
Pareto Local Optimum Sets in the Biobjective Traveling

Salesman Problem: An Experimental Study

Luis Paquete, Marco Chiarandini and Thomas Stützle

Darmstadt University of Technology, CS Department, Intellectics Group

Alexanderstr. 10, 64283 Darmstadt, Germany�
lpaquete,machud,tom ✁ @intellektik.informatik.tu-darmstadt.de

Abstract. In this article, we study Pareto local optimum sets for the biobjective

Traveling Salesman Problem applying straightforward extensions of local search

algorithms for the single objective case. The performance of the local search algo-

rithms is illustrated by experimental results obtained for well known benchmark

instances and comparisons to methods from literature. In fact, a 3-opt local search

is able to compete with the best performing metaheuristics in terms of solution

quality. Finally, we also present an empirical study of the features of the solutions

found by 3-opt on a set of randomly generated instances. The results indicate the

existence of several clusters of near-optimal solutions that are separated by only

a few edges.

1 Introduction

Local search algorithms are at the core of the most successful metaheuristics for solving

a wide variety of ✂☎✄ -hard single objective combinatorial optimization problems such

as the Traveling Salesman Problem (TSP) [22, 21]. Local search algorithms for single-

objective problems can also be adapted in rather straightforward ways to multiobjective

combinatorial problems, opening their use inside a metaheuristic [5, 11, 13, 20].

A first and simple idea for extending local search algorithms to multiobjective prob-

lems is to maintain the same search strategy of the single-objective local search. The

main difference between the single and the multiobjective case then concerns the ac-

ceptance criterion of new solutions in the local search. Here, we adopt an acceptance

criterion inspired by the notion of Pareto optimality: a solution in the neighborhood of

the current one is accepted if it is not dominated by all non-dominated solutions found

so far in the search. As a side effect, this multiobjective extension of local search allows

us to define the notion of Pareto local optimum set analogous to the local optimum in

single-objective case. We call the resulting local search algorithm Pareto Local Search

(PLS). PLS allows to find Pareto local optimum sets, that is, a set of solutions that plays

the same role as a local optimum in the single-objective case. Therefore, it has the large

potential of serving as a reference for comparisons of multiobjective metaheuristics in

the very same way as iterative improvement local search algorithms are used for the

baseline evaluation of the usefulness of single-objective metaheuristics.

In this article, we tackle the biobjective TSP by PLS based on the well-known 2-

opt, 2h-opt and 3-opt local search algorithms [1, 4, 9, 25]. We evaluate our PLS algo-

rithms applying them to well-known benchmark instances and assess their performance

by means of the attainment function methodology [6], the coverage measure (� mea-

sure) [33] and the expected value of the weighted Tchebycheff scalarizing function (✁
measure) [20]. In addition, we compare the solutions returned by PLS with those avail-

able from metaheuristic approaches to the biobjective TSP. Surprisingly, the results

indicate a good performance of the 3-opt version in terms of solutions quality, which

is comparable to that achieved by the Multiobjective Genetic Local Search (MOGLS),

currently the best performing metaheuristic approach to the multiobjective TSP [20].

However, this high solution quality comes at the price of substantial computation times.

Finally, we also present a study on the characteristics of the Pareto local optimum sets

obtained by 3-opt. The results suggest that, once a reasonably good solution is found,

most of the remaining non-dominated set is reachable by a small number of edge ex-

changes. This fact can even lead to the development of more sophisticated local search

algorithms.

The article is structured as follows. In Section 2, we introduce the multiobjective

TSP and in Section 3 we define Pareto local optimum set and present PLS. The method-

ology we use for assessing the performance of PLS is indicated in Section 4 and Sec-

tion 5 contains experimental results on some benchmark instances. The insights gained

from an analysis of the solution set are the topic of Section 6 and we conclude and

indicate lines of future research in Section 7.

2 The Multiobjective TSP

In the multiobjective TSP, we are given a complete, weighted graph ✂☎✄✝✆✟✞✡✠☞☛✌✠☞✍✏✎
with ✞ being the set of nodes, ☛ being the set of edges fully connecting the nodes, and

✍ being a function that assigns to each edge ✆✒✑✓✠✕✔✖✎✘✗✙☛ a vector ✆✟✍✛✚✜✣✢ ✠✏✤✥✤✏✤✦✠✧✍✦★✜✣✢ ✎ , where

each element ✍✏✩✜✣✢ corresponds to a certain measure like distance or cost between node ✑
and ✔ . For the following we assume that ✍✪✩✜✣✢ ✄✫✍✏✩✢☞✜ for all pairs of nodes ✑✓✠✬✔ and every

objective ✭ , that is, we consider only symmetric problems. The multiobjective TSP is

the problem of finding “minimal” Hamiltonian circuit(s) of the graph, that is, closed

tour(s) visiting each of the ✮✯✄✱✰ ✞✙✰ nodes of ✂ exactly once; here “minimal” refers to

the notion of Pareto optimality.

One widely used approach to find good quality solutions for the (single-objective)

TSP is local search. In the most basic local search algorithm, one searches in the neigh-

borhood of the current tour for an improved tour; if such a tour is found, it replaces the

current one and the process is iterated until no improved tour can be found anymore.

This is a so called iterative improvement algorithm. It critically depends on the notion of

neighborhood. In this article, we consider three iterative improvement algorithms that

differ only in the definition of the neighborhood. We considered the following iterative

improvement algorithms.

2-opt: A 2-exchange deletes two edges and replaces them with the only possible pair of

new edges that does not break the tour in two disjoint cycles. The 2-opt algorithm,

given some starting tour, applies 2-exchanges as long as possible, and ends when

no further improving 2-exchange can be applied. In our case, the neighborhood is

searched in a randomly chosen order and the first 2-exchange move encountered

that leads to a non-dominated solution is applied.

2h-opt: A 2h-exchange, in addition to 2-exchanges, considers moves of a single city

from one position in the tour to another one. As suggested in Bentley [1], our im-

plementation is a simple extension of the 2-opt algorithm. The search strategy em-

ployed in the 2h-opt algorithm is then analogous to the 2-opt case;

3-opt: A 3-exchange deletes three edges and replaces them by a different set of three

edges. The search strategy applied in 3-opt is the same as the one we used for 2-opt.

There exist a number of speed-up techniques for the iterative improvement algo-

rithms in the single-objective case [1, 21], however, for the multiobjective case we only

use the � -evaluation, that is, the quality of the new tour can be evaluated by computing

the change in the objective function value incurred by the edge exchanges for each of

the multiple objectives independently.

3 Pareto local optimum set and Pareto local search

Before defining the notion of Pareto local optimum set, we need to introduce the notion

of dominance as follows (without loss of generality, we are assuming minimization

problems).

Definition 1. (Dominance) We say that a vector ✁ ✄✱✆✂✁ ✚✛✠✥✤ ✤ ✤ ✠✄✁ ★✘✎ dominates a vector☎ ✄ ✆ ☎ ✚ ✠✏✤ ✤ ✤ ✠ ☎ ★ ✎ if and only if ✁ ✩✝✆ ☎ ✩✟✞ ✭ ✗✡✠☞☛ ✠✥✤ ✤ ✤ ✠✄✌✎✍✑✏✓✒ ✭ ✗✔✠☞☛ ✠✥✤ ✤ ✤ ✠✄✌✎✍✖✕✗✁ ✩✝✘ ☎ ✩ .

We denote this by ✁✚✙ ☎
.

Usually there is not only one single Pareto optimal solution, but several, which are

elements of a Pareto global optimum set. This set contains all solutions that are not

dominated by any other solution.1 In analogy, we can define a Pareto local optimum

and a Pareto local optimum set as follows.

Definition 2. (Pareto local optimum and Pareto local optimum set) Let ✛ be a feasi-

ble solution, ✂ be a neighborhood structure, and ✜ ✄ ✆✢✜ ✚✛✠✥✤ ✤ ✤ ✠✣✜ ★ ✎ be a vector objective

function.

– We say that a solution ✛ is a Pareto local optimum with respect to ✂ if and only if

there is no ✤ in the neighborhood of ✛ such that ✜ ✆✥✤ ✎✦✙✧✜ ✆★✛ ✎ .
– We say that ✩ is a Pareto local optimum set with respect to ✂ if and only if it

contains only Pareto local optimum solutions with respect to the neighborhood

considered.

The problem of finding the Pareto global optimum set for the multiobjective TSP

is ✂☎✄ -hard [7]. Since obtaining exact solutions becomes extremely time consuming

with increasing instance size, the main goal shifts from obtaining Pareto global opti-

mal solutions to obtaining a good approximation to this set and metaheuristics seem

1 Given two solutions ✪ and ✫ , we say ✪ dominates ✫ if ✬✮✭✥✪✰✯✲✱✔✬✮✭✳✫✴✯ , where ✬✝✵✶✭✥✬✮✷✹✸✣✺★✺★✺✻✸✄✬✽✼✾✯ is

a vector objective function.

to be a suitable approach for this task [14, 20]. In this paper, we study how good are

approximations through Pareto local optimum sets, especially when compared to other

metaheuristic approaches.

For this task, we have to extend the single-objective local search algorithms to the

multiobjective case. A first decision is that we use the same notion of neighborhood as

in the single-objective case. The main modifications are concerned with the acceptance

criterion of the single-objective local search, because in the multiobjective case we

need to take into account several objectives. In iterative improvement local search for

the single-objective case a solution is usually accepted if it is better than the current one.

For multiobjective problems where a set of non-dominated solutions has to be found,

an extension of this acceptance criterion should take into account the concept of Pareto

optimality.

For the sake of simplicity, a first approach for an acceptance criterion may be to

accept a neighboring solution, if it is not dominated by the current solution. However,

for a reasonable acceptance criterion and to avoid cycling, we also need to consider

the non-dominated solutions that were previously produced during the local search.

These are typically kept in an archive, and these solutions need to be considered by the

acceptance criterion. Therefore, the final acceptance criterion we propose for the local

search is the following: a new solution is accepted if it is not dominated by any solution

in the archive. In fact, during this process, some solutions in the archive could become

dominated by some of the recently introduced ones. Such solutions are eliminated from

the archive. We call this general local search approach to multiobjective problems the

Pareto local search (PLS).

The local search algorithm then works, from a high level perspective, as follows:

1. it starts from a randomly generated tour, which is added to the archive;

2. it picks a solution � randomly from the archive and explores its neighborhood;

3. once a non-dominated solution �
✁

in the neighborhood of � is found, �
✁

is added to

the archive;

4. after the full neighborhood of � is examined, � is flagged as visited and we continue

at step 2.

The local search procedure terminates if all the neighborhoods of all solutions in

the archive were explored, i.e. every solution in the archive is flagged as visited. In this

case, the archive is a Pareto local optimum set.

Algorithm 1 gives a pseudo-code for PLS. Some specific details were implemented

to eliminate redundancy: �
✁✂ is only compared with the archive

✄
if it is not dominated

by � ✂ and PickArchive() picks only a solution from the archive
✄

which is not flagged as

✁ ✑☎�✥✑✝✆☎✞✠✟ . The remaining procedures are self explanative: GenerateInitialSolution() gen-

erates the initial solution; UpdateArchive() adds the new non-dominated solution to the

archive and removes the dominated ones. For tackling the biobjective TSP we adapted

the PLS algorithm by extending the three 2-opt, 2h-opt, and 3-opt single-objective local

search algorithms with the acceptance criterion of PLS.

A related approach to PLS can be found in [32]. There, the authors propose an

hybrid evolutionary algorithm for the flow shop problem which is improved by post-

optimizing the solution set with an additional local search algorithm analogous to PLS.

Algorithm 1 Pseudo-code for Pareto Local search�✂✁☎✄
✆ ✁ � ✁
✪✞✝ ✁✠✟☛✡✌☞✍✡✌✎✑✏✓✒✔✡✖✕✗☞✖✘ ✒✙✘ ✏✛✚ ✜✣✢✤✚ ✥✞✒✦✘ ✢✤☞ ✭✥✯✆ ✁★✧✪✩✖✫✬✏✞✒✭✡✯✮✰✎✑✱✌✲✖✘ ✳✍✡ ✭✥✪✓✝ ✯
repeat

for all ✪✞✴✝✪✵ Neighborhood(✪ ✝) do✶ ✳✍✏✬✚ ✥✍✏✞✒✭✡ ✭✥✪ ✴ ✝ ✯
if ✪ ✴ ✝ is not dominated by any ✫ ✵ ✆ then✆ ✁★✧✷✩✸✫✬✏✞✒✭✡✯✮✰✎✑✱✌✲✖✘ ✳✍✡ ✭✥✪✹✴✝ ✯
end if

end for

✪✓✝ ✁☎✺✬✻ ✪ ✻✼�✔✽✓✾�✪✁✿�❁❀❃❂

✪✓✝ ✁❅❄❁✘ ✱✌❆✯✮✰✎❇✱✍✲✖✘ ✳✍✡ ✭✥✯
until all solutions in Archive are visited

Also SEMO [24] and PAES [23] have principles similar to PLS. However, PLS

differs from these approaches in the sense that we do not consider any restrictions on the

size of the archive and we take into account the complete examination of neighboring

solutions. We stress here that we intend to match as much as possible the characteristics

of usual local search algorithms for single-objective problems when extending these to

multiobjective problems.

4 Performance assessment methodology

PLS takes random decisions in the GenerateInitialSolution() and PickArchive() proce-

dures. Therefore, it is a stochastic search algorithm, which returns an outcome that is

likely to be different for each run. As stressed by several researchers [17, 18], statistical

methods are necessary to analyse the performance of such algorithms. A sound method-

ology for analysing sets of non-dominated vectors is the attainment function methodol-

ogy [6] that allows to infer conclusions on the performance of stochastic search algo-

rithms based on the outcomes of multiple runs.

The attainment function represents the probability that an arbritrary goal in the ob-

jective space is attained during a single run of the algorithm. This probability can be es-

timated using data collected from several optimization runs and normalizing the number

of times each solution was attained at each run in a way analogous to estimating empir-

ical distributions of one-dimensional random variables. This estimation process leads

to the definition of the empirical attainment function (EAF) [6].2 The comparison of

the performance of different multiobjective stochastic search algorithms is then carried

out by comparing the EAFs by means of hypothesis tests. This methodology has been

used, for example, in [28, 31].

2 The EAF is seen here as a distribution of the solution quality (set of non-dominated objective

vectors obtained at each run) after running an algorithm for a specifi c time or, as it is in our

case, until it terminates because of some “natural” termination criterion.

When comparing the performance of two algorithms A and B, the null hypothesis is

stated as follows

�✂✁
: Given a specific instance, there is no difference in the performance between A and

B in terms of the EAF;

and the alternative as

�
✚ : Given a specific instance, there is a difference in the performance between A and

B in terms of the EAF.

Given independence between the runs of both algorithms, a suitable test statistic is the

maximum absolute difference between the EAFs, which is analogous to the Kolmogorov-

Smirnov test statistic [3]. The decision about acceptance or rejection of
� ✁

can be taken

by comparing the test statistic obtained in the original samples with the critical value

�☎✄ , that is, the ✆ ☛✝✆✟✞ ✎ -quantile of the distribution of the test statistic:
� ✁

is rejected if

the former is greater or equal then � ✄ . Usually, ✞ is between ✠ ✤ ✠ ☛ and ✠ ✤ ✠☛✡ .
Since the distribution of the test statistic is unknown, a possible way of computing

this bound is to use permutation tests [12], which can be described as follows:

1. label each outcome obtained by each algorithm;

2. compute the test statistic given the original labels;

3. permute the labels and recalculate the test statistic until all permutations consid-

ered;

4. take decision on acceptance or rejection of
� ✁

based on the distribution of the test

statistic.

If the total number of possible permutations is too large, one can carry out a random-

ization test, by using only a limited number of random permutations in the above pro-

cedure [12].

If more than two algorithms are to be compared, the test statistic is formulated for

a problem of ☞ independent samples. The maximum absolute difference among all

combinations of pairs of EAFs can be used as analogous to the Birnbaum-Hall test [3].

In the case that a difference is found in terms of EAFs, a multiple comparison method

needs to be used in order to detect which groups differ in terms of EAFs, controlling the

maximum probability of two or more hypotheses tested in parallel and being rejected in-

correctly [19]. Thus, we perform an all-pairwise comparison between all algorithms by

applying the same procedure described above for comparison between two algorithms;

the ✞ -level is then adjusted by the Holm sequential rejective method [16].

The result of this test allows to detect points which have a maximum absolute dis-

tance exceeding �✌✄ and to identify regions in the solution quality space, where the

algorithms show large different performance. In addition, the sign of the differences

can be used to indicate which algorithm performs better in which region.

We also use other measures as the � measure [33] and the ✁ measure [20] to com-

pare the performance of algorithms. The former compares pairs of non-dominated sets

by calculating the fraction of each set that is covered by the other set, and the latter

evaluates a non-dominated set by the expected value of the weighted Tchebycheff util-

ity function over a set of normalized weight vectors.

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

B
1
0
0

kroA100

2-opt
2h-opt

3-opt

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

B
1
0
0

kroA100

3-opt
MOGLS

Fig. 1. Attainment surfaces at 50 � of 2-opt, 2h-opt and 3-opt (left) and 3-opt and one

outcome of MOGLS (right) in the instance kroAB100.

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

B
1

0
0

kroA100

2-opt
2H-opt

diff

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

B
1

0
0

kroA100

2H-opt
3-opt

diff

Fig. 2. Attainment surfaces at ✁ ✄ � of 2-opt and 2h-opt (left) and of 2h-opt and 3-opt

(right) and the corresponding location of differences in terms of EAFs of more than ✂☎✄ for in-

stance kroAB100. Locations of these differences are marked by
❀

.

5 Experimental results

We run extensive experiments with the local search variants using benchmark instances

that were derived from single-objective TSPs. In particular, we considered all six paired

combinations of the 100-city instances kroA100, kroB100, kroC100 and kroD100 and the

paired combination of the benchmark 150-city instances kroA150 and kroB150. In the

biobjective case, each tour is then evaluated with respect to the distance matrix of each

of the instances in the pair. These benchmark instances were introduced by Hansen [14]

and were also used in [2, 20]. For convenience, we denote these instances as kroAB100,

kroAC100, kroAD100, kroBC100, kroBD100, kroCD100 and kroAB150. Each algorithm

was run 50 times on each of the 7 instances, until a Pareto local optimum set was found.3

3 For further comparisons, the Pareto local optimum sets and the corresponding solu-

tions used in this article are available at http://www.intellektik.informatik.

tu-darmstadt.de/˜lpaquete/TSP

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

C
1
0
0

kroB100

2-opt
2h-opt

diff

20000

60000

100000

140000

180000

20000 60000 100000 140000 180000

k
ro

C
1
0
0

kroB100

2h-opt
3-opt

diff

Fig. 3. Attainment surfaces at ✁ ✄ � of 2-opt and 2h-opt (left) and of 2h-opt and 3-opt

(right) and the corresponding location of differences in terms of EAFs of more than ✂ ✄ for in-

stance kroBC100. Locations of these differences are marked by
❀

.

20000

80000

140000

200000

260000

20000 80000 140000 200000 260000

k
ro

B
1

5
0

kroA150

2-opt
2h-opt

diff

20000

80000

140000

200000

260000

20000 80000 140000 200000 260000

k
ro

B
1

5
0

kroA150

2h-opt
3-opt

diff

Fig. 4. Attainment surfaces at ✁ ✄ � of 2-opt and 2h-opt (left) and of 2h-opt and 3-opt

(right) and the corresponding location of differences in terms of EAF of more than ✂ ✄ on the

instance kroAB150. Locations of these differences are marked by
❀

.

The code was written in C++ and tested on a Dual Athlon with 1200 MHz and 512 MB

of RAM.

Considering an arbitrary instance
✄

, we formulated a null hypothesis that there is

no difference in performance between using 2-opt, 2h-opt or 3-opt in terms of

EAFs on instance
✄

versus the alternative that there is a difference between at least

one of them. A significance value of 0.05 was defined a priori and a randomization

test with 10000 random permutations, as described previously, was conducted for each

instance, using the correction of the ✞ -level for multiple comparisons. According to

these tests, statistical differences were found between the local search algorithms for

all biobjective TSP instances. The sign of differences in terms of EAFs on the points

with distance larger than � ✄ indicate a better performance of 3-opt, followed by 2h-

opt and 2-opt. In fact, this ordering can be expected when taking into account the

performance differences between these local search algorithms for the single-objective

TSP [22, 30].

Figure 1, left, plots the points whose probability of being attained by the three al-

gorithm is 50 � on the instance kroAB100. These points are connected by a line cor-

responding to the ✡ ✠✁� attainment surface [10]. In other words, this plot describes the

typical median outcome obtained if the algorithms are run several times. However, al-

most no difference is visible among the three algorithms.

In addition, Figure 1, right plots the ✡ ✠✂� attainment surfaces of 3-opt and an out-

come of MOGLS by Jaszkiewicz [20] that reached the highest value of the ✁ measure.4

MOGLS works, from a high-level perspective as follows:

– it generates an initial population of solutions where each solution is optimized by

a local search method based on a random weighted scalarization of the objective

functions;
– at each iteration, it chooses randomly two solutions from a temporary smaller pop-

ulation, extracted from the real population according to a random weighted scalar-

ization of the objective function, and recombines them;
– it optimizes the new solution by a local search procedure based on a weighted

scalarization of the objective functions and adds it to the population if it is better

than the worst solution in the population according to the scalarization considered.

The stopping criteria is based on a pre-defined number of iterations. MOGLS is cur-

rently one of the best performing metaheuristics for multiobjective problems. In fact,

for the biobjective TSP, MOGLS was able to outperform several multiobjective meta-

heuristics on the same 100-city instances. However, despite this high performance of

MOGLS, in Figure 1 (right) almost no difference among the two algorithms is visible,

indicating the good performance of PLS.

Figures 2 to 4 plot, for the instances kroAB100, kroBC100, and kroAB150, respec-

tively, the 50% attainment surfaces with additional points where differences in terms of

EAFs are larger than the critical value � ✄ were found. In each figure, the left plot gives

the comparison between 2-opt and 2h-opt, while the right plot gives the compari-

son between 2h-opt and 3-opt. In general, the following observations can be made.

The highest differences between the outcomes of 2-opt and 2h-opt are found on

all instances in a relatively small portion of the objective space covered by the two al-

gorithms. On two instances (kroAB100 and kroAB150) these differences appear rather

close to the “tail”, while on the instance kroBC100 only in some portion of the middle.

This clearly indicates that there are some unreachable regions for the 2-opt algorithm

that can be attained by 2h-opt.

When comparing the 2h-opt to 3-opt, the differences larger than � ✄ are located

over most of the objective space. This result indicates that 2h-opt cannot attain most

of the objective space attained by the 3-opt, meaning a clear better performance of

the latter.5

4 The results are available in fi le ND kroab100 4.txt from http://www-idss.cs.put.

poznan.pl/˜jaszkiewicz/motsp/.
5 When comparing 2-opt to 3-opt, the differences were still a bit larger and the locations of

the differences cover almost the whole objective space. Hence, the general conclusions are the

same as for the comparison between 2h-opt and 3-opt.

Table 1. Comparison between 2-opt, 2h-opt and 3-opt in terms of ✁ and �
measure on the instances kroAB100, kroAC100, kroAD100, kroBC100, kroBD100 and

kroCD100.

kroAB100 2-opt 2h-opt 3-opt kroAC100 2-opt 2h-opt 3-opt
�

Measure
�

Measure

Min .9332 .9334 .9348 Min .9302 .9309 .9320

Median .9340 .9342 .9350 Median .9313 .9315 .9323

Mean .9339 .9341 .9350 Mean .9312 .9314 .9323

Max .9345 .9346 .9352 Max .9317 .9319 .9324

✂ Measure ✂ Measure

2-opt - 29 � 4 � 2-opt - 30 � 5 �
2h-opt 50 � - 8 � 2h-opt 52 � - 9 �
3-opt 81 � 74 � - 3-opt 82 � 75 � -

kroAD100 2-opt 2h-opt 3-opt kroBC100 2-opt 2h-opt 3-opt
�

Measure
�

Measure

Min .9329 .9330 .9342 Min .9345 .9348 .9357

Median .9335 .9336 .9344 Median .9350 .9353 .9360

Mean .9334 .9336 .9344 Mean .9351 .9353 .9360

Max .9339 .9339 .9345 Max .9356 .9357 .9361

✂ Measure ✂ Measure

2-opt - 30 � 4 � 2-opt - 29 � 6 �
2h-opt 50 � - 6 � 2h-opt 53 � - 12 �
3-opt 83 � 78 � - 3-opt 82 � 72 � -

kroBD100 2-opt 2h-opt 3-opt kroCD100 2-opt 2h-opt 3-opt
�

Measure
�

Measure

Min .9326 .9331 .9342 Min .9371 .9375 .9384

Median .9336 .9337 .9344 Median .9378 .9380 .9388

Mean .9335 .9337 .9344 Mean .9378 .9380 .9388

Max .9340 .9341 .9346 Max .9383 .9385 .9391

✂ Measure ✂ Measure

2-opt - 33 � 7 � 2-opt - 30 � 8 �
2h-opt 48 � - 11 � 2h-opt 50 � - 12 �
3-opt 78 � 72 � - 3-opt 77 � 69 � -

kroAB150 2-opt 2h-opt 3-opt
�

Measure

Min .9400 .9403 .9415

Median .9407 .9409 .9417

Mean .9407 .9408 .9417

Max .9412 .9412 .9418

✂ Measure

2-opt - 33 � 7 �
2h-opt 48 � - 11 �
3-opt 78 � 72 � -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

CPU-time

2-opt
2h-opt
3-opt

Fig. 5. Distribution of CPU-time in seconds of 2-opt, 2h-opt and 3-opt to obtain the Pareto

local optimum set on the instance kroAB100.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

CPU-time

2-opt
2h-opt
3-opt

Fig. 6. Distribution of CPU-time in seconds of 2-opt, 2h-opt and 3-opt to obtain the Pareto

local optimum set on the instance kroAB150.

In addition, we computed the ✁ measure [15] for all algorithms on all instances

based on the the code by Jaszkiewicz [20].6 The metric parameters were defined ac-

cording to [20], and only in the case of the 150-city instance we used 280,000 as the

worst attainable objective function value for both objectives. Table 1 presents the min-

imum, median, mean and maximum values of ✁ measure. It also gives the � measure

for each pair of algorithms and for each instance; each table entry is averaged over all

pairwise comparisons between pairs of runs of two algorithms. The entries indicate how

6 The code was downloaded from http://www-idss.cs.put.poznan.pl/

˜jaszkiewicz/mokp and adapted according to [20].

Table 2. Comparison of the 3-opt PLS algorithm with MOGLS in terms of
�

and ✂ measure

on the instances kroAB100, kroAC100, kroAD100, kroBC100, kroBD100 and kroCD100.

kroAB100 kroAC100 kroAD100 kroBC100 kroBD100 kroCD100
�

Measure

2-opt (median) .9340 .9313 .9335 .9350 .9336 .9378

2h-opt (median) .9342 .9315 .9336 .9353 .9337 .9380

3-opt (median) .9350 .9323 .9344 .9360 .9344 .9388

MOGLS .9351 .9321 .9342 .9359 .9344 .9389

✂ Measure

3-opt covers MOGLS 40 � 47 � 59 � 36 � 33 � 39 �
MOGLS covers 3-opt 13 � 13 � 12 � 16 � 15 � 15 �

much the outcome of an algorithm in the row covers the outcome of an algorithm in the

column.

The results shown in Table 1 clearly indicate the superior performance of 3-opt:

The minimum ✁ value for 3-opt is always larger than the maximum values for 2-opt

and 2h-opt; the only exception is instance kroCD100, where the maximum value for

2h-opt is slightly larger than the minimum value for 3-opt. The difference of per-

formance between the 2-opt and 2h-opt is much smaller, however, still indicating

a better performance for 2h-opt over 2-opt on some of the instances. The compar-

isons based on the � measure lead to the same conclusions.

Figures 5 and 6 show the distribution of the computation time of 2-opt, 2h-

opt and 3-opt for finding a Pareto local optimum set on the instances kroAB100 and

kroAB150. 2-opt takes roughly half the time of 2h-opt and only around 1% of the

time necessary to run 3-opt. Obviously, these differences are due to the size of the

neighborhood searched by the respective algorithms. In fact, 3-opt is the slowest to

get a Pareto local optimum set, but gives a higher quality of solution because of the

larger neighborhood searched. Clearly, 2-opt is the fastest but also gives the worst

quality solutions.

From our point of view, PLS can be extremely useful as a reference for metaheuris-

tic approaches to multiobjective combinatorial optimization problems. This use is espe-

cially important, because only few results on multiobjective combinatorial problems are

available from the literature. Additional advantages of PLS are that it is a very simple

algorithm and that it has a ”natural” termination condition and, therefore, the results are

more reproducible.

The question to be posed, when using PLS for a baseline comparison is ”Can al-

gorithm
✄

outperform the Pareto local optimum set in terms of solution quality and

run-time?”. This question should be posed for any metaheuristic approach. We posed

the same question on the results obtained by MOGLS in [20] which is one of the best

performing algorithms for the biobjective TSP. Figure 1 already presented some com-

parisons between the ✡ ✠✁� EAFs of 2-opt, 2h-opt and 3-opt with the best avail-

able outcome of MOGLS regarding the ✁ measure. Figure 1 showed that no clear visual

differences are found. Since also insufficient results of MOGLS were available publi-

cally, the attainment function methodology could not be used. Instead, we reported the

comparison in terms of the median of the ✁ measure and the � measure in Table 2.

As a result, we observe that2-opt and 2h-opt produce Pareto local optimum sets

inferior to the outcome of MOGLS. However, the Pareto local optima sets of 3-opt

are comparable to MOGLS, and seems to be even better on half of the instances. The

exceptions are on instances kroAB100 and kroCD100. The � measure was computed

only between 3-opt and MOGLS. The results show that 3-opt is able to cover more

solutions of MOGLS than vice versa. Despite these unfavorable results for MOGLS

in terms of solution quality, the computation time reported here for 3-opt appears to

be much higher than [20] (MOGLS took 88.3 seconds averaged on all instances on a

Pentium with a 350 MHz processor).

6 Characterization of the Pareto local optimum sets

Despite its long computation time, 3-opt seems to obtain a Pareto local optimum

set which is comparable to high performance algorithms such as MOGLS. This fact

allows us to suppose that there is a path in the search space which guides the local

search to near-optimal solutions by means of 3-opt exchanges and that these solutions

are somehow near each other. In fact, Borges and Hansen [2] showed empirically a

concentration of both, supported optimal and near-optimal solutions, in the search space

of several multiobjective TSP instances with 3 objectives. One interesting question to

explore is how the solutions in the Pareto local optimum set obtained by 3-opt are

distributed in the search space, hoping that an answer to this question can give us further

insights to solve this kind of problems even more efficiently.

The Pareto local optimum set
�

can be represented as a complete, undirected and

weighted graph, where each node corresponds to a solution and each weight corre-

sponds to the distance between each pair of solutions. In the TSP case, we use the

number of different edges as the distance between two tours ✑ and ✔ which is propor-

tional to the number of edge-exchanges one has to apply to ✑ to transform it into ✔ . We

are particularly interested in identifying clusters of solutions, where all solutions of a

cluster are reachable by using a ✟ -opt algorithm as it was used here, i.e., the minimum

distance of a solution to at least one solution of the cluster is at most ✟ . These clusters

define a subgraph
� ✁✁� �

which contains only edges with weights below or equal to

a fixed value ✟ and the nodes connected by these edges. A cluster of distance ✟ is a

maximally connected component of
� ✁

.

In our analysis, we enumerate all clusters with ✟ ✄ ✠✄✂ ✠✆☎ ✠✞✝ ✍ for the Pareto local

optimum sets from the experiments with 3-opt for the 100-city instances. Figure 7

gives the box-plots for the total number of solutions (plot a), the number of clusters

with ✟ ✄✟✂ (plot b), the number of clusters with ✟✙✄✠☎ (plot c), and the number of

clusters with ✟ ✄✡✝ (plot d) for all the instances tested. The number of clusters with

✟ ✄☛✂ is approximately ☛ ✠✂� of the total number of solutions. With ✟✌✄☞☎ , the number

of clusters drops down to one fifth of the number of clusters with ✟ ✄✌✂ . Finally, the

number of clusters is further halved with ✟ ✄✍✝ . The percentage of the total number of

solutions inside of clusters with ✟ ✄✎✂ was approximately 90 � and it reached almost

a)

2
0

0
0

2
5

0
0

3
0

0
0

AB AC AD BC BD CD

b)

2
0

0
2

5
0

3
0

0
3

5
0

AB AC AD BC BD CD

c)

3
0

4
0

5
0

6
0

7
0

8
0

AB AC AD BC BD CD

d)

1
0

1
5

2
0

2
5

3
0

3
5

AB AC AD BC BD CD

Fig. 7. Boxplots for the total number of solutions (a), number of clusters with
✾ ✵✁� (b), number

of clusters with
✾ ✵✄✂ (c), number of clusters with

✾ ✵✁☎ (d) for the instances kroAB100 (AB),

kroAC100 (AC), kroAD100 (AD), kroBC100 (BC), kroBD100 (BD) and kroCD100 (CD)

using the 3-opt algorithm.

100 � with ✟ ✄ ✝ . These results clearly indicate that near-optimal solutions are strongly

clustered in the search space.

In a second analysis, we examined how these results are affected by the instance

size. Thus, we applied 3-opt to 50 pairs of randomly generated instances with Eu-

clidean distances with 30 to 100 cities, using a step size of 10 cities.7 We ran 3-opt

once for each instance until a Pareto local optimum set was found and then carried out

a regression analysis to study the effect of some of its features, such as the total number

7 The code for generating random instances was downloaded from the site of the 8th DIMACS

Implementation Challenge for the TSP at http://www.research.att.com/˜dsj/

chtsp/

++
+++
+
++
++++
++
++++
+
++

+
+
+
++++++++
++++++
+
+
+
+++
++
+
+
++

++++++
++++++
+
+++
+
+++++++
+++++++++++
+
++++
+++++++++
+

++
++
+
+
+++
+++++++++
+
+
++
+
++++++
++
+
++++
+++
++++++
++++
+

+
+++++
++
+
+++
+
+++
+
+++
+
++++
+
++
+
++
++++++
+++
+
+
++
++++++

++
+
++
+
+++++
+++++
+
++++++
+++
+++
++++++++
++++
++
+
++++++ ++

++
+++
++++++++
++++++++++++
+
+
++++++
++++++++
++++
+++ +++

+
++++
++++
+
+++
+
+
++
++++
+++++++++++++++

+
++++++++++

++++++++
++++
++++++
++++++++
+
++++++++
+++
+
+
++

+
++
+
++++

instance size

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

30 40 50 60 70 80 90 100

++

+
++

+

++
+
++++
+
+
+
++++

++
+

+

+
++
+

+++

+

+
+
+++++
+
+
+++

+
+
++
++

++
+
+
+++++
+

+

+
+
+++
+++++
+
++
+
++
+
+
+

+

+
+

+

++
++
++
+
+
+
+
++
+
+
+
+

+
++
+
+

+
+
++
++
+++++++
+

+
+++++
+
+
+
++++++
+++++++
+
++++
++
+
+

+++
+
++
+
+
+++
+
+++++
++++++
++
++
++++++++
++
+
+
++
+
+++
+++++

++
++

+
+++++++
+++++
+
++++
++
+
+++++
++++++
++
+
+++
+

+
+
++
++
+ +++++

+
+
+++++
++++++++
+
++
++
+
++++
++
+++
++
+++
++++
++
+++
+ +++

+
+
+++++++++++++
++++++
+
+++++
+
+++++
++
+++
++
+++
++++ ++

++
+++++
+++++++++++
+
+
+

+
+++
+
+
++++++
++++
++++
+
++
++++

++

+

+
+

+

+
+
+

++

+

+++
+
+
+
+

+
++
+

+

+
+
+
++

+

+

+

+

+
+
+

+
+

+

+
++
+
+
+
+
+

+
+
+

+
++
+
+
+
+

+
++

+

+
++
++

+
+
+
+

+
+
+++
+
+

++

+

+

+
+

+

+
+
++
+
++
+
+

+

+
+
+
++
+

++

+

++
+
+++
+

+

+
+

+
+
+

+++
+
+++
+
+
++

+

++
++
+
++
+
++
++

++
+
+
++
+
+
++

+++
++
+
++
+++

+

+
++

+
+
+
++++
+
+++
+++++
+

+

+

+

++
++++
++
++++
+
+
+

++
++

+
+
+
+
++
+++
+
+
+
++
+

+
+
++
+++
+
+
+
++++
++++++++
+++
++++
++ +

+
+
+
+++
+++++
+
+
++++++
++++++++++
+
+
++
++++++
+

+
+
+
++
+++
+

++
+
+
++

+
++
+++++++
+
+++
+

+
+
++
+
+++
++

+
++++

+++
+
++
+
+
+
++
+
++ ++

+++
+

+

+++++
+
+++
+++++++
++
++
++++++
+++++
++++++++
+
+
++

+

+

+

++
+

++++

+

+

++

++

++
+
+

+

+

+

+

+

++

+

+

+

+++

+
+
+++

+

+++

+

+

+

+

+

+

++

+

+

+
+

+

+

++

+
+

+
+
+
+
+
+++

+

++
++++++
+

+
+
++

+
+

++
+

+

+
+
+

++

++
+
+
+

+

+
+
+

+

++++
++
+

+
+

+

+++
++++

+

+++++
+

+
+

+
+
+

+
+
++
+

+
++++
+
+

+
+

+

+++

+++++
+

+

+
+

+
+

+

+
+
+

+
++++
++
+

+
++++
+
+
+
+
+

+

+

++
+

+

++

+

++
+
+

+

+

++ +++
+
+
+
+
+

+
+

+++
+++
+
++

+
++

+

+++
+

+

+
+++
+
++++
+
+++
+
+
+
+++
+
++ +

+
+
++
+
++
+
+
+
++
+++
++
+
++++++
+
++++
++
+++
++

+
++
++++
++++++

+++
++
+
++++
+
+++
+
+++
+++
+
+
++
+++

+
+++
++
++
+
+
+

+

+
+
+
++++
+++ +

+
++
++
+
++++++++++
++
+
+
+++
++

+

++++
+
+++
+
++++
+
+++
++
+
+
+
+

ns

nc2
nc3

nc4

Fig. 8. Number of solutions ✭✁� ✪✰✯ , number of clusters with
✾ ✵ � ✭✁�✄✂ �✴✯ , ✾ ✵✄✂ ✭✁�✄✂ ✂ ✯ and

✾ ✵✁☎
✭✁�✄✂ ☎ ✯ (in logarithmic scale) against size of the instance and corresponding least-square regression

fi ts.

of solutions and number of clusters and its growth with instance size. In all the regres-

sion models, the constant variance was scattered symmetrically and vertically around 0

and the residuals followed a normal distribution. This means that the regression lines

provide a fairly good description of the data. We also remark here that more than 90 �
of the solutions in the Pareto local optimum sets were present in the clusters, as in the

previous experiment.

Figure 8 gives the number of solutions ✆✒✮ �✛✎ , the number of clusters with

✟ ✄ ✂ ✆✒✮ ✍ ✂ ✎ , ✟ ✄ ☎ ✆ ✮ ✍ ☎ ✎ and ✟ ✄✡✝ ✆✒✮ ✍ ✝✖✎ against instance size ✆✒✮ ✎ and the least-

square regression fit. For the number of solutions against instance size we performed a

least-square regression fit by applying a logarithmic transformation to both variables.

Translating back to the linear scale we observe that the number of solutions grows as

✮ ✚✆☎ ✝ ✞✟✞
✁
☎
✝
, that is, almost quadratically. Therefore, with increasing instance size one

cannot expect to obtain the complete Pareto local optimum sets by means of a 3-opt

in reasonable time, which also explains the strong growth in computation time of the

three algorithms from 100 cities to 150 cities (see Figures 5 and 6). This can be also

expected, because of the intractability results for these problems [8].

We also fitted the number of clusters against instance size. For the three differ-

ent cluster sizes ✟ ✄ ✠ ✂ ✠✆☎ ✠✞✝ ✍ we observed growth rates of the number of clusters as

✆ ✠ ✤ ☛ ✝ ✮✡✠ ☛ ✤ ✡ ☛✪✎☞☛ , ✆ ✠ ✤ ✠✍✌ ✮✎✠ ✠ ✤ ✏ ✎☞☛ and ✆ ✠ ✤ ✠☛✡ ✮✂✆ ✠ ✤ ✠☛✡ ✎☞☛ , respectively. Although the num-

ber of clusters for all the values of ✟ increase quadratically, the increase rate is very

low. Thus, we would not be surprised if the relationship between the number of clusters

sc2

F
re

q
u
e
n
c
y

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

sc3

F
re

q
u
e
n
c
y

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

sc4

F
re

q
u
e
n
c
y

0 100 200 300 400 500 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Fig. 9. Histogram of the number of solutions in the clusters with
✾ ✵ � ✭✥✪✆✂ �✴✯ (left), with

✾ ✵ ✂
✭✥✪✆✂ ✂ ✯ (middle) and with

✾ ✵ ☎ ✭✥✪✆✂ ☎ ✯ (right).

and instance size for larger instances could be expressed by a linear model. However, a

more detailed analysis would require to consider larger instances, involving very large

computation times.

Figure 9 shows histograms of the number of solutions in the clusters with ✟ ✄
✠✄✂ ✠✆☎ ✠ ✝ ✍ of a Pareto local optimum set for a 100-city instance solved by 3-opt. The

plots indicate the existence of a large number of small clusters with less than 75 solu-

tions each for ✟ ✄☛✂ , while for ✟ ✄ ✠✄☎ ✠✞✝ ✍ there are some clusters with more than 200

solutions. This is clearly an effect of the increasing ✟ , although the difference of the

distributions when going from ✟ ✄✌✂ to ✟✯✄✌☎ appears to be much larger than when

going from ✟ ✄ ☎ to ✟ ✄ ✝ . This could mean that most of the small clusters with ✟ ✄ ✂
are near each other, since they are merged in larger clusters with ✟✡✄ ✠ ☎ ✠✞✝ ✍ . We also

computed how large should be ✟ (✟✁�✄✂✆☎) such that all complete Pareto local optimum

set forms only one cluster. We observed growth rates of ✟✝�✄✂✆☎ as ✆ ✠ ✤ ✠✟✌ ✮ ✠ ✂ ✤ ✡ ✎☞☛ . This

means that there are some few solutions which are not easy reachable by a small value

of ✟ .

These empirical results corroborate that, besides the fact that already the multiobjec-

tive TSP is ✂☎✄ -hard, it also presents the well-known problem of a strongly increasing

number of solutions, adding an additional factor to the difficulty of solving. This fact

especially becomes a problem to a local search algorithm like PLS dealing with very

large instances, because it has to maintain a large set of solutions in the archive. To

alleviate this problem, one may introduce more complex strategies to reduce computa-

tion time. One obvious alternative for PLS could be to restrict the number of solutions

in the archive. Another possibility is to use a different acceptance criterion, possibly

by including some distance measure in the acceptance criterion, which only accepts a

reduced set of solutions. In any case, these additional strategies need to ensure that a

good distribution of the solutions in the objective space can be obtained. However, they

all have the drawback of adding more complexity to PLS and it becomes not clear what

is the main contribution of the local search.

How can these insights be exploited to design more powerful local search algorithms

for the biobjective TSP? What general conclusions can we take from the insights of our

analysis? In general, the results presented here show that for the biobjective TSP we

must expect that most of the Pareto optimal or near-optimal solutions are near each

other. These results are further backed up by those of Borges and Hansen [2]. These

observations give also an explanation why such simple local search algorithms as the

ones presented here are able to give such high solution quality. In particular, given one

single solution of a cluster, PLS has the potential to find all other solutions in the cluster.

The main disadvantage of PLS, especially the 3-opt version, was the high com-

putation time. To reduce computation time, one possibility is to use the following pro-

cedure:

1. solve the weighted scalarization of the objectives in order to hopefully obtain seed

points for a cluster;

2. scan the neighborhood of the solution found using the acceptance criterion of PLS

to obtain solutions inside the cluster;

3. jump to another cluster by changing slightly the weights of the scalarization of the

objectives.

In fact, there are effective algorithms available, such as iterated local search [22, 27],

for solving the single-objective problem resulting from the weighted scalarization. For

example, optimal solutions for the single-objective instance kroA100 are typically found

in less than 0.1 seconds. In fact, results already available for such an approach [29]

suggest that comparable solution quality to 3-opt can be found in a computation time

that is several orders of magnitude smaller than that of 3-opt.

7 Conclusions and further work

We presented an investigation of Pareto local search algorithm for the biobjective TSP.

PLS maintains a high level of simplicity, because (i) no ideal points need to be com-

puted, (ii) no aggregation of objectives is required, and (iii) no parameter settings are

necessary for the algorithm. Despite this simplicity, experimental results show that es-

pecially the 3-opt version of PLS returns very good solutions in terms of solution

quality, comparable to those of the currently best performing metaheuristics for the

biobjective TSP. However, a drawback of PLS is that the computation times are much

higher than that of state-of-the-art metaheuristics.

One of the main uses of PLS is certainly that it can serve as a baseline benchmark

algorithm for metaheuristic approaches to multiobjective combinatorial optimization

problems. In this case, the interesting question to be answered is whether the meta-

heuristic is able to outperform PLS from a solution quality and from a computation time

point of view, i.e., whether it dominates PLS. A further conclusion of our research is

that the ranking of the three PLS algorithms we tested here is the same as for the single-

objective case. 2-opt is the fastest but returns the worst solution quality, while 3-opt

takes the longest computation time but returns the best quality solutions. It would be in-

tersting to use well-known speed up techniques as nearest neighbors list [21] and don’t

look bits[1] in order to reduce computation time of the latter. in addition, one could also

adapt variable-depth search algorithms like the Lin-Kernighan heuristic [26] to the mul-

tiobjective TSP, since these algorithms are known to perform even better than 3-opt

for the single-objective case. However, the computation time of such an algorithm may

become infeasibly large.

An analysis of the Pareto local optimum sets returned by 3-opt for randomly

generated biobjective TSP instances showed empirical evidence that (i) the number of

solutions grows quadratically with instance size, (ii) the solutions are strongly clustered

and (iii) the number of clusters of solutions with a specific, maximum inter-tour dis-

tance, grows quadratically with instance size, but with a very small rate. On one side,

the observation (i) suggests that computation times of PLS for large instances may be-

come extremely large. Hence, one conclusion is that for large instances, strategies that

strongly limit the number of solutions returned, while keeping at the same time a good

spread of solutions, are required. The observations that solutions are strongly clustered

and the small growth rate of the number of clusters with instance size indicate that these

solutions are not very much spread in the search space. This suggests that local search

methods in which jumps between clusters and the in depth exploration of clusters are

intertwined, are promising candidates for better performing local search algorithms.

Our study can be extended in several ways. One first possibility is to consider more

objectives in PLS. However, we believe that it will incur further increase of computation

times due to the expected size of the Pareto local optimum set. Therefore, it should

be interesting to study the rate of acceptance of solutions to the archive of the PLS

according to the number of objectives. The analysis of the set of solutions can also be

extended to other types of instances like clustered TSP instances (here clustering refers

to the clustering of city locations in the instance) or instances with different degrees of

correlation for the cost matrixes.

Acknowledgments We would like to thank Carlos Fonseca and Viviane Grunert da

Fonseca for valuable discussions on the topic of this research. We also thank Andrej

Jaszkiewicz and Joshua Knowles for discussions on the evaluation methods, and Irina

Dumistrescu and Tommaso Schiavinotto for the comments on a draft version of this pa-

per. This work was supported by the Metaheuristics Network, a Research Training Net-

work funded by the Improving Human Potential programme of the CEC, grant HPRN-

CT-1999-00106. The information provided is the sole responsibility of the authors and

does not reflect the Community’s opinion. The Community is not responsible for any

use that might be made of data appearing in this publication.

References

1. J.L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on

Computing, 4(4):387–411, 1992.

2. P. C. Borges and P. H. Hansen. A study of global convexity for a multiple objective trav-

elling salesman problem. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in

Metaheuristics, pages 129–150. Kluwer, 2000.

3. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, 1980.

4. G.A. Croes. A method for solving traveling salesman problems. Operations Research,

6:791–812, 1958.

5. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing - a metaheuristic technique for

multiple objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis,

7:34–47, 1998.

6. V. G. da Fonseca, C. Fonseca, and A. Hall. Inferential performance assessment of stochas-

tic optimisers and the attainment function. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello

Coello, and D. Corne, editors, Evolutionary Multi-Criterion Optimization (EMO 2001), Lec-

ture Notes in Computer Science 1993, pages 213–225. Springer Verlag, 2001.

7. M. Ehrgott. Approximation algorithms for combinatorial multicriteria problems. Interna-

tional Transactions in Operations Research, 7:5–31, 2000.

8. V.A. Emelichev and V.A. Perepelitsa. On the cardinality of the set of alternatives in discrete

many-criterion problems. Discrete Mathematics and Applications, 2(5):461–471, 1992.

9. M.M. Flood. The travelling salesman problem. Operations Research, 4:61–75, 1956.

10. C. Fonseca and P. Fleming. On the performance assessment and comparison of stochastic

multiobjective optimizers. In W. Ebeling, I. Rechenberg, H.-P. Schwefel, and H.-M. Voigt,

editors, Proceedings of the 4th Conference on Parallel Problem Solving from Nature (PPSN

IV), Lecture Notes in Computer Science 1141, pages 584–593. Springer Verlag, 1996.

11. X. Gandibleux and A. Freville. Tabu search based procedure for solving the 0-1 multiobjec-

tive knapsack problem: the two objectives case. Journal of Heuristics, 6:361–383, 2000.

12. P. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypothe-

ses. Springer-Verlag, Berlin, Germany, 1994.

13. M.P. Hansen. Tabu search for multiobjective optimization: MOTS. In Proceedings of

MCDM’97, Cape Town, South Africa, January 1997.

14. M.P. Hansen. Use of subsitute scalarizing functions to guide a local search base heuristics:

the case of moTSP. Journal of Heuristics, 6:419–431, 2000.

15. M.P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-

dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling,

Technical University of Denmark, Lyngby , Denmark, 1998.

16. S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics, 6:65–70, 1979.

17. J.N. Hooker. Needed: an empirical science of algorithms. Operations Research, 42:201–212,

1994.

18. H.H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and remedies. In G. F.

Cooper and S. Moral, editors, Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence (UAI-98), pages 238–245. Morgan Kaufmann, San Francisco,USA,

1998.

19. J. Hsu. Multiple Comparisons - Theory and Methods. Chapman & Hall/CR, 1996.

20. A. Jaszkiewicz. Genetic local search for multiple objective combinatorial optimization. Eu-

ropean Journal of Operational Research, 1(137):50–71, 2002.

21. D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case study in local

optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial

Optimization, pages 215–310. John Wiley & Sons, Chichester, UK, 1997.

22. D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for the STSP. In

G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Variations, pages

369–443. Kluwer Academic Publishers, 2002.

23. J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline algorithm

for pareto multiobjective optimisation. In Peter J. Angeline, Zbyszek Michalewicz, Marc

Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings of the Congress on Evolutionary

Computation (CEC 99), pages 98–105, 1999.

24. M. Laumanns, L. Thiele, E. Zitzler, E. Welsi, and K. Deb. Running time analysis of multi-

objective evolutionary algorithms on a simple discrete optimization problem. In J.J. Merelo

Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel, editors,

Proceedings of the 7th Conference on Parallel Problem Solving from Nature (PPSN VI),

Lecture Notes in Computer Science 2439, pages 44–53. Springer Verlag, 2002.

25. S. Lin. Computer solutions for the traveling salesman problem. Bell Systems Technology

Journal, 44:2245–2269, 1965.

26. S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling salesman problem.

Operations Research, 21:498–516, 1973.

27. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-

berger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations

Research & Management Science, pages 321–353. Kluwer Academic Publishers, Norwell,

MA, 2002.

28. L. Paquete and C. Fonseca. A study of examination timetabling with multiobjective evolu-

tionary algorithms. In Proceedings of the 4th Metaheuristics International Conference (MIC

2001), pages 149–154, Porto, 2001.

29. L. Paquete and T. Stützle. A two-phase local search for the biobjective traveling salesman

problem. In C. M. Fonseca, P.J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolu-

tionary Multi-criterion Optimization (EMO 2003), Lecture Notes in Coputer Science 2632.

Springer Verlag, 2003. 479–493.

30. G. Reinelt. The Traveling Salesman Problem: Computational Solutions for TSP applications.

Lectures Notes in Computer Science 840. Springer Verlag, 1994.

31. K. Shaw, C. Fonseca, A. Nortcliffe, M. Thompson, J. Love, and P. Fleming. Assessing the

performance of multiobjetive genetic algorithms for optimization of a batch process schedul-

ing problem. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and

Ali Zalzala, editors, Proceedings of the Congress on Evolutionary Computation (CEC 99),

pages 37–45, 1999.

32. E. Talbi, M. Rahoual, M. Mabed, and C. Dhaenens. A hybrid evolutionary approach for

multicriteria optimization problems: Application to the flow shop. In E. Zitzler, K. Deb,

L. Thiele, C. A. Coello, and D. Corne, editors, Evolutionary Multi-Criterion Optimization

(EMO 2001), Lecture Notes in Computer Science 1993, pages 416–428. Springer Verlag,

2001.

33. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case

study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,

4(3):257–271, 1999.

