ∀j ∈ J. ∃x′ ∈ X. ∀i ∈ I ∪ {j}. xi = x′

i}.

Example 1. Consider the example of Fig. 6. We choose J = {1, 2} and I = {3},
i.e. we consider the limit superior of the weights for the two first coordinate and
the limit inferior for the last one. There is only one strategy of the adversary
and one strongly connected component in this game. There are two simple cycles
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2,−2, 0

−2, 2, 1

Fig. 6. A one-state
3-dimensional mean-
payoff game, controlled
by Eve. We refer to the
3 dimensions by x, y
and z respectively.

↑{1,2}

↓
x

y

1
1

(2,−2, 0)

(−2, 2, 0) (2, 2, 0)

Fig. 7. Pareto optimum
for z = 0.

↑{1,2}

↓
x

y

1
1

(0, 0, 1
2
)

(−2, 2, 1
2
)

(0, 2, 1
2
)

Fig. 8. Pareto optimum
for z = 1

2
.

and their weight are (2,−2, 0) and (−2, 2, 1). We represented in Figs. 7 and 8 the
feasible thresholds we can ensure with z = 0 and z = 1

2 .
For z = 0 the line segment between (−2, 2, 0) and (2,−2, 0) is below the

convex hull of (2,−2, 0) and (−2, 2, 1). The downward closure this segment is
the area that is below and left of this segment. The operator ↑{1,2} gives the
whole area below of (2, 2, 0) which is the Pareto optimum for z = 0. For z = 1
only (−2, 2, 1) is below the weight of a simple cycle therefore it will be the Pareto
optimum for z = 1. The convex hull of (−2, 2, 1) and (2,−2, 0) is above the plane
z = 1

2 for coordinates of x and y between (0, 0) and (−2, 2). The operator ↑{1,2}
will give the whole area below (0, 2, 1

2 ) which is the Pareto optimum for z = 0.

Thanks to the characterization of Theorem 10, we can express the value prob-
lem in terms of intersection of convex sets with a small description and using
techniques similar to the ones used in the case of limit inferior we can show the
following:

Theorem 11. The polyhedron value problem is Σ2P-complete.

The algorithm uses Theorem 10 and relies on the same principle as for lim inf.
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