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 Pareto-Improving Congestion Pricing and Revenue Refunding 

with Heterogeneous Users 

 

Xiaolei Guo and Hai Yang* 

 

Department of Civil and Environmental Engineering, The Hong Kong University of Science 

& Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China 

 

 

Abstract 

This study investigates Pareto-improving congestion pricing and revenue refunding schemes 

in general transportation networks, which make every road user better off as compared with 

the situation without congestion pricing. We consider user heterogeneity in value of time 

(VOT) by adopting a multiclass user model with fixed origin-destination (OD) demands. We 

first prove that an OD and class-based Pareto-improving refunding scheme exists if and only 

if the total system monetary travel disutility is reduced. In view of the practical difficulty in 

identifying individual user’s VOT, we further investigate class-anonymous refunding 

schemes that give the same amount of refund to all user classes traveling between the same 

OD pair regardless of their VOTs. We establish a sufficient condition for the existence of such 

OD-specific but class-anonymous Pareto-improving refunding schemes, which needs 

information only on the average toll paid and average travel time for trips between each OD 

pair.  

 

Keywords: traffic equilibrium, congestion pricing, Pareto-improving, revenue refunding 

 

 

1. Introduction 
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Although congestion pricing has a solid theoretical foundation and nowadays has very 

advanced technology support for its practical implementation, it has long been viewed as a 

political issue. In particular, congestion pricing proposals are frequently declined due to 

public opposition. For examples, the Edinburgh congestion charge plan was rejected by a 

referendum in 2005, the congestion pricing proposal for the West Midlands in England was 

rejected by councils in March 2008, and the New York congestion pricing proposal was 

declined in April 2008 due to public opposition. 

 

There are several reasons for the public unacceptability of congestion pricing. First of all, 

for the public, congestion pricing is just like another tax collected by the “evil” government. 

As summarized by Cervero (1998), “middle-class motorists often complain they already pay 

too much in gasoline taxes and registration fees to drive their cars, and that to pay more 

during congested periods would add insult to injury. In the United States, few politicians are 

willing to champion the cause of congestion pricing in fear of reprisal from their 

constituents”. Indeed, with congestion pricing implemented, users’ surplus is transferred to 

the government in the form of the toll revenue. Thus users are unhappy even if the society as 

a whole (including the government and the users) gains. Furthermore, congestion pricing has 

the well-known social inequity problem, i.e. people with relatively low income are more 

likely to be priced out of driving. For this reason, congestion pricing is often considered as an 

elitist policy, which prices the poor off of roads so that the wealthy can move about 

unencumbered (Cervero, 1998). In addition, there might be the so-called spatial equity issue, 

namely congestion pricing may have different impact on people living and working in 

different places (Yang and Zhang, 2002). For these reasons, congestion pricing as a policy is 

often faced with public hostility, and its implementation is more like a political issue other 

than a theoretical or technological problem. 

 

Revenue redistribution has long been considered as a possible way to solve the political 

issues of congestion pricing. By directly refunding the toll revenue to the users, in an even or 

uneven manner, all the problems mentioned above that lead to the public unacceptability of 

congestion pricing could be solved. That is, with proper revenue refunding schemes, 

congestion pricing no longer makes road users feel like being “exploited” by the government 
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and the potential social and spatial inequity problems can be solved as well. Indeed, various 

forms of revenue distribution strategies have been proposed and discussed. Goodwin (1989) 

suggested a combination of revenue uses in order to offset several congestion pricing impacts. 

Small (1992) proposed a travel allowance for all commuters. Poole (1992) added that it might 

be possible to introduce off-peak discounts and peak-hour surcharges on a toll road. 

DeCorla-Souza (1994) proposed a cashing out strategy to induce shift of peak-period 

travelers to other modes, thus reducing the need for additional infrastructure. Parry and Bento 

(2001) recommended that income taxes be reduced to offset congestion pricing-related labor 

supply restriction. Kalmanje and Kockelman (2004) and Kockelman and Kalmanje (2005) 

proposed a novel strategy for practical implementation of revenue refunding, the credit-based 

congestion pricing (CBCP) strategy. 

 

A number of theoretical and quantitative studies have been conducted on road pricing and 

revenue redistribution.1 Bernstein (1993) examined the possibility of user-neutral congestion 

pricing with both positive and negative tolls (tolls and subsidies) in the Vickrey bottleneck 

congestion model (Vickley, 1969). Arnott et al. (1994) investigated the welfare effects of 

congestion tolls using the basic bottleneck model with heterogeneous but inelastic 

commuting demand. They considered the case when the toll revenues are rebated as an equal 

lump-sum payment to all drivers and analyzed when and how each group of drivers could be 

made better off with such a uniform rebate. Daganzo (1995) designed a Pareto-improving 

hybrid strategy between rationing and pricing in the bottleneck congestion model, where a 

fraction of drivers would be exempt from tolling each day. Nakamura and Kockelman (2002) 

applied this strategy to the San Francisco Bay Bridge corridor, and concluded that such a 

Pareto-improving strategy does not exist for that network and it would be difficult to find 

such a policy in general. 

 

In a network context, Adler and Cetin (2001) discussed a direct distribution approach to 

                                                 
1 There is also a loosely related literature on Pareto-improving taxes in the general economic theory of taxation. 

The reader may refer to Guesnerie (1995) for a comprehensive treatment of this subject and to Geanakoplos and 

Polemarchakis (2008) for a recent theoretical study. These studies focus on how commodity taxes should be set 

to benefit all major groups rather than how revenue should be redistributed. 
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congestion pricing, in which the money collected from users on a more desirable route was 

directly transferred to users on a less desirable route using a two parallel route example with 

bottleneck congestion. For a single origin-destination (OD) pair connected by a number of 

parallel routes, Elliasson (2001) showed that a tolling system that reduces aggregate travel 

time and refunds the toll revenues equally to all users will make everyone better off than 

before the toll reform. Yang et al. (2004) developed an optimal integrated pricing model in a 

bi-modal transportation network with explicit consideration of subsidy to transit mode from 

road congestion pricing revenue. Liu et al. (2009) adopted a continuous value-of-time (VOT) 

distribution and examined the existence of Pareto-improving and revenue-neutral pricing 

scheme in a simple bi-modal network consisting a single road and a parallel transit line.  

 

Recently, Lawphongpanich and Yin (2007, 2009) and Song et al. (2009) studied a class of 

Pareto-improving pricing schemes without revenue redistribution in networks. 2  They 

formulated the problem of finding Pareto-improving tolls as a mathematical program with 

complementarity constraints, and proposed a solution algorithm via manifold suboptimization. 

The existence of the Pareto-improving tolls without revenue redistribution in their study 

requires that the untolled equilibrium flow pattern be dominated by an alternative feasible 

flow pattern, under which some users are better off and no user is worse off than in the 

untolled equilibrium. The dominating flow distribution and the Pareto-improving tolls exist 

only for certain special networks that exhibit the generalized Braess paradox defined and 

characterized by Hagstrom and Abrams (2001). 

 

This study investigates Pareto-improving congestion pricing cum revenue refunding 

(CPRR) schemes in general transportation networks that make every road user better off 

compared with the untolled case. The key point of the Pareto-improving CPRR scheme is that, 

compared with the “do-nothing” case, refunding (after tolling) reduces the net travel disutility 

of each individual user. Such a Pareto improvement can make congestion pricing as a policy 

                                                 
2 A preliminary version of our article (Yang and Guo, 2005) was already made available a few years earlier 

than Lawphongpanich and Yin (2007, 2009) and Song et al. (2009). While both involving pricing and 

Pareto-improvement of network flow pattern, the research issues and the methodologies adopted by the two 

groups of authors, as mentioned above, are fundamentally different.  
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more acceptable to the public, because everyone is a winner under such a policy.3 We 

consider multiclass users by VOT and fixed demand for each OD pair. This fixed demand 

model could apply when congestion pricing is introduced during the morning peak-demand 

period, in which the number of trips taken between each OD pair can be regarded as fixed 

because a large portion of the trips are work related and can not be easily forgone. The fixed 

demand assumption can be an even milder one for transportation networks with both mass 

transit and private car modes, because it only requires the combined demand fixed between 

each OD pair.4 Congestion pricing in this fixed demand case is mainly aimed to rationalize 

users’ route choices (or mode choices for two-mode networks). In this case, the low-income 

users are more likely to be forced to change routes (or modes) by congestion charge; it is thus 

essential to adopt a multiclass user model to capture the effects of user heterogeneity, because 

our goal is to make everyone better off. 

 

We first show that an OD and class-based Pareto-improving refunding scheme exists if 

and only if the total system monetary travel disutility is reduced. In view of the practical 

difficulty in identifying individual user’s VOT, we further investigate class-anonymous 

refunding schemes that give the same amount of refund to all user classes traveling between 

the same OD pair regardless of their VOTs.  

 

Our OD-specific but class-anonymous Pareto-improving CPRR scheme takes advantage 

of users’ utility-maximizing behavior. Specifically, each individual user chooses a route that 

minimize her travel disutility, taking into account her particular value of time; her generalized 

travel disutility at equilibrium (including both toll and travel time) will not be larger than that 

incurred by traveling the OD-average travel time while paying the OD-average toll. With this 

important observation, we are able to establish a sufficient condition for the existence of a 

                                                 
3 The CPRR scheme is studied in a general network. In the special case that the network exhibits the 

generalized Braess paradox (Hagstrom and Abrams, 2001) and Pareto-improving tolls exist (Lawphongpanich 

and Yin, 2007, 2009), the considered CPRR scheme of course exists in the special form of zero refunding. 
4 Because the whole study is based on a deterministic equilibrium model, for all the results to be valid on such a 

two-mode network, commuters’ choice of the mass transit mode has to be modeled in a deterministic rather than 

a conventional (logit or probit based ) stochastic manner. 
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class-anonymous Pareto-improving refunding scheme; namely, the tolling system reduces the 

average travel time of users between each OD pair on the networks. The actual design and 

implementation of the class-anonymous Pareto-improving CPRR schemes need only 

aggregate (or average) information of trips between each OD pair, namely the average toll 

paid and the average travel time experienced by users between each OD pair. This kind of 

aggregate (or average) OD-specific information is not difficult to estimate in practice. For 

example, we can simply estimate these numbers by running a network equilibrium 

assignment. 

 

An OD based refunding scheme can be expected with foreseen widespread practical 

applications of the GPS kind of technology. Currently, drivers’ origins and destinations for 

regular daily commuting are generally available based on their home and job locations. Also, 

drivers’ destinations can be obtained from the current parking meters as well. Moreover, our 

OD based refunding schemes provide a way to calculate the origin (zone) based refunding 

scheme, i.e. taking the summation of the OD based Pareto-improving refund over all 

destinations for an origin will give (and justify) an (approximate but not necessarily 

Pareto-improving) amount that should be refunded to all users living in that origin zone. 

 

The remainder of this paper is organized as follows. In next section, we introduce the 

multiclass user model and the corresponding multiclass system optimization (SO) and user 

equilibrium (UE) problems. In Section 3, the existence of a Pareto-improving refunding 

scheme is established in the sense that, if a congestion pricing scheme reduces the total 

system monetary travel disutility, redistributing the toll revenue to all users in an OD-specific 

and class-specific manner can make everyone better off. In Section 4, we study the existence 

and design of OD-specific but class-anonymous Pareto refunding schemes. Finally, some 

remarks and conclusions are provided in Section 5. 

 

 

2. Preliminaries on Multiclass User Model 
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Let  ,G N A  denote a transportation network, with a set of nodes N  and a set of links 

A , together with a set of OD pairs .W  We consider separable link travel time function 

  ,  a at v a A , i.e. travel time on a link depends on the flow on that link only. The link travel 

time function  a at v , a A , is assumed to be monotonically increasing with av . We 

consider a discrete set of user classes corresponding to the groups of users with different 

socio-economic characteristics, such as income level. Let M  denote the set of such user 

classes, and m , 0m  , be the VOT for users of class .m M  Let m
wd , 0m

wd  , be the 

travel demand of user class m M  between OD pair ,w W  wR  the set of all simple 

paths connecting OD pair w W , and m
rwf  the flow of user class m  on path .wr R  The 

flow m
av  by user class m M  and the total aggregate flow av  on link a A  can be 

expressed in terms of path flows as follows: 

,  ,  
w

m m
a rw ar

w W r R

v f a A m M
 

      (1) 

m
a a

m M

v v


  , a A  (2) 

where 1ar   if route r  uses link a  and 0 otherwise. For simplicity, we denote vectors as 

 , , ,m
rw wf r R w W m M   f , ( , )av a A v , and ( , , )m

av a A m M  Mv . 

 

In the presence of multiple user classes with different VOT, the system travel disutility 

can be measured either in time unit (time-based disutility or total system travel time) by 

 ( ) ( ) m
a a a a a a

a A a A m M

T t v v t v v
  

     (3) 

or in cost or monetary unit (cost-based disutility or total system cost) by 

 β ( ) m
m a a a

a A m M

C t v v
 

    (4) 

Clearly, both the time-based and the cost-based system disutilities can be regarded as 

weighted sums of the travel times of all user classes in the network. The former has a uniform 

weighting factor equal to unity, while the latter has non-uniform weighting factors equal to 
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the VOT of respective user classes. From an economic viewpoint, C  is a more appropriate 

system disutility measure when users have different VOT. Nevertheless, in transportation 

context, T  has long been accepted as a standard index of system performance. Thus both 

system time T  and system cost C  are useful criteria for network optimization (Guo and 

Yang, 2009). 

 

For simplicity, let   be the feasible set of path flows defined as 

 : ;  0; ,  
w

m m m
rw w rw

r R

f d f w W m M


        
  

f  (5) 

With the definition of T  and C , the time-based SO problem is formulated as 

    min  = a a a
a A

T t v v





f
f  (6) 

and the cost-based SO problem is formulated as 

    min  m
m a a a

a A m M

C v t v


 

 
f

f  (7) 

 

The system optimal flows given by the above SO problems are generally different from the 

equilibrium flows in the absence of toll pricing, because each user tries to minimize her own 

travel time. Thus congestion pricing has to be introduced to decentralize an SO or other 

second-best target flow pattern into (or support it as) a multi-class UE flow pattern. That is, a 

tolling system can alter the generalized travel disutility of links and paths faced by each class 

of users, and thereby induce new multi-class UE flow patterns, which are exactly the target 

(SO or other second-best) flow patterns (Yang and Huang, 2004; Guo and Yang 2009).5 Note 

that toll differentiation across user classes is unrealistic and difficult to implement in reality, 

because users differ from one another in VOT only, which is observationally 

indistinguishable (Arnott and Kraus, 1998; Yang and Huang, 2004). Therefore, in the present 

study context, we only consider congestion pricing schemes with anonymous link tolls, which 

means that the same amount of toll is levied on each link for all user classes. 

 

                                                 
5 While the time or cost based SO and the first-best pricing are of primary theoretical interest, our subsequent 

analysis of CPRR schemes is developed for any second-best pricing schemes in general networks.  
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Let au  denote the toll charged on link ,a A  and  ,au a A u  be the vector of all 

link toll charges. With a toll scheme u  implemented, it is well known (e.g. Yang and Huang, 

2004) that the multi-class UE problem can be formulated as the following equivalent 

minimization problem: 

  
0

1
min d

av
m

a a a
a A a A m M m

t v u


  

 
 f

 (8) 

Observe that objective function (8) is strictly convex in aggregate link flow v  for 

monotonically increasing link travel time function  a at v , but linear in class-specific link 

flow Mv . Thus, under a given tolling system u , the equilibrium link flow by user class Mv  

is generally not unique (neither is the UE path flow f ), while the aggregate UE link flow v  

is unique. Since v  is unique, the system time T  at equilibrium given by (3) is unique. The 

uniqueness of the equilibrium system cost C  is not so obvious and will be shown later. 

Hereinafter, we frequently make a comparison between the tolled situation ( 0u ) and the 

untolled situation ( 0u ) for the traffic equilibrium model (8). To distinguish the two 

situations, we let f , v  and Mv  be the flows in the absence of tolls ( 0u ), and  f , v  

and Mv  be the flows under a toll pattern 0u . 

 

For the untolled situation, the following UE conditions (in time unit) hold 

   ,tm
a a ar w

a A

t v


     , if  0,  ,  ,  m

rw wf r R w W m M     (9) 

   ,tm
a a ar w

a A

t v


     , if  0,  ,  ,  m

rw wf r R w W m M     (10) 

where ,tm
w  is the minimum travel time between OD pair w W  for user class m M  in 

the absence of toll charge. It is noted here the equilibrium travel time is identical for all user 

classes between the same OD pair without toll charge; the equivalent UE conditions in cost 

unit can be obtained by multiplying both sides of (9) and (10) by m , m M ). Multiplying 

both sides of (9) and (10) by equilibrium path flow m
rwf  and summing over all 

,  ,  ,wr R w W m M    we have 
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   ,t

w w

m m m
a a rw ar w rw

a A m M r R w W m M r R

t v f f
     

          (11) 

In view of 
w

m m
rw wr R

f d


  , 
w

m m
rw ar aw W r R

f v
 

      and m
a am M

v v


   , eqn. (11) becomes 

   ,tm m
a a a w w

a A w W m M

T t v v d
  

          (12) 

Similarly, by rewriting the untolled UE conditions in monetary unit or multiplying both sides 

of (9) and (10) by positive m , we can obtain 

   ,cm m m
m a a a w w

a A m M w W m M

C t v v d
   

            (13) 

where ,c ,tm m
w m w      is the minimum travel cost (time converted into money) between OD 

pair w W  for user class m M  in the absence of toll charge. 

 

Under a toll 0u , the UE conditions (in monetary unit) are 

   ,cm
m a a ar a ar w

a A a A

t v u
 

       , if  0,  ,  ,  m

rw wf r R w W m M     (14) 

   ,cm
m a a ar a ar w

a A a A

t v u
 

       , if  0,  ,  ,  m

rw wf r R w W m M     (15) 

where ,cm
w  is the minimum travel cost (inclusive of equivalent cost of travel time) between 

OD pair w W  for user class m M  (the equivalent UE conditions in time unit are 

obtained by dividing both sides of (14) and (15) by m , m M ) . It follows readily from the 

above UE conditions that 

   ,cm m m
m a a a w w

a A m M w W m M

t v v d
   

         

or equivalently 

   ,cm m m
m a a a w w

a A m M w W m M

C t v v d
   

        (16) 

where a aa A
u v


   is the total toll revenue generated from all classes of users in the 

network. Since ,cm
w  and   are unique at equilibrium, eqn. (16) means that the cost-based 

system disutility C  is unique. 
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3. Existence of Pareto-Improving Refunding Schemes 

 

Now we move on to investigate revenue redistribution. We first consider a class and OD 

based refunding scheme  ,  ,  m
w w W m M     , where m

w  is the amount of refund to 

be equally refunded to the m
wd  users of class m M  between OD pair .w W  In spite of 

its practical difficulty for implementation, the class-specific refunding scheme is introduced 

here to serve as a theoretical benchmark, more practical refunding schemes will be 

considered later. 

 

Definition 1. A refunding scheme  ,  ,  m
w w W m M      is said to be Pareto-improving 

if it holds that 

 m
w

w W m M 

      (17) 

 ,c ,cm m m
w w w    , for all ,  w W m M    (18) 

where m m m
w w wd    is the amount of refund to each user in class m M  between OD pair 

.w W  

 

Equation (17) simply means that the total toll revenue is refunded to all users. The 

left-hand side of (18) is the net travel disutility of a user after tolling and refunding, and the 

right-hand side is the travel disutility in the absence of toll charge, thus (18) means that every 

user is made better off. Note that in this definition, the disutility unit used (time or money) is 

immaterial. 

 

Lemma 1. If a pricing scheme reduces the total system cost, namely C C  , then there exists 

a Pareto-improving refunding scheme. 

 

Proof: Consider a refunding scheme  ,  ,  m
w w W m M      given by 
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  ,c ,c ,c ,cm m m m m m m m m m
w w w w w w w w w w

w W m M w W m M

d d d d
   

          
 
     , 

   w W , m M   (19) 

where m
w  is a positive number satisfying 

 0m
w  , w W , m M , and 1m

w
m M w W 

    

Then   satisfies (17) as follows: 

 

 ,c ,c

,c ,c                   

m m m m m
w w w w w

m M w W m M w W

m m m m m
w w w w w

m M w W w W m M w W m M

d d

d d

   

     

   

            
  

   

     




 

We proceed to prove that   satisfies (18) as well. From (19), we have 

 ,c ,c ,c ,cm m m m m m m m m m
w w w w w w w w w w

w W m M w W m M

d d d d
   

          
 
     , 

   w W , m M   (20) 

From (13) and (16), C C   is equivalent to 

 ,c ,cm m m m
w w w w

w W m M w W m M

d d
   

           (21) 

From (21), the second term of the right-hand side of (20) is positive, and then it follows 

readily from (20) that 

 ,c ,cm m m m m
w w w w wd d    , ,  w W m M    (22) 

Note that (22) is simply equivalent to (18). This completes the proof.     ♦ 

 

Lemma 1 states that C C   is a sufficient condition for the existence of a 

Pareto-improving refunding scheme. In fact, it is also a necessary condition, which can be 

readily proved by summing (22) over all w W  and m M  and thus obtaining (21). Thus 

we have the following theorem. 

 

Theorem 1. There exists a Pareto-improving refunding scheme if and only if C C  , i.e. the 

congestion pricing scheme reduces the total system cost. 

 

Theorem 1 relates individual user’s disutility reduction (represented by (18)) to system 
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disutility reduction (C C  ), and implies that, when refunding is adopted, it is the cost-based 

system disutility C , rather than the time-based system disutility T , that has direct impact on 

the individual user’s travel disutility. 

 

Theorem 1 can be further refined by considering a Pareto-uniformly-improving refunding 

scheme that gives perfect equity, i.e., all users are equally better off irrespective of their VOT 

and OD pairs. Suppose one’s better-off degree is measured by the percentage reduction of 

travel cost after tolling and refunding, then a Pareto-uniformly-improving revenue refunding 

scheme requires that 

 
,c

,c
,  ,  

m m
w w

m
w

e w W m M
 

  


  (23) 

where e  is the uniform percentage reduction of travel cost for users of all classes and OD 

pairs in the whole network. From (23), we have 

 ,c ,c ,  ,  m m m
w w we w W m M         (24) 

Multiplying both sides of (24) by m
wd  and summing over all ,  ,w W m M   we have 

 ,c ,cm m m m m m
w w w w w w

w W m M w W m M w W m M

d d e d
     

            (25) 

In view of m m m
w w wd    and (17), (25) simply gives 

 

,c

,c

m m
w w

w W m M
m m
w w

w W m M

d
e

d
 

 

 




 
  

  (26) 

From (13) and (16), (26) is equivalent to 

 
 

 

m
m a a a

a A m M
m

m a a a
a A m M

t v v
C

e
t v v C

 

 


 




  

  (27) 

Once e  is calculated from (26) or (27), the Pareto-uniformly-improving refunding scheme is 

readily given by (24). 

 

Equation (27) simply states that the uniform reduction ratio e  of individual disutility is 

equal to the reduction ratio of the cost-based system disutility after introducing the pricing 

scheme. Therefore, (23) and (27) imply that minimizing the cost-based system disutility C  
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will maximize the average better-off degree of all users for the Pareto-uniformly-improving 

CPRR scheme considered here.  

 

 

4. Anonymous Pareto-improving Refunding Schemes 

 

Although the aggregate VOT distribution among the population can be estimated, the 

VOT of each individual user is in general unobservable. This makes it unrealistic to 

implement refunding scheme m
w  by user class. Therefore, we introduce anonymous 

OD-based refunding schemes, which give the same amount of refund to users of all classes 

between the same OD pair. An anonymous OD-based refunding scheme is denoted by 

 ,  w w W    , where w  is the total amount of refund to be equally refunded to users 

of all classes between OD pair .w W  

 

Definition 2. An anonymous refunding scheme  ,  w w W     is said to be 

Pareto-improving if it holds that 

 w
w W

     (28) 

 ,c ,cm m
w w w    , for all ,  w W m M    (29) 

where w w wd    is the amount of refund to each user between OD pair w W  

regardless of individual VOT , and m
w wm

d d  is the total travel demand between OD pair 

w W . 

 

Definition 2 is the counterpart of Definition 1 when refunding schemes are anonymous. 

Similar to Definition 1, eqn. (28) simply means that the total toll revenue is refunded to all 

users, and (29) means that each individual user is made better off after tolling and refunding. 

 

To investigate the existence of anonymous Pareto-improving revenue refunding schemes, 
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we begin with an important lemma. 

 

Lemma 2. For any congestion pricing scheme, the following inequality holds 

 
  ,

,c ,  ,  
a a a w

m w a A
w m

w w

t v v
w W m M

d d


     


 (30) 

where ,w a a wa A
u v


   is the total toll revenue generated from all users traveling between 

OD pair w W , ,
w

m
a w rw arr R m M

v f
 

    is the link flow by all users traveling between 

OD pair w W .  

 

Proof: From UE conditions (14)-(15), we have 

  ,cm
w a ar m a a ar

a A a A

u t v
 

      , wr R , ,  w W m M   (31) 

Multiplying both sides of (31) by equilibrium path flow m
rw rwm M

f f


  aggregated over all 

user classes and summing over all wr R , we have 

  ,c

w w w

m
w rw a rw ar m a a rw ar

r R a A r R a A r R

f u f t v f
    

         , ,  w W m M   (32) 

In view of 
w

rw wr R
f d


  and ,

w
rw ar a wr R

f v


  , (32) becomes 

  ,c
, ,  ,  m

w w w m a a a w
a A

d t v v w W m M


       (33) 

We thus obtain (30) immediately from (33). This completes the proof.     ♦ 

 

Note that in (30) of Lemma 2, w wd  is the average toll paid by users of OD pair 

w W , and   ,a a a w wa A
t v v d

  is the average travel time of users between OD pair 

w W . Thus Lemma 2 means that, under any congestion pricing scheme, the generalized 

travel disutility for each individual user is not larger than that incurred by traveling the 

OD-average travel time while paying the OD-average toll. This result is due to the product 

differentiation effect between toll and travel time: with congestion pricing implemented, 

higher-VOT users will choose routes with lower travel times and higher tolls, while 

lower-VOT users will choose routes with higher travel times and lower tolls, and as a result, 
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everyone is “happier” than traveling the average time and paying the average toll. This is the 

basic idea behind our design of class-anonymous Pareto-improving refunding schemes based 

on OD-average information only. 

 

With Lemma 2, we first suppose that the tolling system reduces the total travel time of 

users between each OD pair as given below. 

    , , ,  a a a w a a a w
a A a A

t v v t v v w W
 

        (34) 

Combining (30) and (34), we obtain 

 
  ,

,c ,  ,  
a a a w

m w a A
w m

w w

t v v
w W m M

d d


     
  

 (35) 

Since ,tm
w  is identical for all user classes between OD pair w W in the absence of toll 

charge, it follows from UE conditions (9)-(10) that 

   ,t
, ,  ,  m

a a a w w w
a A

t v v d w W m M


         (36) 

Then (35) becomes 

 ,c ,t ,c ,  ,  m m mw
w m w w

w

w W m M
d


           (37) 

Consider a class-anonymous refunding scheme w w   , w W , this refunding scheme 

readily meets (28), and from (37), it also satisfies (29). Thus it is an anonymous 

Pareto-improving refunding scheme. In addition, this OD-specific Pareto-improving 

refunding scheme uses the revenue collected from users traveling between the same OD pair 

only and refunds the revenue equally to all users of the same OD pair. Therefore, it does not 

require cross-subsidy among users traveling between different OD pairs. To sum up, we have 

the following theorem. 

 

Theorem 2. If a congestion pricing scheme reduces the total travel time of users between 

each OD pair in the network, then there exists a Pareto-improving class-anonymous 

refunding scheme without requiring cross-subsidization among users of different OD pairs. 

 

Theorem 2 is a direct result of Lemma 2: according to Lemma 2, the tolled travel 
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disutility of each individual user is not larger than that incurred by traveling the OD-average 

travel time while paying the OD-average toll, therefore, if each user obtains a refund equal to 

the OD-average toll, and the OD-average travel time is reduced, then the net disutility of each 

user is reduced as compared with the untolled situation. 

 

Applying Theorem 2 to a single-OD network, we have the following corollary. 

 

Corollary 1. For a transportation network with a single OD pair, if a congestion pricing 

scheme reduces the total system travel time, then refunding the total toll revenue equally to 

all users regardless of their VOT will make everyone better off. 

 

Recall that Theorem 1 in last section shows that a necessary and sufficient condition for 

the existence of a Pareto improving discriminatory refunding scheme by user class is the total 

system cost reduction; here Theorem 2 shows that the total travel time reduction in each OD 

pair guarantees existence of a class-anonymous Pareto-improving revenue refunding scheme, 

which also implies existence of the Pareto improving discriminatory refunding scheme. 

Therefore, we can conclude that reduction in travel time between each OD pair implies 

reduction in total system cost on a multiclass traffic equilibrium network. Naturally, for a 

single-OD network, a pricing scheme that reduces the system time also reduces the system 

cost. Nevertheless, for general multiple-OD network, a reduction in total system time by toll 

charge does not necessarily imply reduction in total system cost and vice versa. 

 

Theorem 2 needs a relatively strong condition that the total travel time of each OD pair is 

reduced, which may not be the case in reality. We now explore the possibility of an 

anonymous Pareto-improving revenue refunding scheme when a pricing scheme reduces the 

total system travel time, but allows for increases in total travel times of certain OD pairs. In 

this case, cross-subsidization among different OD pairs is expected. Specifically, positive and 

negative subsidies should be allocated to OD pairs with total travel time increase and 

decrease, respectively. 
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To proceed, we now introduce additional notation. Let   ,w a a a wa A
T t v v


   be the total 

travel time of users between OD pair w W  and  ,  w w wT T T w W     be the 

corresponding change after introducing the pricing scheme; similarly, let 

ww W
T T T T


       be the change in the total system travel time. By our assumption, 

0T  ; ,  wT w W   can be either negative or positive. 

 

Consider an anonymous refunding scheme  ,  w w W      given by 

 ,  w w w w W        (38) 

where w denotes the amount of revenue transfer (positive or negative) to OD pair w W , 

and is determined by 

 

,   if  0

,   if  0

     0,    if  0

w w

w w w

w

T T

T T

T

  
    
  

  (39) 

where  maxm M m    and   min .m M m    

 

Lemma 3. The anonymous refunding scheme   given by (38) and (39) satisfies the 

following inequality 

 ,c ,c ,  ,  m m
w w w w W m M         (40) 

where w w wd    , w W , and (40) can take equality for only three cases 

 

)  0

)  0,   

)  0,   

w

w m

w m

a T

b T and

c T and

 

    
    

  (41) 

 

Proof: From (30) of Lemma 2, we have 

 ,c ,  ,  m w w
w m

w w

T
w W m M

d d


        (42) 
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Then it follows that 

 ,c c
,

m w w
w w w m

w wd d
  

       

 w w
m

w w

T

d d


     (43) 

 w w
m m

w w

T T

d d


     (44) 

 w
m

w

T

d
 


  

 ,c ,  ,   m
w w W m M      (45) 

where (43) follows from (42), (44) from (39) (the definition of w ), and (45) from 

  ,tm
w a a a w wa A

T t v v d


       or from (36). From the definition of w  given by (39), (44) 

takes equality only for the three cases given by (41). The proof is completed.   ♦ 

 

Lemma 3 states that the anonymous refunding scheme   makes everyone “weakly” 

better off. The term “weakly” is used because inequality (40) can take equality for three 

groups of users given by (41), which means that the net travel disutility of these users after 

tolling and refunding can be (at most) equal to that of the untolled case. Lemma 3 holds 

because the anonymous refunding scheme   given by (38) and (39) is carefully designed 

to fulfill the “weakly” Pareto-improving conditions. Specifically and intuitively, for an OD 

pair with travel time increase ( 0wT  ), we need a positive amount of subsidy to compensate 

the travel time increase of this OD pair ( 0w  ). Since we can not observe individual VOT 

and we need everyone to be better off, we have to consider the most “vulnerable” user class. 

In this case, because we are using revenue to compensate the loss in time, the most 

“vulnerable” user class is the one with the highest VOT. Therefore, we have to let 

w wT   , which regards all travelers between the OD pair as having the highest VOT. In 

the same spirit, when we take money away from an OD pair with travel time reduction 

( 0wT  ), we have to regard all travelers as having the lowest VOT and thus let 

w wT   . 
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Because the anonymous refunding scheme   barely guarantees the non-increase of 

every individual user’s travel disutility, it determines a critical amount of refund to users of 

each OD pair: if the amount of refund to users of OD pair w W  is less than w
 , then 

some user classes of this OD pair may suffer disutility increase; conversely, if the amount of 

refund is larger than w
 , then every user of this OD pair will have disutility reduction. 

Therefore, if *
ww W

    or 0ww W
   holds, then, while   itself is a 

self-financing and “weakly” Pareto-improving refunding scheme, the existence of a “strictly” 

Pareto-improving refunding scheme is not guaranteed; if *
ww W

    holds, i.e. the 

critical refunding scheme   does not use up the total revenue, then refunding the extra 

amount of revenue to all users will result in an anonymous Pareto-improving revenue 

refunding scheme. We formally state these observations as a theorem with a rigorous proof. 

For easy presentation, we define the following two subsets of OD pairs 

   0,  wW w T w W     ;    0,  wW w T w W      (46) 

 

Theorem 3. For a pricing scheme that reduces the total system travel time, namely T T  , 

there exists a Pareto-improving class-anonymous refunding scheme if it holds that 

 
w

w W

T

T T







 


   (47) 

 

Proof: We shall first prove that inequality (47) is equivalent to *
ww W

   . From (38), 

*
ww W

    is equivalent to 0ww W
  . From (39), we have 

 w w w
w W w W w W

T T
   

         

   w w
w Ww W

T T
 

        

   w
w W

T T
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Thus 0ww W
   is equivalent to   0w

w W

T T


     , which in turn is  

equivalent to inequality (47) in view of 0T T T    . Therefore, inequality (47) is 

equivalent to *
ww W

   . If condition (47) holds, i.e. *
ww W

    holds, then there 

exists an anonymous refunding scheme  ,  w w W     such that ww W
    and 

,  w w w W    . It follows from ,  w w w W     and (40) of Lemma 3 that 

 ,c ,c ,c ,  ,  m m m
w w w w w w W m M          (48) 

Thus  ,  w w W     is a Pareto-improving refunding scheme that satisfies both (28) and 

(29). This completes the proof.     ♦ 

 

Theorem 3 states that condition (47) is a sufficient condition for the existence of an 

anonymous Pareto-improving revenue refunding scheme if the pricing scheme reduces the 

total system travel time. Observe that both sides of inequality (47) have explicit intuitive 

meanings. The left-hand side of (47) represents the ratio of the total increase in OD travel 

times for the subset W   of the time-increased OD pairs to the total system travel time 

reduction for the whole network; it can be regarded as a measure of the non-uniformity of 

travel time changes in various OD pairs brought about by the pricing scheme. The right-hand 

side of (47) is the ratio of the lowest VOT to the difference between the highest and the 

lowest ones, which is a reasonable measure of the disparity of users’ VOT distribution or the 

degree of user heterogeneity (infinity means homogeneous users). Hence, Theorem 3 implies 

that, to ensure the existence of anonymous Pareto-improving revenue refunding schemes, the 

discrepancy in travel time changes (increase and decrease) among the various OD pairs in the 

network resulting from the pricing scheme can not be too large, as dictated by the degree of 

user heterogeneity. 

 

The above way of interpreting Theorem 3 places more emphasis on the travel time 

changes of different OD pairs. From another perspective, Theorem 3 can be interpreted in 
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terms of user heterogeneity6: if the heterogeneity in users’ VOT is small enough (the 

right-hand side of (47) large enough), then there exists an anonymous Pareto-improving 

revenue refunding scheme. This way of interpretation allows us to link the heterogeneous 

user case under study with the traditional homogeneous user case. That is, if individuals have 

the same VOT, by redistributing toll revenue across OD pairs, it is possible to make everyone 

strictly better off. Then, by continuity, if individuals are sufficiently similar, it is also possible 

to make everyone better off by redistributing toll revenue across OD pairs. 

 

Recall that the goal of congestion pricing is to support a target (SO or other second-best) 

flow pattern as a multiclass UE flow pattern, thus sometimes it is more essential to relate 

Theorem 3 directly to the target flow pattern instead of the pricing scheme. From this point of 

view, condition (47) has no “direct” linkage with specific pricing schemes: the left-hand side 

of (47) depends on flow pattern only and the right-hand side is predetermined by the VOT 

distribution. Therefore, the existence of an anonymous Pareto-improving revenue refunding 

scheme is essentially determined by the target flow pattern. That is, given a target flow 

pattern that satisfies condition (47), any pricing scheme that can support the given flow 

pattern as UE can give rise to anonymous Pareto-improving revenue refunding schemes. 

 

Checking condition (47) and calculating the critical refunding scheme   require only 

aggregate information ( wT  and w ) and general VOT distribution information (  and  ), 

while the identification of individual user’s VOT is not involved. Thus we can easily use 

condition (47) and   to design anonymous Pareto-improving revenue refunding schemes. 

Also, condition (47) applies to certain special cases and yields meaningful results. If the 

total travel time of each OD pair is reduced as in the case of Theorem 2, i.e. 0wT   for all 

w W , then condition (47) must hold. Hence Theorem 2 (and more specifically, Corollary 1) 

states an anonymous Pareto-improving revenue refunding scheme without cross-subsidization 

                                                 
6 Similar observation was made in the basic bottleneck congestion model with heterogeneous commuters by 

Arnott et al. (1994). They found that, whether or not a uniform rebate can make everyone better off depends on 

the relative number of commuters of each group and their differences in the shadow value of queuing time and 

the unit cost of schedule delay. 
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as a special case of Theorem 3. If all network users share the same VOT, namely    , then 

the right-hand side of (47) approaches infinity and condition (47) holds naturally. This gives 

the following corollary. 

 

Corollary 2. For a transportation network with homogeneous users, if a congestion pricing 

scheme reduces the total system travel time, then there exists a Pareto-improving revenue 

refunding scheme. 

 

Note that Corollary 2 can also be obtained from Theorem 1. Namely, system time and 

system cost are two identical measures when users are homogeneous. Corollary 2 is 

specifically presented here to show an application of Theorem 3. 

 

 

5. Conclusions 

 

In this paper we studied Pareto-improving CPRR schemes for the fixed demand case with 

multiclass users. We proved that, an OD and class-based Pareto-improving refunding scheme 

exists if and only if the total system travel cost is reduced. In this context our results highlight 

the importance of system cost other than system time, while the latter has long been accepted 

as a standard index of transportation system performance.  

 

We then studied the existence and design of more plausible class-anonymous 

Pareto-improving revenue refunding schemes. Our basic idea relies on the observation that, at 

network equilibrium, each individual user will choose a route based on her own VOT such 

that her generalized travel disutility (including both toll and travel time) will not be larger 

than that incurred by traveling the OD-average travel time while paying the OD-average toll.  

We also found that, to ensure the existence of a class-anonymous Pareto refunding scheme, 

the discrepancy in travel time changes (increase and decrease) among the various OD pairs 

resulting from the pricing scheme should not be too large, as dictated by the degree of user 

heterogeneity. 
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The fixed demand assumption adopted in this paper is amenable to some cases, such as 

the peak-demand period with most work-related trips which can not be easily forgone, but 

may be too restrictive for other cases, like the daytime downtown congestion pricing schemes 

(as in London), where a large portion of trips are consumption or entertainment related. In 

this case travel demand is clearly elastic. We shall continue our investigation on the 

Pareto-improving CPRR schemes for the difficult and challenging elastic demand case. 

 

 

Acknowledgements. The authors wish to express their thanks to Robin Lindsey and two 

anonymous reviewers for their very useful comments on an earlier version of the paper. The 

work described in this paper was supported by a grant from the Research Grants Council of 

the Hong Kong Special Administrative Region, China (Project No. HKUST 6215/06E). 

 

 

References 

 

Adler, J.L., Cetin, M., 2001. A direct redistribution model of congestion pricing. 

Transportation Research Part B 35 (5), 447-460. 

Arnott, R., de Palma, A., Lindsey, R., 1994. The welfare effects of congestion tolls with 

heterogeneous commuters. Journal of Transport Economics and Policy 28 (2), 139–161. 

Arnott, R., Kraus, M., 1998. When are anonymous congestion charges consistent with 

marginal cost pricing? Journal of Public Economics 67 (1), 45-64. 

Bernstein, D., 1993. Congestion pricing with tolls and subsidies. In: Proceedings of the 

Pacific Rim Transportation Technology Conference, Vol.2, pp.145-151. 

Cervero, R.B., 1998. The Transit Metropolis. Island Press, Washington, D.C. 

Daganzo, C.F., 1995. A Pareto optimum congestion reduction scheme. Transportation 

Research Part B 29 (2), 139-154. 

DeCorla-Souza, P., 1994. Applying the cashing out approach to congestion pricing. 

Transportation Research Record 1450, 34-37. 

Eliasson, J., 2001. Road pricing with limited information and heterogeneous users: A 



 

-25- 

successful case. Annals of Regional Science 35 (4), 595-604. 

Geanakoplosa, J., Polemarchakisb, H.M., 2008. Pareto improving taxes. Journal of 

Mathematical Economics 44 (70-8), 682-696. 

Goodwin, P.B., 1989. The rule of three: a possible solution to the political problem of 

competing objectives for road pricing. Traffic Engineering and Control 30 (10), 495-497. 

Guesnerie, R., 1995. A Contribution to the Pure Theory of Taxation. Cambridge University 

Press. 

Guo, X., Yang, H., 2009. User heterogeneity and bi-criteria system optimum. Transportation 

Research Part B 43 (4), 379-390. 

Hagstrom, J.N., Abrams, R.A., 2001. Characterizing Braess’s paradox for traffic networks. In: 

Proceedings of the Fourth IEEE Conference on Intelligent Transportation Systems, 

August 25-29, 2001 Oakland, California, pp. 837–842. 

Kalmanje, S., Kockelman K.M., 2004. Credit-based congestion pricing: travel, land value, & 

welfare impacts. Transportation Research Record 1864, 45-53. 

Kockelman K.M., Kalmanje, S., 2005. Credit-based congestion pricing: a policy proposal and 

the public’s response. Transportation Research Part A 39 (7-9), 671-690. 

Lawphongpanich, S., Yin, Y., 2007. Pareto-improving congestion pricing for general road 

networks. In: Technical Report, Department of Industrial and Systems Engineering, 

University of Florida, Gainesville, Florida, 32611-6595. 

Lawphongpanich, S., Yin, Y., 2009. Solving the Pareto-improving toll problem via manifold 

suboptimization. Transportation Research Part C (in press). 

Liu, Y., Guo, X., Yang, H. 2009. Pareto-improving and revenue-neutral congestion pricing 

schemes in bi-modal traffic networks. Netnomics 10 (1), 123-140. 

Nakamura, K., Kockelman K.M., 2002. Congestion pricing and roadspace rationing: an 

application to the San Francisco Bay Bridge corridor. Transportation Research Part A 36 

(5), 403-417. 

Parry, I.W.H., Bento, Q., 2001. Revenue recycling and the welfare effects of road pricing. 

Scandinavian Journal of Economics 103 (4), 645-671. 

Poole, R.W., 1992. Introducing congestion pricing on a new toll road. Transportation 19 (4), 

383-396. 

Song, Z., Yin, Y., Lawphongpanich, S., 2009. Nonnegative Pareto-improving tolls with 



 

-26- 

multiclass network equilibria. Transportation Research Record 2091, 70-78. 

Small, K.A., 1992. Using the revenues from congestion pricing. Transportation 19 (4), 

359-381. 

Vickrey, W.S., 1969. Congestion theory and transport investment, American Economic 

Review (Papers and Proceedings) 59 (2), 251-260. 

Yang, H., Guo, X., 2005. Pareto-improving road pricing and revenue refunding schemes. 

Working paper (WP-HKUST-YH-2005-08-04), http://ihome.ust.hk/~cehyang/. 

Yang, H., Huang, H.J., 2004. The multiclass, multicriteria traffic network equilibrium and 

system optimum problem. Transportation Research Part B 38 (1), 1-15. 

Yang, H., Meng, Q., Hau, T.D., 2004. Optimal integrated pricing in a bi-modal transportation 

network. Book Chapter in: Urban and Regional Transportation Modeling: Essays in 

Honor of David Boyce (edited by Lee, D.H.), 134-156. 

Yang, H., Zhang, X.N., 2002. Multiclass network toll design problem with social and spatial 

equity constraints. Journal of Transportation Engineering 128 (5), ASCE, 420-428. 

 


	Pareto-improving congestion pricing and revenue refunding with multiple user classes
	Recommended Citation

	Microsoft Word - Refunding-Fixed Demand-2009-Nov-Finalized

