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Abstract We describe a new interactive learning-oriented method called Pareto
navigator for nonlinear multiobjective optimization. In the method, first a polyhedral
approximation of the Pareto optimal set is formed in the objective function space using
a relatively small set of Pareto optimal solutions representing the Pareto optimal set.
Then the decision maker can navigate around the polyhedral approximation and direct
the search for promising regions where the most preferred solution could be located.
In this way, the decision maker can learn about the interdependencies between the
conflicting objectives and possibly adjust one’s preferences. Once an interesting region
has been identified, the polyhedral approximation can be made more accurate in that
region or the decision maker can ask for the closest counterpart in the actual Pareto
optimal set. If desired, (s)he can continue with another interactive method from the
solution obtained. Pareto navigator can be seen as a nonlinear extension of the linear
Pareto race method. After the representative set of Pareto optimal solutions has been
generated, Pareto navigator is computationally efficient because the computations are
performed in the polyhedral approximation and for that reason function evaluations
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of the actual objective functions are not needed. Thus, the method is well suited
especially for problems with computationally costly functions. Furthermore, thanks
to the visualization technique used, the method is applicable also for problems with
three or more objective functions, and in fact it is best suited for such problems. After
introducing the method in more detail, we illustrate it and the underlying ideas with
an example.

Keywords Multicriteria optimization · MCDM · Interactive methods · Decision
support · Pareto optimality

1 Introduction

Solving multiobjective optimization problems can be understood as finding the most
preferred trade-off between conflicting objectives. In the field of multiple criteria
decision making (MCDM), the idea is to help a decision maker in finding the best
solution among mathematically incomparable compromises, so-called Pareto optimal
solutions. During the years, many methods have been developed for this purpose (see,
e.g., Chankong and Haimes 1983; Hwang and Masud 1979; Miettinen 1999; Sawaragi
et al. 1985; Steuer 1986). However, their real-life applications are still surprisingly
few (Kaliszewski 2004). One possible explanation could be that the tools developed
for decision support may not be illustrative and easy-to-use enough for real decision
makers.

Multiobjective optimization methods can be classified, for example, according to
the role of the decision maker in the solution process (Miettinen 1999). Among the
plethora of multiobjective optimization methods available, interactive methods are
regarded promising because they allow an active participation of the decision maker
in the solution process. In this way, the decision maker can direct the search and
concentrate on solutions that are most interesting to her/him. For example, according to
Vanderpooten (1989), two different conceptions regarding interactive methods can be
identified. In searching-oriented methods, a converging sequence of solution proposals
is presented to the decision maker. On the other hand, in learning-oriented methods,
a free exploration of solutions is possible allowing trial and error. As mentioned in
Miettinen (1999), the best way would be to combine these approaches. As a matter of
fact, in many decision processes, one can identify two phases: a learning phase and
a decision phase. No matter which style of expressing preference information is used
(e.g., desirability of trade-offs, reference points, classification of objective functions
etc.), it is often valuable for the decision maker first to be able to learn about the
possibilities and limitations of the problem in order to adjust one’s hopes on a realistic
level and then fine-tune the final solution. It is also important to use concepts the
decision maker understands well.

An attempt of developing an intuitive and understandable method for linear mul-
tiobjective optimization problems was suggested in Korhonen and Wallenius (1988)
as a so-called Pareto race. There, the idea is that the decision maker can navigate in the
set of Pareto optimal solutions like driving a car, in other words, move around in the
Pareto optimal set according to his/her desires in order to identify the most preferred
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trade-off. Thanks to parametric linear programming, Pareto race can show changes
in objective function values in real-time. This is a very appealing learning-oriented
approach but, as said, it works only for linear problems.

In this paper, we concentrate on (mostly convex) nonlinear problems and introduce
a method that enables convenient and real-time navigation in the approximated Pareto
optimal set of a nonlinear multiobjective optimization problem. We call this learning-
oriented method by the name Pareto navigator. One can say that we extend
and generalize the navigation ideas used in Pareto race to nonlinear problems. At the
same time, we enable the decision maker to direct the search for the most preferred
solution in more diverse ways than in Pareto race.

The starting point of our method is a relatively small discrete representation of
the set of Pareto optimal solutions. Using these solutions, we generate a polyhedral
approximation of the Pareto optimal set in the objective space. In this approximation,
the decision maker can navigate according to his/her wishes and search for the most
preferred trade-off. Because of the structure of the approximation, computation is fast
and movements can be shown dynamically in real-time. Thus, our approach is particu-
larly useful for problems where function evaluations are costly and time-consuming.

Because we wish to maintain the generality of our approach, we do not connect
it to any particular method to generate the representation. Possible methods that can
be used are given, for example, in Deb (2001), Klamroth et al. (2002), Lotov et al.
(2004), Ruzika and Wiecek (2005). However, we emphasize that the representative
set can be generated off-line before involving the DM. On the other hand, instead of
response surface or kriging type of approaches to approximate individual objective
functions (see, e.g., Köksalan and Plante 2003), we directly approximate the Pareto
optimal set in the objective space in order to decrease computational complexity.
Once the decision maker has identified an interesting region or solution, (s)he can
ask for a more accurate approximation of the Pareto optimal set (i.e., more points
in the approximation or concentrate the approximation in the desired region as e.g.,
in Klamroth and Miettinen 2008) or see (in some sense) the closest Pareto optimal
solution in the original problem. Then one can continue navigating or continue with
another interactive method after having learned about the feasible trade-offs.

The way the polyhedral approximation of the Pareto optimal set is generated in
the Pareto navigator method is similar to what is presented in Monz et al. (2008)
and utilized in the corresponding implementation (Craft 2007). However, in Pareto
navigator, the navigation on the approximation is carried out in a completely different
manner. In Monz et al. (2008), by using an approximation, the DM can study how
improvement in the value of some objective affects the values of the other objectives.
Differing from this objective-wise what-if analysis, in our approach, the navigation
is carried out in a dynamic way, that is, instead of just setting an aspiration levels
for some objective, the DM is allowed to determine a search direction and movement
speed in this direction. The approximated Pareto optimal solutions available in the
given direction are displayed to the DM in real-time with a continuously changing
visualization. Thus, our approach concentrates on reflecting the dynamics of trade-
offs between objectives.

The strengths of our approach include the applicability to computationally costly
problems as well as a very intuitive user interface. Actually, in our method, the DM can
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see approximative information about trade-offs in general, instead of typical point-wise
trade-off considerations. In other words, the DM can see trade-off information between
different conflicting objectives in real-time and conveniently control in which direction
to move, that is, which objectives to improve or which objectives to allow getting worse.

Our approach enables the decision maker to learn about the interdependencies
among the objectives in the problem and set one’s expectations on a realistic level.
Even though we are dealing with an approximation, the decision maker can get to see
(in some sense) the closest Pareto optimal solution of the original problem correspon-
ding to any approximate solution (by projecting the solution identified). We demons-
trate our approach and a graphical user-interface of a software implementation with
an example.

The rest of this paper is organized as follows. First, we introduce some notations
and concepts used in Sect. 2. In Sect. 3, the algorithm of Pareto navigator is presented.
Section 4 is devoted to implementation issues including a user interface and an example
that demonstrates how Pareto navigator can be used. In Sect. 5, we shortly discuss
some issues related to the development of the method and future research. We finish
with some concluding remarks in Sect. 6.

2 Some notations and concepts

In this paper, we deal with multiobjective optimization problems of the form

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : R
n → R (i = 1, . . . , k) and x ∈ R

n are called objective functions and a
decision (variable) vector, respectively. A set of feasible decision vectors is denoted
by S. The image of a feasible decision vector x ∈ S under mapping f : R

n → R
k from

the decision variable space R
n to the objective space R

k is called a feasible objective
vector and denoted by z = f(x) = ( f1(x), . . . , fk(x))T . The components of objective
vectors are called objective values.

In this paper, we define optimality using the concept of Pareto optimality.

Definition 1 A decision vector x∗ ∈ S and an objective vector f(x∗) are said to
be Pareto optimal if there does not exist another decision vector x ∈ S such that
fi (x) ≤ fi (x∗) for all i = 1, . . . , k and f j (x) < f j (x∗) for at least one index j .

Note that the Pareto optimal solutions are in a mathematical sense incomparable
without additional information. Furthermore, problem (1) typically has infinitely many
Pareto optimal solutions. The set of all the Pareto optimal objective vectors is called
the Pareto optimal set. Later on, this will also be referred to as an actual Pareto optimal
set.

Usually in the MCDM field, the aim of solving a multiobjective optimization pro-
blem is to find a single feasible decision vector which is considered as the final solution
for problem (1). However, we need some external information to decide which of the
Pareto optimal solutions is the most preferred one. A decision maker (DM) is a person
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who has knowledge about the problem in question and can express preference infor-
mation related to Pareto optimal solutions. Naturally, what is to be regarded as most
preferred depends on the DM involved.

It is often useful for the DM to know lower and upper bounds for the values of
objective functions appearing in the Pareto optimal set. The ideal objective vector
z� ∈ R

k consists of the optimal values z�
i for each objective function fi with respect

to S. In other words, these are the best values that the individual objective functions
can attain in the Pareto optimal set. If the objective functions are conflicting, which
usually is the case, the ideal objective vector is infeasible. The nadir objective vector
znad gives upper bounds for the values of the individual objective functions in the
Pareto optimal set. However, because the set of Pareto optimal decision vectors is
unknown beforehand, we usually need to use an approximated nadir objective vector
(see, e.g., Miettinen 1999) (in the case of more than two objectives). Because in this
paper we assume that we have an approximation of the Pareto optimal set available in
the form of a representation, we can use the extreme values of individual objectives
present in this set to approximate the ideal and nadir vectors. Thus, there is no need
to use additional function evaluations for calculating ideal or nadir vectors.

As motivated in the introduction, we consider here interactive approaches and, in
particular, learning-oriented methods. The purpose of interactive methods is to aid
the DM in finding a Pareto optimal solution which corresponds to the preferences of
the particular DM in the best possible way. In interactive methods, a solution pattern
is formed and iteratively repeated allowing the DM to adjust one’s preferences and
concentrate on solutions (s)he finds interesting. This means that the DM is directing
the search according to her/his desires.

In interactive multiobjective optimization, there are several possibilities for the
DM to express preference information (Miettinen 1999). For example, the DM can
indicate desired changes in the objective function values of the current Pareto optimal
solution by specifying a classification. Widely used classes are the following: objective
functions whose values should be improved, are satisfactory or are allowed to impair.
Note that if some objective function value is improved, then some other one must be
allowed to impair in order to get another Pareto optimal solution. Another possibility
to express preferences is to use reference points. A reference point z̄ ∈ R

k consists
of aspiration levels z̄i , i = 1, . . . , k, that represent desired values for the objective
functions (Wierzbicki 1980). Note that the reference point does not need to be feasible.
A reference point can also be extracted from the classification information (Miettinen
and Mäkelä 2002, 2006). In that case, the components of the reference point z̄ are
the ideal value z�

i , the current value and the nadir value znad
i for the classes described

above, respectively.

3 Pareto navigator

We propose a new interactive learning-oriented method, Pareto navigator, for multiob-
jective optimization. We use a polyhedral approximation of the Pareto optimal set in
order to enable the DM to explore the Pareto optimal set. With Pareto navigator, the
DM can conveniently study trade-offs between the conflicting objectives dynamically
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in real-time and locate regions that are interesting to her/him. Therefore, we have a
good learning tool to study the behavior of the problem. Because the exploration takes
place in the approximated instead of the actual Pareto optimal set, it can be done with
a low cost even for computationally expensive problems. Thus, our approach is parti-
cularly useful in complex real-world problems where function evaluations come, for
instance, from some simulation tool and may necessitate solving systems like partial
differential equations.

As already introduced, our method starts with a relatively small set of Pareto opti-
mal solutions that is used to represent the actual Pareto optimal set. The polyhedral
approximation generated by these solutions in the objective space will be referred to as
an approximated Pareto optimal set. Solutions in this set will be called approximated
Pareto optimal solutions. Using the approximated Pareto optimal set enables studying
changes in objective function values in real-time when moving from one solution to
another. This is realized using parametric programming. Once the DM has located an
interesting solution or area from the approximation, (s)he is shown the corresponding
solution in the actual Pareto optimal set. By a corresponding solution we here mean
an actual Pareto optimal solution that is in some sense closest to the approximated
solution. If desired, one can continue, for instance, with some other multiobjective
optimization method which allows more detailed comparison of trade-offs between
the Pareto optimal solutions (see, e.g., Miettinen 1999). If the approximated Pareto
optimal solution and the corresponding actual Pareto optimal solution are far from
each other, the DM can also ask for a more accurate approximation of the Pareto opti-
mal set to be generated (e.g., by increasing the number of solutions that the polyhedral
approximation is based on). It is also possible to improve the approximation locally,
as suggested in Klamroth and Miettinen (2008), and study the polyhedral approxi-
mation related to a subset of the original Pareto optimal set. Our simplified setting
allows us to decrease the cognitive burden set on to the DM while (s)he is making an
overall evaluation about what kind of solutions may be available and which of them
are interesting.

Usually, in interactive multiobjective optimization methods, the interdependencies
between objectives are analyzed in a rather local sense, that is, mostly pointwise (e.g.,
trade-off rates at some solution). Instead, in Pareto navigator, the idea is to concentrate
on capturing a global understanding of the possibilities and limitations in the problem
considered. In other words, we provide means to study the overall behavior of Pareto
optimal solutions. This is an essential part of the learning phase, discussed in the
introduction. If a separate decision phase is needed after using Pareto navigator, one
can switch to some other interactive method which typically are designed to support
the decision phase.

The Pareto navigator method consists of two phases: initialization and navigation.
The initialization phase is purely technical where we first produce a (relatively small)
representative set of Pareto optimal solutions of problem (1). Using these solutions we
generate a polyhedral approximation for the Pareto optimal set in the objective space.
After the initialization phase is completed we are ready to start the navigation phase
where the DM is in charge. In Fig. 1, the algorithm of the Pareto navigator method is
presented from the DM’s perspective using steps 1–6. Next, we describe more detailed
actions related to these steps. In this context, we present an implementable framework
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Fig. 1 Flowchart of Pareto navigator from the DM’s perspective

for Pareto navigator based on a convex polyhedral approximation of Pareto optimal
set. However, as discussed in Sect. 5, the ideas related to the navigation can be applied
also in the case of nonconvex polyhedral approximation.

3.1 Initialization phase

Before the DM can start to use Pareto navigator, an initialization procedure is carried
out. In Fig. 1, this phase is denoted more generally as a step 1 but technically it contains
the following two separate substeps.

1a. A discrete representation of the Pareto optimal set and a corresponding poly-
hedral approximation are produced in the objective space.

This step needs no interaction with the DM. Like pointed out in Sect. 1, there exist
many methods that can be used to generate the discrete representation. However, it must
be emphasized that with evolutionary approaches the resulting solutions may only be
nondominated with respect to the final population but not actually Pareto optimal (the
actual Pareto optimal set may dominate the polyhedral approximation considered).
The production of the representation is computationally the most demanding task.
However, this can be done well before the DM is involved in the method.

Let us assume that we have a discrete set of Pareto optimal solutions related to
problem (1). As an example, we describe one possible way to build a polyhedral
approximation for the actual Pareto optimal set using these solutions. Sometimes it
is enough to consider a convex polyhedral approximation for the Pareto optimal set
of problem (1) and in such a case we can utilize a convex hull of the Pareto optimal
solutions available. A convex hull can be expressed in the form Az ≤ b and this
inequality characterizes a polyhedral set. In other words, the inequality holds for
objective vectors z ∈ R

k which belong to the convex hull. Later on, when step 5 is
described, we explain how a convex hull of the form Az ≤ b can be used to obtain
approximated Pareto optimal solutions.

In order to generate visualizations, we also need information about the ranges of
the objective values in the Pareto optimal set. We can approximate ideal and nadir
objective values as discussed in Sect. 2, or alternatively, it is possible to ask the DM
for the best and the worst objective values to be considered.
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Fig. 2 Value path visualization of the initial set of Pareto optimal solutions

1b. In what follows, the DM is involved. First, the DM is asked to select a starting
point for the navigation phase.

For example, (s)he can specify a reference point which is then projected in the
approximated Pareto optimal set. The projection can be made, for example, by solving
a parametric programming problem (3) introduced in step 5. Alternatively, (s)he can
select the most preferred actual Pareto optimal solution from the set used in step 1a.
In this, a visualization like the one given in Fig. 2 can be helpful for the DM.

3.2 Navigation phase

The overall idea of the navigation phase is to allow the DM to move around in the
approximated Pareto optimal set in those directions where (s)he feels the most promi-
sing solutions could be located. After the desired direction has been found, the method
starts, in real-time, to produce approximated Pareto optimal solutions by moving into
the direction determined. The approximated solutions are produced with a parametric
linear programming procedure using a relatively small step size such that when the
solutions are shown to the DM, (s)he experiences the motion as continuous. The speed
of movement (i.e., how rapid the change in objective function values is) is determined
by the DM. At any time the DM wishes, (s)he can adjust the speed and change the
direction. In this way, the DM rapidly evaluates each approximated Pareto optimal
solution produced along the determined direction. In practice, the objective function
values can be visualized, for example, using a bar chart. In other words, the DM sees
the lengths of the bars changing continuously as the corresponding objective function
values change. Once the DM has found the most promising solution in the current
direction, (s)he can stop the movement. This solution is called a current solution. In
what follows, we describe steps 2–6 forming the navigation phase of Pareto navigator
(see Fig. 1) in more detail.

2. The objective values of the current solution are visualized to the DM using a bar
chart and the DM is asked the question “Has the most preferred solution been found”.
If the DM is satisfied with this solution, we proceed to step 6. Otherwise, we continue
with step 3.

Note that in principle the DM may feel that the solution selected in the initialization
phase is good enough as the final solution and we can stop without the navigation phase.
However, we assume here that the DM is interested in learning about the problem and
studying further solution possibilities.

3. If the DM is not satisfied with the current solution (i.e., (s)he answered “no”
to the question in step 2), (s)he is further asked “Would you like to proceed to some
new direction”. A negative answer means that the DM wants to continue in the current
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direction. Then we proceed to step 5. In the opposite case the DM can change one’s
preferences and then a new search direction is determined.

Note that the DM must always specify preferences related to desired changes in
objective values after the initialization phase. After this, the initial search direction
can be determined correspondingly.

4. Now, the DM wants to change the search direction and (s)he is asked to specify
preferences on how the current solution should be improved. The preference infor-
mation is requested from the DM, for instance, in the form of a classification or as a
reference point.

With the preference information, the DM indicates what kind of changes would
make the current solution more preferred. This information is used to determine a
new search direction from the current solution. Basically, any form of preference
information can be given as long as it is possible to extract a unique search direction
from it. For example, if a reference point z̄ is used, we can set the search direction as
d = z̄ − zc, where zc is the current solution. Remember that a reference point can also
be extracted from classification information, as described in Sect. 2. Determining the
search direction plays a significant role when reflecting the preferences of the DM.
Thus, special attention should be paid in selecting a convenient and intuitive form for
the DM to specify preferences.

5. After the search direction has been determined, the method starts to produce
approximated Pareto optimal solutions from the current solution zc. The DM is able to
determine a desired speed of movement or (s)he can stop the movement at any solution
desired. Then we continue with step 2.

As far as producing approximated Pareto optimal solutions is concerned, we solve
a parametric linear programming problem to generate them in real-time. To be more
specific, we consider the formulation

minimize max
i=1,...,k

wi (zi − z̄i (α))

subject to Az ≤ b.
(2)

Problem (2) uses an achievement (scalarizing) function employed in the reference
point method (Wierzbicki 1980, 1982, 1986) where wi , i = 1, . . . , k, are the scaling
coefficients and the reference point z̄(α) = (zc + αd) ∈ R

k can be moved parametri-
cally to the specified search direction d ∈ R

k by altering the value of the parameter
α ∈ R (negative values of α allow us to move backwards). Here we use scaling
coefficients wi = 1/(znad

i − z�
i ), for i = 1, . . . , k (assuming znad

i �= z�
i ). The linear

constraints Az ≤ b of problem (2) are forming a convex hull for a set of Pareto optimal
solutions, as described in step 1a, and actually we are now projecting a reference point
z̄(α) to the nondominated facets of the convex hull. This gives an approximated Pareto
optimal solution. The parametric problem (2) above can be considered in an equivalent
linear form by adding a new variable ζ ∈ R (see, e.g., Benayoun et al. 1971). This
leads to the following formulation

minimize cT z′
subject to A′z′ ≤ b′

z′ ∈ R
k+1

(3)
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where

c =

⎛
⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎠

, z′ =

⎛
⎜⎜⎜⎜⎜⎝

ζ

z1

...

zk

⎞
⎟⎟⎟⎟⎟⎠

, A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
w1

1 0 . . . 0

− 1
w2

0 1 . . . 0
...

...
...

. . .
...

− 1
wk

0 0 . . . 1

0 a11 a12 . . . a1k

...
...

...
. . .

...

0 aq1 aq2 . . . aqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̄1(α)

...

z̄k(α)

b1

...

bq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where q is the number of linear constraints in problem (2). The solution of problem
(3) is an approximated Pareto optimal solution in the polyhedral approximation (i.e.,
due the projection it belongs to one of the nondominated facets of the convex hull).
By utilizing a suitable optimizer we can generate new solutions very fast because we
are solving this linear parametric programming problem.

6. Once the DM has found a satisfactory approximated Pareto optimal solution, we
stop the search. The approximated solution is projected to the actual Pareto optimal
set and the resulting solution is shown to the DM (with computationally demanding
problem this may take some time).

The projection can be realized, for example, by setting the selected solution as
a reference point and using some achievement scalarizing function to project it (see,
e.g., Miettinen 1999; Wierzbicki 1986). Note that the DM can ask for the actual Pareto
optimal solution corresponding to any current solution. If the problem is convex, the
approximated solution is always feasible. This means that the objective values in the
corresponding actual Pareto solution are always at least as good as in the solution
selected by the DM. If the DM is willing to continue navigation after this, we conti-
nue with step 2. If desired, it is possible to add the computed actual Pareto optimal
solution to the approximation to make it more accurate. This, naturally, necessitates
regenerating the polyhedral approximation, that is, we must go back to step 1.

After the learning phase has been completed with the Pareto navigator method
(after step 6), the DM can stop (if the most preferred solution has been found) or
proceed to the decision phase and continue, for example, with some interactive method
(see, e.g., Chankong and Haimes 1983; Hwang and Masud 1979; Miettinen 1999;
Steuer 1986), as mentioned earlier. If the DM has specified preferences in the form
of reference points or classifications, it may be natural and intuitive to continue with
interactive reference point (Jaszkiewicz and Slowiński 1999; Wierzbicki 1982) or
classification based methods (Miettinen and Mäkelä 1995, 2000, 2006; Nakayama
and Sawaragi 1984), respectively. Alternatively, the DM can continue the learning
phase and, for example, ask for a more accurate approximation of the Pareto optimal
set to be generated in the neighborhood of the selected solution (see, e.g., Klamroth
and Miettinen 2008). Then we go to step 1 to generate a new set of Pareto optimal
solutions in the specified region and initiate Pareto navigator again.
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4 Using Pareto navigator

In this section, we demonstrate how the Pareto navigator method can be used from the
DM’s point of view. To be more specific, by using an example problem, we describe
step-by-step what kind of interaction can take place during the navigation phase out-
lined in Fig. 1. However, it must be emphasized that visualizations used and the way
how the DM indicates his/her preferences are only suggesting one possible approach,
and in this respect the user interface can be customized also in other ways to meet the
needs of the DM. We consider the following simple problem:

minimize

⎧⎪⎨
⎪⎩

−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)

⎫⎪⎬
⎪⎭

subject to 3x1 + x2 − 12 ≤ 0

2x1 + x2 − 9 ≤ 0

x1 + 2x2 − 12 ≤ 0

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

Actually, this example problem is not convex due the third objective function but the
example demonstrates that this does not affect the applicability of Pareto navigator.

1a. To begin with, we apply an approximation method in the initialization phase
and as a result we get a list of actual Pareto optimal solutions (see Table 1) to be used
to produce a polyhedral approximation. We use the adaptive approximation method
Klamroth et al. (2002). Here we have selected to use seven solutions. After using
the adaptive approximation method, we also get approximations for the ideal and the
nadir objective vectors. In what follows, we describe actions of a DM and explain how
Pareto navigator can be used to search for a promising solution in the objective space.

1b. The DM specifies the starting point for Pareto navigator by selecting the most
interesting actual Pareto optimal solution from the initial set listed in Table 1. The
same set of solutions is also shown with a value path visualization in Fig. 2 (remember
that the starting point could alternatively be specified with a reference point.) Let us
now assume that the solution 4 is the most appealing to the DM.

2. In what follows, we refer to the solution selected as A = (1.38, 0.62,−35.33)T

(see Fig. 3) and assume that the DM wants to examine its surroundings.

Table 1 Initial set of Pareto
optimal solutions

f1 f2 f3

1 −2.00 0.00 −18.00

2 −1.00 4.60 −25.00

3 0.00 −3.10 −14.25

4 1.38 0.62 −35.33

5 1.73 1.72 −38.64

6 2.48 1.45 −42.41

7 5.00 2.20 −55.00
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Fig. 3 The progress of the method

3. The initial solution A has now been selected but we do not yet have a search
direction. After the initialization step, it is obligatory for the DM to specify preferences
in order to set the search direction.

4. When studying A, the DM is interested in finding solutions where the values of
objectives f1 and f2 are improving while the value of objective f3 can be relaxed.
By using this classification information, an initial search direction from the selected
solution A can be generated. To be more precise, the classification made produces a
reference point z̄1 = (z�

1, z�
2, znad

3 )T which is used together with the current solution
A to produce the search direction d1 = (z̄1 − A).

5. Pareto navigator starts to generate solutions in the direction determined and
updates in real-time the bar chart visualization depicting approximated solutions that
are generated. Based on the continuously changing lengths of bars in the bar chart
visualization, the DM can rapidly see what kind of solutions are available in the
current direction (which corresponds to the given classification). When an interesting
area has been reached, the DM stops the movement. Note that the DM is also allowed
to move backwards in the current direction if the DM feels that (s)he already passed
an area which seemed more interesting than the current one.

2. Let us now assume that the DM has arrived from the starting solution A to the
solution B = (0.35,−0.51,−26.26)T, where (s)he has stopped the movement (see
Fig. 3). However, solution B is not satisfactory to the DM.

3. While moving from A to B the DM has learned how the solutions are behaving
with respect to the classification given at point A. The DM thinks that continuing in
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this direction is no more interesting and wants to change the direction by giving a new
classification indicating how objective values should be changed from those obtained
at B.

4. The DM classifies the objectives at B in such a way that the value of objective
f1 should be improved even more and therefore allows objective f2 to degrade. On
the other hand, the DM feels that the value of objective f3 should maintain its current
level. The classification gives us the reference point z̄2 = (z�

1, znad
2 , B3)

T and the
search direction d2 = (z̄2 − B) is generated.

5. The method starts to produce approximated solutions to the new search direction.
The DM analyzes in real-time the bar chart visualization until an interesting solution
is achieved.

2. The DM stops at solution C = (−0.64, 1.82,−25.95)T (see Fig. 3) and decides
to explore the surrounding solutions further.

3. (S)he feels that the current direction no longer produces solutions that are inter-
esting enough.

4. The DM is satisfied with the value of f1 but is ready to sacrifice in its value to
slightly improve the values of objectives f2 and f3. This classification gives us the
reference point z̄3 = (znad

1 , z�
2, z�

3)
T and the search direction d3 = (z̄3 − C).

5. The DM continues to analyze approximated solutions in the direction determined
until (s)he sees a promising solution.

2. The solution D = (−0.32, 2.33,−27.85)T (see Fig. 3) seems very satisfactory
to the DM.

6. The navigation phase is stopped and the final approximated Pareto optimal solu-
tion D is now projected to the actual Pareto optimal set, as described in Sect. 3. The
corresponding actual Pareto optimal solution (−0.33, 2.32,−27.91)T is computed
and shown to the DM. The DM is satisfied with this solution, which is quite similar
to the approximated solution D. The whole solution process can be stopped.

As we can see, the DM was able to learn about the solutions available and conve-
niently direct the search for the most preferred solution. The whole solution process
described above is summarized and depicted in Fig. 3 where the vertical value path
visualization on the right side is reflecting what kind of objective vectors the DM has
analyzed during the solution process. On the left side of Fig. 3, the solutions A, B, C ,
and D are snapshots of the vertical value path. These are the solutions where the DM has
temporarily stopped the movement and the continuously changing visualization in the
bar chart, to determine a new search direction (i.e., classification). It is not possible to
properly illustrate real-time movements here. Thus, it must be emphasized that during
the solution process the DM analyzes approximated Pareto optimal solutions using
only one bar chart visualization where the lengths of the bars are changing in real-time.

Because our simple example contains only three objectives, it is possible to illus-
trate what happened in the objective space during the solution process described. In
Fig. 4, the triangulated area represents the polyhedral approximation (i.e., nondomi-
nated facets of the convex hull) which was constructed by using the initial set of
Pareto optimal solutions (vertex points in Fig. 4). The approximation contains only
nondominated facets so for the DM the movement on this polyhedral approximation
feels like moving in the Pareto optimal set. Solutions A, B, C , and D are the same
approximated Pareto optimal solutions that were obtained during the solution process.
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Fig. 4 The progress in the objective space

Fig. 5 The actual Pareto
optimal set

Figure 5 illustrates the actual Pareto optimal set. The black points in Fig. 5 corresponds
to the vertex points in Fig. 4. It must be emphasized that in a general case it may be
computationally very expensive to produce a visualization of the actual Pareto optimal
set (as presented in Fig. 5). Naturally, for problems with more than three objective
functions, we cannot generate visualizations like Figs. 4 and 5.

5 Discussion

In what follows, we wish to discuss some topics related to the implementation and
future research. First of all, we must emphasize that in this kind of an interactive
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method, the user interface plays a very important role. When designing the user
interface, it is especially important to consider how the DM is able to indicate prefe-
rences (for setting a search direction) to utilize the full strength of the Pareto navigator
method. The interaction should be as easy, intuitive and as fast as possible.

It is clear that the more accurate the representative set of Pareto optimal solutions
is to begin with, the more reliable the results of Pareto navigator are. However, if
the problem is computationally costly, it is better to generate the representative set
before involving the DM. Instead of approximation algorithms of the MCDM field
(Klamroth et al. 2002; Lotov et al. 2004; Ruzika and Wiecek 2005) we can also use
evolutionary approaches (see, e.g., Deb 2001). The advantage of using an approxima-
tion algorithm as in Klamroth et al. (2002) is that it also produces an upper bound for
the approximation error.

As far as determining the search direction is concerned, we can say that Pareto
navigator is a more versatile method than Pareto race. This is because in Pareto race
the DM can only say which objective function should be improved, whereas Pareto
navigator allows the DM to express desires for all the objective functions about how
their values should change. Future research could include a comparison of different
methods that can aid the DM to determine directions while navigating in the approxi-
mation.

When describing the idea of classification in general, we mentioned that some
objective function should be allowed to get worse if some other is desired to be
improved. However, in Pareto navigator the DM can violate this, if so desired. In other
words, the DM is allowed to ask for improvement in all the objectives. Naturally, it
is not possible to improve all objective values simultaneously but the search direction
can be set so. In this case, when producing new solutions, the method selects some
objective functions to get worse in order to allow the others to improve. However, if
the DM wants to feel being more in control, it is recommended that the classification
expresses the DM’s opinion about which objective functions can impair in value so
that the others can improve. This kind of behavior must be also taken into account
when designing a user interface.

Our method may have difficulties when dealing with, for example, design problems
where the visualization of solutions needs variable values. In such cases, in addition
to the objective values, the DM analyzes the quality of solutions via visualization.
However, while moving in the approximated Pareto optimal set, the connection to the
variable space is temporarily lost. This may be regarded as a shortcoming of Pareto
navigator, but this is the price to be paid for enabling a computationally inexpensive
navigation phase. Let us point out that the actual Pareto optimal solution together
with the corresponding variable values can always be obtained by using the projection
(in step 6 of the algorithm).

As mentioned before, once the DM has asked for the actual Pareto optimal solution
corresponding to the current approximated one, one does not have to stop the whole
solution process. Instead, one can continue the navigation from that point. It is also
possible to update the approximation used by including the actual Pareto optimal
solutions generated so far in the set that is the basis of the polyhedral approximation
and repeating the initialization phase. In this way, the approximation can be made
more accurate while the DM is using the method. Naturally, this option is convenient
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only if we assume that the computation of the actual Pareto optimal solution does not
take too much time.

Even though we have outlined in detail an implementable framework where Pareto
navigator is utilizing a convex polyhedral approximation, the general navigation idea
can be extended to work with a nonconvex polyhedral approximation as well. For
example, as shown in Sect. 4, the applicability of Pareto navigator based on a convex
approximation is not restricted to convex problems only. Sometimes studying a convex
approximation of a nonconvex Pareto optimal set can offer accurate enough informa-
tion for the DM. However, the implementation of the navigation idea in the case of
highly nonconvex problems (that are too complex to be approximated by a convex
polyhedron) is subject of future research.

In this paper, we have used the concept of Pareto optimality to determine what kind
of solutions of problem (1) are interesting to the DM. However, despite the name,
the Pareto navigator method can also be used in the case of more general dominance
structures than Pareto dominance (see, e.g., Sawaragi et al. 1985).

6 Conclusions

We have described a new interactive learning-oriented method for nonlinear multiob-
jective optimization, called Pareto navigator. The method enables convenient naviga-
tion in the approximated Pareto optimal set. With this method, the DM can see changes
in the trade-offs between conflicting objectives dynamically in real time. This intui-
tive approach gives general understanding of the possibilities and limitations of the
problem considered and, thus, supports learning. Even though we are operating in an
approximated Pareto optimal set, the actual Pareto optimal solution corresponding to
any approximated one can be calculated whenever the DM so desires (but this may take
some time depending on the computational complexity of the problem in question).
Because most of the computations are carried out in the approximated Pareto opti-
mal set, the method is particularly suitable for computationally challenging real-world
problems.

We have demonstrated Pareto navigator with an example with three objective func-
tions. However, our approach is not limited to such problems because bar charts can
easily be used as the main means of visualization also when solving problems with
more objectives. Particularly in cases when a visualization of the whole Pareto optimal
set is not available, Pareto navigator is a useful tool to explore the Pareto optimal set
in an interactive and efficient way.
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