
 Cechlárová, K., Eirinakis, P., Fleiner, T., Dimitrios Magos, D.,
Manlove, D., Mourtos, I., Oceláková, E., & Rastegari, B. (2016).
Pareto Optimal Matchings in Many-to-Many Markets with Ties. Theory
of Computing Systems, 59(4), 700-721.
https://doi.org/10.1007/s00224-016-9677-1

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1007/s00224-016-9677-1

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
https://doi.org/10.1007/s00224-016-9677-1 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1007/s00224-016-9677-1
https://doi.org/10.1007/s00224-016-9677-1
https://research-information.bris.ac.uk/en/publications/ebbfa0fc-c4d6-44eb-88fa-656d50c4bf17
https://research-information.bris.ac.uk/en/publications/ebbfa0fc-c4d6-44eb-88fa-656d50c4bf17

Theory Comput Syst (2016) 59:700–721
DOI 10.1007/s00224-016-9677-1

Pareto Optimal Matchings in Many-to-Many Markets
with Ties

Katarı́na Cechlárová1 · Pavlos Eirinakis2 · Tamás Fleiner3 · Dimitrios Magos4 ·
David Manlove5 · Ioannis Mourtos2 · Eva Oceľáková1 · Baharak Rastegari5

Published online: 30 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We consider Pareto optimal matchings (POMs) in a many-to-many market
of applicants and courses where applicants have preferences, which may include ties,
over individual courses and lexicographic preferences over sets of courses. Since this
is the most general setting examined so far in the literature, our work unifies and gen-
eralizes several known results. Specifically, we characterize POMs and introduce the
Generalized Serial Dictatorship Mechanism with Ties (GSDT) that effectively han-
dles ties via properties of network flows. We show that GSDT can generate all POMs
using different priority orderings over the applicants, but it satisfies truthfulness only
for certain such orderings. This shortcoming is not specific to our mechanism; we
show that any mechanism generating all POMs in our setting is prone to strategic
manipulation. This is in contrast to the one-to-one case (with or without ties), for
which truthful mechanisms generating all POMs do exist.

Keywords Pareto optimality · Many-to-many matching · Serial dictatorship ·
Truthfulness

� Baharak Rastegari
baharak.rastegari@glasgow.ac.uk

1 Institute of Mathematics, Faculty of Science, P.J. S̆afárik University, Kos̆ice, Slovakia

2 Department of Management Science and Technology, Athens University of Economics and
Business, Athens, Greece

3 Budapest University of Technology and Economics, Magyar tudósok körútja and MTA-ELTE
Egerváry Research Group, Budapest, Hungary

4 Department of Informatics, Technological Educational Institute of Athens, Egaleo, Greece

5 School of Computing Science, University of Glasgow, Glasgow, UK

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-016-9677-1-x&domain=pdf
mailto:baharak.rastegari@glasgow.ac.uk

Theory Comput Syst (2016) 59:700–721 701

1 Introduction

We study a many-to-many matching market that involves two finite disjoint sets, a set
of applicants and a set of courses. Each applicant finds a subset of courses acceptable
and has a preference ordering, not necessarily strict, over these courses. Courses do
not have preferences. Moreover, each applicant has a quota on the number of courses
she can attend, while each course has a quota on the number of applicants it can
admit.

A matching is a set of applicant-course pairs such that each applicant is paired only
with acceptable courses and the quotas associated with the applicants and the courses
are respected. The problem of finding an “optimal” matching given the above market
is called the Course Allocation problem (CA). Although various optimality criteria
exist, Pareto optimality (or Pareto efficiency) remains the most popular one (see, e.g.,
[1, 2, 8, 9, 19]). Pareto optimality is a fundamental concept that economists regard
as a minimal requirement for a “reasonable” outcome of a mechanism. A matching
is a Pareto optimal matching (POM) if there is no other matching in which no appli-
cant is worse off and at least one applicant is better off. Our work examines Pareto
optimal many-to-many matchings in the setting where applicants’ preferences may
include ties. In the special case where each applicant and course has quota equal to
one, our setting reduces to the extensively studied House Allocation problem (HA)
[1, 15, 21], also known as the Assignment problem [4, 12]. Computational aspects
of HA have been examined thoroughly [2, 18] and particularly for the case where
applicants’ preferences are strict. In [2] the authors provide a characterization of
POMs in the case of strict preferences and utilize it in order to construct polynomial-
time algorithms for checking whether a given matching is a POM and for finding a
POM of maximum size. They also show that any POM in an instance of HA with
strict preferences can be obtained through the well-known Serial Dictatorship Mech-
anism (SDM) [1]. SDM is a straightforward greedy algorithm that allocates houses
sequentially according to some exogenous priority ordering of the applicants.

Recently, the above results have been extended in two different directions. The
first one [17] considers HA in settings where preferences may include ties. Prior to
[17], few works in the literature had considered extensions of SDM to such settings.
The difficulty regarding ties, observed already in [20], is that the assignments made
in the individual steps of the SDM are not unique, and an unsuitable choice may
result in an assignment that violates Pareto optimality. To see this, consider a set-
ting with two applicants a1 and a2, and two houses h1 and h2. Assume that a1 finds
both houses acceptable and is indifferent between them, and that a2 finds only h1
acceptable. The only Pareto optimal matching for this setting is {(a1, h2), (a2, h1)}.
Assume that a1 is served first and that, as both houses are equally acceptable to her, is
assigned h1 (after an arbitrary tie-breaking). Therefore when a2’s turn arrives, there is
no house remaining that she finds acceptable, and is hence left unmatched, resulting
in a matching that is not Pareto optimal. In [5] and [20] an implicit extension of SDM
is provided (in the former case for dichotomous preferences, where an applicant’s
preference list comprises a single tie containing all acceptable houses), but without an
explicit description of an algorithmic procedure. Krysta et al. [17] describe a mech-
anism called the Serial Dictatorship Mechanism with Ties (SDMT) that combines

702 Theory Comput Syst (2016) 59:700–721

SDM with the use of augmenting paths to ensure Pareto optimality. SDMT includes
an augmentation step, in which applicants already assigned a house may exchange it
for another, equally preferred one, to enable another applicant to take a house that is
most preferred given the assignments made so far. They also show that any POM in
an instance of HA with ties can be obtained by an execution of SDMT and also pro-
vide the so-called Random Serial Dictatorship Mechanism with Ties (RSDMT) whose
(expected) approximation ratio is e

e−1 with respect to the maximum-size POM.
The second direction [8] extends the results of [2] to the many-to-many setting

(i.e., CA) with strict preferences, while also allowing for a structure of applicant-
wise acceptable sets that is more general than the one implied by quotas. Namely, [8]
assumes that each applicant selects from a family of course subsets that is downward
closed with respect to inclusion. This work provides a characterization of POMs
assuming that the preferences of applicants over sets of courses are obtained from
their (strict) preferences over individual courses in a lexicographic manner. Using
this characterization, it is shown that deciding whether a given matching is a POM
can be accomplished in polynomial time. In addition, [8] generalizes SDM to provide
the Generalized Serial Dictatorship Mechanism (GSD), which can be used to obtain
any POM for CA under strict preferences. The main idea of GSD is to allow each
applicant to choose not her most preferred set of courses at once but, instead, only one
course at a time (i.e., the most preferred among non-full courses that can be added
to the courses already chosen). This result is important as the version of SDM where
an applicant chooses immediately her most preferred set of courses cannot obtain all
POMs.

Our Contribution In the current work, we combine the directions appearing in [17]
and [8] to explore the many-to-many setting in which applicants have preferences,
which may include ties, over individual courses. We extend these preferences to sets
of courses lexicographically, since lexicographic set preferences naturally describe
human behavior [13], they have already been considered in models of exchange
of indivisible goods [8, 11] and also possess theoretically interesting properties
including responsiveness [16].

We provide a characterization of POMs in this setting, leading to a polynomial-
time algorithm for testing whether a given matching is Pareto optimal. We introduce
the Generalized Serial Dictatorship Mechanism with Ties (GSDT) that generalizes
both SDMT and GSD. SDM assumes a priority ordering over the applicants, accord-
ing to which applicants are served one by one by the mechanism. Since in our setting
applicants can be assigned more than one course, each applicant can return to the
ordering several times (up to her quota), each time choosing just one course. The
idea of using augmenting paths [17] has to be employed carefully to ensure that dur-
ing course shuffling no applicant replaces a previously assigned course for a less
preferred one. To achieve this, we utilize methods and properties of network flows.
Although we prove that GSDT can generate all POMs using different priority order-
ings over applicants, we also observe that some of the priority orderings guarantee
truthfulness whereas some others do not. That is, there may exist priority orderings
for which some applicant benefits from misrepresenting her preferences. This is in
contrast to SDM and SDMT in the one-to-one case in the sense that all executions of

Theory Comput Syst (2016) 59:700–721 703

these mechanisms induce truthfulness. This shortcoming however is not specific to
our mechanism, since we establish that any mechanism generating all POMs is prone
to strategic manipulation by one or more applicants.

For an extended abstract containing the results presented in this paper, see [7].

Organization of the Paper In Section 2 we define our notation and terminology.
The characterization is provided in Section 3, while GSDT is presented in Section 4.
A discussion on applicants’ incentives in GSDT is provided in Section 5. Avenues
for future research are discussed in Section 6.

2 Preliminary Definitions of Notation and Terminology

Let A = {a1, a2, · · · , an1} be the set of applicants, C = {c1, c2, · · · , cn2} the set
of courses and [i] denote the set {1, 2, . . . , i}. Each applicant a has a quota b(a)

that denotes the maximum number of courses a can accommodate into her schedule,
and likewise each course c has a quota q(c) that denotes the maximum number of
applicants it can admit. Each applicant finds a subset of courses acceptable and has a
transitive and complete preference ordering, not necessarily strict, over these courses.
We write c �a c′ to denote that applicant a (strictly) prefers course c to course c′, and
c �a c′ to denote that a is indifferent between c and c′. We write c �a c′ to denote
that a either prefers c to c′ or is indifferent between them, and say that a weakly
prefers c to c′.

Because of indifference, each applicant divides her acceptable courses into indif-
ference classes such that she is indifferent between the courses in the same class
and has a strict preference over courses in different classes. Let Ca

t denote the t’th
indifference class, or tie, of applicant a where t ∈ [n2]. The preference list of any
applicant a is the tuple of sets Ca

t , i.e., P(a) = (Ca
1 , Ca

2 , · · · , Ca
n2

); we assume that
Ca

t = ∅ implies Ca
t ′ = ∅ for all t ′ > t . Occasionally we consider P(a) to be a set

itself and write c ∈ P(a) instead of c ∈ Ca
t for some t . We denote by P the joint pref-

erence profile of all applicants, and by P(−a) the joint profile of all applicants except
a. Under these definitions, an instance of CA is denoted by I = (A, C,P, b, q).
Such an instance appears in Table 1.

A (many-to-many) assignment μ is a subset of A × C. For a ∈ A, μ(a) = {c ∈
C : (a, c) ∈ μ} and for c ∈ C, μ(c) = {a ∈ A : (a, c) ∈ μ}. An assignment μ

is a matching if μ(a) ⊆ P(a)—and thus μ is individually rational, |μ(a)| ≤ b(a)

for each a ∈ A and |μ(c)| ≤ q(c) for each c ∈ C. We say that a is exposed if

Table 1 An instance I of CA

Applicant Quota Preference list Course Quota

a1 2 ({c1, c2}, {c3},∅) c1 2

a2 3 ({c2}, {c1, c3},∅) c2 1

a3 2 ({c3}, {c2}, {c1}) c3 1

704 Theory Comput Syst (2016) 59:700–721

|μ(a)| < b(a), and is full otherwise. Analogous definitions of exposed and full hold
for courses.

For an applicant a and a set of courses S, we define the generalized characteristic
vector χa(S) as the vector (|S ∩ Ca

1 |, |S ∩ Ca
2 |, . . . , |S ∩ Ca

n2
|). We assume that for

any two sets of courses S and U , a prefers S to U if and only if χa(S) >lex χa(U),
i.e., if and only if there is an indifference class Ca

t such that |S ∩Ca
t | > |U ∩Ca

t | and
|S ∩ Ca

t ′ | = |U ∩ Ca
t ′ | for all t ′ < t . If a neither prefers S to U nor U to S, then she

is indifferent between S and U . We write S�aU if a prefers S to U , S �a U if a is
indifferent between S and U , and S �a U if a weakly prefers S to U .

A matching μ is a Pareto optimal matching (POM) if there is no other match-
ing in which some applicant is better off and none is worse off. Formally, μ is
Pareto optimal if there is no matching μ′ such that μ′(a) �a μ(a) for all a ∈ A,
and μ′(a′)�a′μ(a′) for some a′ ∈ A. If such a μ′ exists, we say that μ′ Pareto
dominatesμ.

A deterministic mechanism φ maps an instance to a matching, i.e. φ : I �→
μ where I is a CA instance and μ is a matching in I . A randomized mecha-
nism φ maps an instance to a distribution over possible matchings. Applicants’
preferences are private knowledge and an applicant may prefer not to reveal her
preferences truthfully. A deterministic mechanism is dominant strategy truthful
(or just truthful) if all applicants always find it best to declare their true pref-
erences, no matter what other applicants declare. Formally speaking, for every
applicant a and every possible declared preference list P ′(a), φ(P (a),P(−a)) �a

φ(P ′(a),P(−a)), for all P(a),P(−a). A randomized mechanism φ is uni-
versally truthful if it is a probability distribution over deterministic truthful
mechanisms.

3 Characterizing Pareto Optimal Matchings

Manlove [18, Sec. 6.2.2.1] provided a characterization of Pareto optimal matchings
in HA with preferences that may include indifference. He defined three different
types of coalitions with respect to a given matching such that the existence of
any means that a subset of applicants can trade among themselves (possibly using
some exposed course) ensuring that, at the end, no one is worse off and at least
one applicant is better off. He also showed that if no such coalition exists, then
the matching is guaranteed to be Pareto optimal. We show that this characteri-
zation extends to the many-to-many setting, although the proof is more complex
and involved than in the one-to-one setting. We then utilize the characterization
in designing a polynomial-time algorithm for testing whether a given matching is
Pareto optimal.

In what follows we assume that in each sequence C no applicant or course appears
more than once.

An alternating path coalition with respect to μ comprises a sequence C =
〈cj0 , ai0, cj1 , ai1, . . . , cjr−1 , air−1 , cjr 〉 where r ≥ 1, cjk

∈ μ(aik) (0 ≤ k ≤ r − 1),
cjk

�∈ μ(aik−1) (1 ≤ k ≤ r), ai0 is full, and cjr is an exposed course. Furthermore, ai0

prefers cj1 to cj0 and, if r ≥ 2, aik weakly prefers cjk+1 to cjk
(1 ≤ k ≤ r − 1).

Theory Comput Syst (2016) 59:700–721 705

An augmenting path coalition with respect to μ comprises a sequence C =
〈ai0 , cj1 , ai1 , . . . , cjr−1 , air−1 , cjr 〉 where r ≥ 1, cjk

∈ μ(aik) (1 ≤ k ≤ r − 1),
cjk

�∈ μ(aik−1) (1 ≤ k ≤ r), ai0 is an exposed applicant, and cjr is an exposed course.
Furthermore, ai0 finds cj1 acceptable and, if r ≥ 2, aik weakly prefers cjk+1 to cjk

(1 ≤ k ≤ r − 1).
A cyclic coalition with respect to μ comprises a sequence C =

〈cj0 , ai0, cj1 , ai1, . . . , cjr−1 , air−1〉 where r ≥ 2, cjk
∈ μ(aik) (0 ≤ k ≤ r − 1), and

cjk
�∈ μ(aik−1) (1 ≤ k ≤ r). Furthermore, ai0 prefers cj1 to cj0 and aik weakly prefers

cjk+1 to cjk
(1 ≤ k ≤ r −1). (All subscripts are taken modulo r when reasoning about

cyclic coalitions).
We define an improving coalition to be an alternating path coalition, an augment-

ing path coalition or a cyclic coalition.
Given an improving coalition C, the matching

μC = (μ \ {(aik , cjk
) : δ ≤ k ≤ r − 1}) ∪ {(aik , cjk+1) : 0 ≤ k ≤ r − 1}} (1)

is defined to be the matching obtained from μ by satisfying C (δ = 1 in the case that
C is an augmenting path coalition, otherwise δ = 0).

We will soon show that improving coalitions are at the heart of characterizing
Pareto optimal matchings (Theorem 2). The next lemma will come in handy in the
proof of Theorems 2 and 10. We say that a sequence of applicants and courses is
a pseudocoalition if it satisfies all conditions of an improving coalition except that
some courses or applicants may appear more than once.

Lemma 1 Let a matching μ in an instance I of CA admit a pseudocoalition K of
length � for some finite �. Then μ admits an improving coalition C of length at most �.

Proof We prove this by induction. Obviously � ≥ 2. For the base case, it is easy to see
that K itself is an augmenting path coalition (where r = 1) if � = 2 , an alternating
path coalition (where r = 1) if � = 3, a cyclic coalition (where r = 2) if � = 4 and
K ends with an applicant, and an augmenting path coalition (where r = 2) if � = 4
and K ends with a course. Assume that the claim holds for all pseudocoalitions of
length d, d < �. We show that it also holds for any given pseudocoalition K of length
�. In the rest of the proof we show that either K is in fact an improving coalition, or
we can derive a shorter pseudocoalition K ′ from K , hence completing the proof.

The Case for a Repeated Course Assume that a course c appears more than once
in K . We consider two different scenarios.

1. If c is not the very first element of K , then sequence K is in the following form
where where c = cjx = cjy .

. . . , aix−1 ,
←−−−−−→
cjx , aix , . . ., cjy , . . .

In this case, we simply delete the portion of K under the arrow. Note that in the
new sequence cjy appears right after after aix−1 , but then cjy = cjx . Hence we
have obtained a shorter sequence, and it is easy to verify that this new sequence
is a pseudocoalition.

706 Theory Comput Syst (2016) 59:700–721

2. If c is the first element of K , then K is in the following form where c = cj0 =
cjy .

←−−−−−−−−−−→
cj0 , ai0 , . . . , aiy−1 , cjy , . . .

In this case, we simply only keep the portion of K under the arrow, i.e. our new
sequence starts with cj0 and ends with aiy−1 . The new sequence is shorter and it
is easy to verify that it is a pseudocoalition.

The Case for a Repeated Applicant Assume that an applicant a appears more than
once in K . We consider the three different possible scenarios.

1. If a is not the very first element of K , nor the last one, then K is in the following
form where a = aix = aiy .

. . . , cjx ,
←−−−−−−−−−−−→
aix , cjx+1 , . . . , aiy−1 , ciy , aiy , cjy+1 , . . .

Note that cjx+1 �aix
cjx and cjy+1 �aix

cjy (since aix = ajy). We consider two
different cases.

(a) If cjx+1�aix
cjy , then we simply only keep the portion of K under the

arrow and add cjy to the beginning. That is, the new sequence is K ′ =
〈cjy , aix , cjx+1 , . . . , aiy−1〉. K ′ is shorter than K and it is easy to verify that
that it is a pseudocoalition.

(b) If cjy �aix
cjx+1 , then cjy+1 �aix

cjx . Then we simply remove the por-
tion of K from cjx+1 up to aiy . That is, the new sequence is K ′ =
〈. . . cjx , aix , cjy+1 . . .〉 which is shorter than K . Note that if either cjx+1 �aix

cjx or cjy+1 �aix
cjy , then cjy+1 �aix

cjx . Hence it is easy to verify that K ′
is a pseudocoalition.

2. If a is the first element of K but not the last one, then K is in the following form
where a = ai0 = aiy .

ai0 ,
←−−−−−−−−→
cj1 , . . . , cjy , aiy , cjy+1 , . . .

Notice that a0 is exposed and finds cjy+1 acceptable and is not matched to it
under μ. Hence we simply remove the portion of K under the arrow and get
K ′ = 〈ai0 , cjy+1 , . . .〉. K ′ is shorter than K and it is easy to verify that it is a
pseudocoalition.

3. If a is the last element of K but not the first one, then K is of the following form
where a = aix = aiy .

cj0 , . . . , cjx ,
←−−−−−−−−−−−→
aix , cjx+1 , . . . , aiy−1 , cjy , aiy

Note that, as aix = aiy , cjx+1 �aix
cjx and cj0 �aix

cjy . Furthermore, aix is not
matched to cj0 in μ. We consider two different cases.

(a) If cjx+1�aix
cjy , then we do as we did in Case 1(a). That is, we only keep

the portion of K under the arrow and add cjy to the beginning; the new
sequence is K ′ = 〈cjy , aix , cjx+1 , . . . , aiy−1〉. K ′ is shorter than K and it is
easy to verify that it is a pseudocoalition.

Theory Comput Syst (2016) 59:700–721 707

(b) If cjy �aix
cjx+1 , then cj0 �aix

cjx+1 �aix
cjx . Then we simply remove

the portion of K from cjx+1 until the end of the sequence. That is, the new
sequence is K ′ = 〈cj0 , . . . , cjx , aix 〉. K ′ is shorter than K and it is easy to
verify that it is a pseudocoalition.

Note that we do not need to check the case where K starts and ends with an applicant,
since then K would not fit the definition of an improving coalition.

The following theorem gives a necessary and sufficient condition for a matching
to be Pareto optimal.

Theorem 2 Given a CA instance I , a matching μ is a Pareto optimal matching in I

if and only if μ admits no improving coalition.

Proof Let μ be a Pareto optimal matching in I . Assume to the contrary that μ admits
an improving coalition C. It is fairly easy to see that matching μC obtained from μ

according to equation (1) Pareto dominates μ, a contradiction.
Conversely, let μ be a matching in I that admits no improving coalition, and

suppose to the contrary that it is not Pareto optimal. Therefore, there exists some
matching μ′ �= μ such that μ′ Pareto dominates μ. Let Gμ,μ′ = μ ⊕ μ′ be the graph
representing the symmetric difference of μ and μ′. Gμ,μ′ is hence a bipartite graph
with applicants in one side and courses in the other; by abusing notation, we may
use a or c to refer to a node in Gμ,μ′ corresponding to applicant a ∈ A or course
c ∈ C, respectively. Note that each edge of Gμ,μ′ either belongs to μ, referred to as
a μ-edge, or to μ′, referred to as a μ′-edge.

We first provide an intuitive sketch of the rest of the proof. Our goal is to find an
improving coalition, hence contradicting the assumption that μ does not admit one.
We start with an applicant ai0 who strictly prefers μ′ to μ. We choose a μ′-edge
(ai0 , cj1) such that cj1 belongs to the first indifference class where μ′ is better than μ

for ai0 . Either this edge already represents an improving coalition—which is the case
if cj1 is exposed in μ—or there exists a μ-edge incident to cj1 . In this fashion, we
continue by adding edges that alternatively belong to μ′ (when we are at an applicant
node) and μ (when we are at a course node), never passing the same edge twice (by
simple book-keeping). Most importantly, we always make sure that when we are at an
applicant node, we choose a μ′-edge such that the applicant weakly prefers the course
incident to the μ′-edge to the course incident to the precedent μ-edge. We argue that
ultimately we either reach an exposed course (which implies that an augmenting or
an alternating path coalition exists in μ) or are able to identify a cyclic coalition in μ.

Let us first provide some definitions and facts. Let A′ be the set of applicants
who prefer μ′ to μ; i.e., A′ = {a|μ′(a)�aμ(a)}. Moreover, for each a ∈ A, let
μ′\μ(a) = μ′(a) \ μ(a) and μ\μ′(a) = μ(a) \ μ′(a). Likewise, for each course
c ∈ C, let μ\μ′(c) = μ(c) \ μ′(c) and μ′\μ(c) = μ′(c) \ μ(c). Note that these
sets will be altered during the course of the proof. In what follows and in order to
simplify presentation, we will say that we remove a μ′-edge (a, c) from Gμ,μ′ to
signify that we remove c from μ′\μ(a) and remove a from μ′\μ(c); similarly, we say
that we remove a μ-edge (a, c) from Gμ,μ′ to signify that we remove c from μ\μ′(a)

708 Theory Comput Syst (2016) 59:700–721

and remove a from μ\μ′(c). The facts described below follow from the definitions
and the assumption that μ′ Pareto dominates μ. Let ϒ be a set containing applicants
(initially, ϒ = ∅); we will explain later what this set will come to contain.

Fact 1: For every course c that is full under μ, it is the case that |μ\μ′(c)| ≥
|μ′\μ(c)|.

Fact 2: For every applicant a ∈ A′ \ ϒ , there exists �∗
a ≤ n2 such that |Ca

� ∩
μ′\μ(a)| = |Ca

� ∩ μ\μ′(a)| for all � < �∗
a , and |Ca

�∗
a

∩ μ′\μ(a)| > |Ca
�∗
a

∩
μ\μ′(a)|. Hence, Ca

�∗
a

denotes the first indifference class of a in which μ′
is better than μ for a.

Fact 3: For every applicant a ∈ A′ that is full in μ, there exists �+, �∗
a < �+ ≤ n2,

such that |Ca
�+ ∩ μ\μ′(a)| > |Ca

�+ ∩ μ′\μ(a)|.
In what follows, we iteratively remove edges from Gμ,μ′ (so as not to visit an

edge twice and maintain the aformentioned facts) and create a corresponding path C,
which we show that in all possible cases implies an improving coalition in μ, thus
contradicting our assumption.

As μ′ Pareto dominates μ, A′ is nonempty. Let ai0 be an applicant in A′. By Fact 2,
there exists a course cj1 ∈ C�∗

ai0
∩ μ′\μ(ai0). Hence, we remove edge (ai0 , cj1) from

Gμ,μ′ and add it to C, i.e., C = 〈ai0 , cj1〉. If cj1 is exposed, then an augmenting path
coalition is implied. More specifically, if ai0 is also exposed in μ, then C = 〈ai0, cj1〉
is an augmenting path coalition. Otherwise, if ai0 is full in μ, then it follows from
Fact 3 that there exists a course cj0 ∈ μ\μ′(ai0) such that cj1�ai0

cj0 . Then C =
〈ci0 , ai0, cj1〉 is an alternating path coalition.

If, on the other hand, cj1 is full, we continue our search for an improving coalition
in an iterative manner (as follows) until we either reach an exposed course (in which
case we show that an augmenting or alternating coalition is found) or revisit an appli-
cant that belongs to A′ (in which case we show that a cyclic coalition is found). Note
that ai0 ∈ μ′\μ(cj1), hence it follows from Fact 1 that |μ\μ′(cj1)| ≥ 1. At the start of
each iteration k ≥ 1, we have:

C = 〈ai0 , cj1 , . . . , aik−1 , cjk
〉

such that by the construction of C (through the iterative procedure) every appli-
cant aix on C weakly prefers the course that follows her on C— i.e., cjx+1 to which
she is matched to in μ′ but not in μ—to the course that precedes her—i.e., cjx to
which she is matched to in μ but not in μ′. Moreover, ai0 is either exposed and can
accommodate one more course, namely cj1 , or is full and hence there exists a course
cj0 ∈ μ\μ′(ai0) such that ai0 strictly prefers cj1 to cj0 . Notice that C would imply an
improving coalition (using Lemma 1) if cjk

is exposed.
During the iterative procedure, set ϒ includes those applicants who strictly prefer

the course they are given in C under μ′ than under μ. That is, ϒ = {aik ∈ C :
cjk+1 �aik

cjk
} ∪ {ai0}. Note that applicant ai0 is always included in ϒ , since either

she is exposed, or ∃cj0 ∈ μ\μ′(ai0) such that cj1�ai0
cj0 .

The Iterative Procedure We repeat the following procedure until either the last
course on C, cjk

, is exposed or Case 3 is reached. If cjk
is full, then by Fact 1 there

Theory Comput Syst (2016) 59:700–721 709

must exist an applicant aik ∈ μ\μ′(cik); note that aik �= aik−1 . Remove (aik , cjk
) from

Gμ,μ′ . Let C
aik

� be the indifference class of aik to which cjk
belongs. We consider

three different cases.

• Case 1: |Caik

� ∩ μ′\μ(aik)| ≥ |Caik

� ∩ μ\μ′(aik)|. Then there must exist a course

cjk+1 ∈ C
aik

� ∩ μ′\μ(aik); note that cjk
�= cjk+1 . Hence, we remove (aik , cjk+1)

from Gμ,μ′ and append 〈aik , cjk+1〉 to C.
• Case 2: |Caik

� ∩ μ′\μ(aik)| < |Caik

� ∩ μ\μ′(aik)| and aik /∈ ϒ . Recall that μ′
Pareto dominates μ, hence it must be that aik ∈ A′. Therefore it follows from

Fact 2 that �∗
aik

< � and there exists a course cjk+1 ∈ C
aik

�∗
aik

∩ μ′\μ(aik); note that

cjk
�= cjk+1 . Hence, we remove (aik , cjk+1) from Gμ,μ′ and append 〈aik , cjk+1〉 to

C. Moreover, we add aik to ϒ .
• Case 3: |Caik

� ∩ μ′\μ(aik)| < |Caik

� ∩ μ\μ′(aik)| and aik ∈ ϒ ; note that this case
cannot happen when k = 1. Let aiz be the first occurrence of aik which has
resulted in aik being added to ϒ ; i.e., 0 ≤ z < k and aiz = aik . Therefore,
C is of the form 〈ai0, cj1 , ai1 , . . . , aiz , cjz+1 , . . . aik−1, cjk

〉. Let us consider C =
〈cjk

, aiz , cjz+1 , . . . aik−1〉. Since aiz = aik ∈ ϒ , aiz ∈ A′ and, by the construction

of C, cjz+1 ∈ C
ik
�∗
ik

, it follows from Fact 2 that �∗
aiz

< �, which implies (using the

assumption of Case 3) that cjz+1�iz cjk
.

If at any iteration k we find a cjk
that is exposed in μ or we arrive at Case 3, then an

improving coalition is implied (using Lemma 1), which contradicts our assumption
on μ. Otherwise (cases 1 and 2), we continue with a new iteration. However, since
the number of edges is bounded, this iterative procedure is bound to terminate, either
by reaching an exposed course or by reaching Case 3.

It follows from Theorem 2 that in order to test whether a given matching μ is
Pareto optimal, it is sufficient to check whether it precludes any improving coalition.
To check this, we construct the extended envy graph associated with μ.

Definition 1 The extended envy graph G(μ) = (VG(μ), EG(μ)) associated with a
matching μ is a weighted digraph with VG(μ) = VA ∪VC ∪Vμ, where VC = {c : c ∈
C}, VA = {a : a ∈ A} and Vμ = {ac : (a, c) ∈ μ}, and EG(μ) = E1

G(μ) ∪ E2
G(μ) ∪

E3
G(μ) where:

• E1
G(μ) = {(c, a) : a ∈ A, c ∈ C, and |μ(c)| < q(c)} ⋃{(c, ac′) : c ∈ C and

|μ(c)| < q(c)}, with weight equal to 0;
• E2

G(μ) = {(a, c) : a ∈ A, c ∈ P(a) \ μ(a) and |μ(a)| < b(a)} ⋃{(a, a′c) : a ∈
A \ {a′}, c ∈ P(a) \ μ(a) and |μ(a)| < b(a)}, with weight equal to −1; and

• E3
G(μ) = {(ac, c′) : c′ ∈ P(a) \ μ(a) and c′ �a c}⋃{(ac, a′c′) : c′ ∈ P(a) \

μ(a) and c′ �a c}, with weight equal to 0 if c′ �a c or −1 if c′ �a c.

That is, G(μ) includes one node per course, one node per applicant and one node
per applicant-course pair that participates in μ. With respect to EG(μ), a ‘0’ (‘−1’)

710 Theory Comput Syst (2016) 59:700–721

arc is an arc with weight 0 (−1). There is a ‘0’ arc leaving from each exposed course
node to any other (non-course) node in G(μ) (arcs in E1

G(μ)). Moreover, there is a
−1 arc leaving each exposed applicant node a towards any course node or applicant-
course node whose corresponding course is in P(a) \ μ(a) (arcs in E2

G(μ)). Finally,
there is an arc leaving each applicant-course node ac towards any course node or
applicant-course node whose corresponding course c′ is not in μ(a) and c′ �a c. The
weight of such an arc is 0 if c′ �a c or −1 if c′ �a c (arcs in E3

G(μ)).
The following theorem establishes the connection between Pareto optimality of a

given matching and the absence of negative cost cycles in the extended envy graph
corresponding to that matching.

Theorem 3 A matching μ is Pareto optimal if and only if its extended envy graph
G(μ) has no negative cost cycles.

Proof First we show that if G(μ) has no negative cost cycle, then μ is Pareto opti-
mal. Assume for a contradiction that μ is not Pareto optimal; this means that there
exists an improving coalition C. We examine each of the three different types of
improving coalition separately. Assume that C is an alternating path coalition, i.e.,
C = 〈cj0 , ai0 , cj1 , ai1 , . . . , cjr−1air−1 , cjr 〉 where r ≥ 1, (aik , cjk

) ∈ μ (0 ≤ k ≤
r − 1), (aik−1 , cjk

) �∈ μ (1 ≤ k ≤ r), ai0 is full, and cjr is an exposed course.
Furthermore, cj1 �ai0

cj0 and, if r ≥ 2, cjk+1 �aik
cjk

(1 ≤ k ≤ r − 1). By Def-
inition 1, there exists in G(μ) an arc (aik cjk

, aik+1cjk+1) for each 0 ≤ k ≤ r − 2,
an arc (air−1cjr−1 , cjr), and an arc (cjr , ai0cj0), thus creating a cycle K in G(μ).
Since all arcs of K have weight 0 or −1 and (ai0cj0 , ai1cj1) has weight −1 (because
cj1 �ai0

cj0), K is a negative cost cycle, a contradiction. A similar argument can
be used for the case where C is an augmenting path coalition; our reasoning on the
implied cycle would start with a ‘−1’ arc (ai0 , ai1cj1) and would conclude with a
‘0’ arc (cjr , ai0). Finally, for a cyclic coalition C, the implied negative cost cycle
includes all arcs (aik cjk

, aik+1cjk+1) for 0 ≤ k ≤ r − 1 taken modulo r , where at
least one arc has weight −1 (otherwise, C would not be a cyclic coalition). In all
cases, the existence of an improving coalition implies a negative cost cycle in G(μ), a
contradiction.

Next, we show that if μ is Pareto optimal, G(μ) has no negative cost cycles. We
prove this via contradiction. Let μ be a POM, and assume that G(μ) has a negative
cost cycle. Given that there exists a negative cost cycle in G(μ), there must also exist
one that is simple and of minimal length. Hence, without loss of generality, let K be a
minimal (length) simple negative cost cycle in G(μ). We commence by considering
that K contains only nodes in Vμ. We create a sequence K corresponding to K as
follows. Starting from an applicant-course node of K with an outgoing ’−1’ arc, say
ai0cj0 , we first place cj0 in K followed by ai0 , and continue by repeating this process
for all nodes in K . It is then easy to verify, by Definition 1 and the definition of a
cyclic coalition, that K corresponds to a sequence K = 〈cj0 , ai0, . . . , cjr−1 , air−1〉
that satisfies all conditions of a cyclic coalition with the exception that some courses
or applicants may appear more than once. But this means that, by Lemma 1, μ admits
an improving coalition, which contradicts that μ is a POM.

Theory Comput Syst (2016) 59:700–721 711

To conclude the proof, we consider the case where K includes at least one node
from VA or VC . Note that if K contains a node from VA, then it also contains a node
from VC . This is because, by Definition 1, the only incoming arcs to an applicant
node are of type E1

G(μ). Therefore K includes at least one course node. We now claim
that since K is of minimal length, it will contain only one course node. Assume for
a contradiction that K contains more than one course nodes. Since K is a negative
cost cycle, it contains at least one ‘−1’ arc which leaves an applicant node a (or an
applicant-course node ac′). Let c be the first course node in K that appears after this
‘−1’ arc. Recall that for c to be in K , c is exposed in μ and there exists a ‘0’ arc
from c to any applicant or applicant-course node of G(μ). Hence, there also exists
such an arc from c to a (or to ac′), thus forming a negative cost cycle smaller than
K , a contradiction. Note that this also implies that K contains at most one node in
VA. This is because, by Definition 1, the only incoming arcs to nodes in VA are from
nodes in VC , therefore the claim follows from the facts that c is the only course node
in K , and K is a simple cycle. We create a sequence K corresponding to K as follows.
If K contains an applicant node a, we start K with a. If K contains a course node
c, we end K with c. Any applicant-course node a′c′ is handled by placing c′ first
and then a′. It is now easy to verify, by Definition 1 and the definition of a cyclic
coalition, that K corresponds to a sequence K = 〈ai0, cj1 , ai1, . . . , cjr−1 , air−1 , cjr 〉
(if K contains an applicant node) or a sequence K = 〈cj0 , ai0, . . . , cjr−1 , air−1 , cjr 〉
(if K contains no applicant node), such that K satisfies all conditions of either an
augmenting path coalition (if K contains an applicant node) or an alternating path
coalition (if K contains no applicant node), with the exception that some courses or
applicants may appear more than once. But this means that, by Lemma 1, μ admits
an augmenting path coalition (or an alternating path coalition), which contradicts that
μ is a POM.

Theorem 3 implies that to test whether a matching μ is Pareto optimal or not,
it suffices to create the corresponding extended envy graph and check whether it
contains a negative cost cycle. It is easy to see that we can create G(μ) in polynomial
time. To test whether G(μ) admits a negative cycle, we can make use of various
algorithms that exist in the literature (see [10] for a survey), e.g. Moore-Bellman-
Ford which terminates in O(|VG(μ)||EG(μ)|) time. However, as all arcs in G(μ) are
of costs either 0 or −1 and hence integer, we can use a faster algorithm of [14] which,
for our setting, terminates in O(

√|VG(μ)||EG(μ)|) time.

Corollary 4 Given a CA instance I and a matching μ, we can check in polynomial
time whether μ is Pareto optimal in I .

4 Constructing Pareto Optimal Matchings

We propose an algorithm for finding a POM in an instance of CA, which is in a certain
sense a generalization of Serial Dictatorship thus named Generalized Serial Dicta-
torship Mechanism with ties (GSDT). The algorithm starts by setting the quotas of all
applicants to 0 and those of courses at the original values given by q. At each stage i,

712 Theory Comput Syst (2016) 59:700–721

the algorithm selects a single applicant whose original capacity has not been reached,
and increases only her capacity by 1. The algorithm terminates after B = ∑

a∈A b(a)

stages, i.e., once the original capacities of all applicants have been reached. In that
respect, the algorithm assumes a ‘multisequence’ � = (a1, a2, . . . , aB) of applicants
such that each applicant a appears b(a) times in �; e.g., for the instance of Table 1
and the sequence � = (a1, a1, a2, a2, a3, a2, a3), the vector of capacities evolves as
follows:

(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 2, 1), (2, 3, 1), (2, 3, 2).

Let us denote the vector of applicants’ capacities in stage i by bi , i.e., b0 is the all-
zeroes vector and bB = b. Clearly, each stage corresponds to an instance I i similar to
the original instance except for the capacities vector bi . At each stage i, our algorithm
obtains a matching μi for the instance I i . Since the single matching of stage 0, i.e.,
the empty matching, is a POM in I 0, the core idea is to modify μi−1 in such way
that if μi−1 is a POM with respect to I i−1 then μi is a POM with respect to I i . To
achieve this, the algorithm relies on the following flow network.

Consider the digraph D = (V , E). Its node set is V = A ∪ T ∪ C ∪ {σ, τ } where
σ and τ are the source and the sink and vertices in T correspond to the ties in the
preference lists of all applicants; i.e., T has a node (a, t) per applicant a and tie t such
that Ca

t �= ∅. Its arc set is E = E1∪E2∪E3∪E4 where E1 = {(σ, a) : a ∈ A}, E2 =
{(a, (a, t)) : a ∈ A, Ca

t �= ∅}, E3 = {((a, t), c) : c ∈ Ca
t } and E4 = {(c, τ) : c ∈ C}.

The graph D for the instance of Table 1 appears in Fig. 1, where an oval encircles all
the vertices of T that correspond to the same applicant, i.e., one vertex per tie.

Using digraph D = (V , E), we obtain a flow network Ni at each stage i of the
algorithm, i.e., a network corresponding to instance I i , by appropriately varying the
capacities of the arcs. (For an introduction on network flow algorithms see, e.g., [3].)
The capacity of each arc in E3 is always 1 (since each course may be received at most
once by each applicant) and the capacity of an arc e = (c, τ) ∈ E4 is always q(c).
The capacities of all arcs in E1 ∪ E2 are initially 0 and, at stage i, the capacities of
only certain arcs associated with applicant ai are increased by 1. For this reason, for
each applicant a we use the variable curr(a) that indicates her ‘active’ tie; initially,
curr(a) is set to 1 for all a ∈ A.

In stage i, the algorithm computes a maximum flow f i whose saturated arcs in
E3 indicate the corresponding matching μi . The algorithm starts with f 0 = 0 and
μ0 = ∅. Let the applicant ai ∈ A be a copy of applicant a considered in stage i. The
algorithm increases by 1 the capacity of arc (σ, a) ∈ E1 (i.e., the applicant is allowed
to receive an additional course). It then examines the tie curr(a) to check whether
the additional course can be received from tie curr(a). To do this, the capacity of arc
(a, (a, curr(a))) ∈ E2 is increased by 1. The network in stage i where tie curr(ai)

is examined is denoted by Ni,curr(ai). If there is an augmenting σ − τ path in this
network, the algorithm augments the current flow f i−1 to obtain f i , accordingly
augments μi−1 to obtain μi (i.e., it sets μi to the symmetric difference of μi−1 and all
pairs (a, c) for which there is an arc ((a, t), c) in the augmenting path) and proceeds
to the next stage. Otherwise, it decreases the capacity of (a, (a, curr(a))) by 1 (but
not the capacity of arc (σ, a)) and it increases curr(a) by 1 to examine the next tie

Theory Comput Syst (2016) 59:700–721 713

of a; if all (non-empty) ties have been examined, the algorithm proceeds to the next
stage without augmenting the flow. Note that an augmenting σ−τ path in the network
Ni,curr(ai) corresponds to an augmenting path coalition in μi−1 with respect to I i .

A formal description of GSDT is provided by Algorithm 1, where w(e) denotes
the capacity of an arc e ∈ E and ⊕ denotes symmetric difference. Observe that all
arcs in E2 are saturated, except for the arc corresponding to the current applicant and
tie, thus any augmenting path has one arc from each of E1, E2 and E4 and all other
arcs from E3; as a consequence, the number of courses each applicant receives at
stage i in any tie cannot decrease at any subsequent step. Also, μi dominates μi−1

with respect to instance I i if and only if there is a flow in Ni that saturates all arcs
in E2.

To prove the correctness of GSDT, we need two intermediate lemmas. Let et ∈
R

n2 be the vector having 1 at entry t and 0 elsewhere.

Lemma 5 Let Ni,t be the network at stage i while tie t of applicant ai is examined.
Then, there is an augmenting path with respect to f i−1 in Ni,t if and only if there is
a matching μ such that

χa(μ(a)) = χa(μ
i−1(a)) for each a �= ai and χai (μ(ai)) = χai (μ

i−1(ai)) + et .

Proof Note that the flows f i−1 and f i , corresponding to μi−1 and μi respectively,
are feasible in Ni . Moreover, f i−1 is feasible in Ni,t and, if there is an augmenting
path with respect to f i−1 in Ni,t , then f i is feasible in Ni,t too.

If there is a path augmenting f i−1 by 1 in Ni,t thus obtaining f i , the number of
courses assigned per tie and applicant remain identical except for ai that receives an

714 Theory Comput Syst (2016) 59:700–721

Fig. 1 Digraph D for the instance I from Table 1

extra course from tie t . Thus, χa(μ(a)) is identical to χa(μ
i−1(a)) for all a ∈ A

except for ai whose characteristic vector has its t’th entry increased by 1.
Conversely, if the above equation holds, flow f i is larger than f i−1 in the network

Ni,t . Thus standard network flow theory implies the existence of a path augmenting
f i−1. As a side remark, since the network Ni,t has similar arc capacities with the net-
work Ni−1 except for the arcs (σ, ai) and (ai, (ai, t)), this augmenting path includes
these two arcs.

Lemma 6 Let S �a U and |S| ≥ |U |. If cS and cU denote a least preferred course
of applicant a in S and U , respectively, then S\{cS} �a U\{cU }.

Proof For convenience, we denote S\{cS} by S′ and U\{cU } by U ′. Let

χa(S) = (s1, s2, . . . , sn2), χa(U) = (u1, u2, . . . , un2)

and
χa(S

′) = (s′
1, s

′
2, . . . , s

′
n2

), χa(U
′) = (u′

1, u
′
2, . . . , u

′
n2

).

If S �a U , then cS �a cU and χa(S) = χa(U), therefore χa(S
′) = χa(U

′) and
S′ �a U ′. Otherwise, S �a U implies that there is k ∈ [n2] such that sj = uj for
each j < k and sk > uk .

If there is j ≥ k + 1 with sj > 0, then cS ∈ Ca
r with r ≥ k + 1. It follows that

s′
k = sk > uk ≥ u′

k while s′
j ≥ u′

j for all j < k, thus χa(S
′) >lex χa(U

′), i.e.,
S′ �a U ′. The same follows if sk ≥ uk + 2 because then s′

k ≥ sk − 1 > uk ≥ u′
k .

It remains to examine the case where sj = 0 for all j ≥ k + 1 and sk = uk + 1.
In this case, cS ∈ Ca

k thus s′
k = sk − 1 = uk , while |S| ≥ |U | implies that either

uj = 0 for all j ≥ k + 1 or there is a single k′ > k such that uk′ = 1. In the
former case cU ∈ Ca

r for r ≤ k thus χa(S
′) >lex χa(U

′), whereas in the latter one
u′

k = uk = sk − 1 = s′
k and s′

j = u′
j = 0 for all j > k hence χa(S

′) = χa(U
′).

Theory Comput Syst (2016) 59:700–721 715

Theorem 7 For each i, the matching μi obtained by GSDT is a POM for instance I i .

Proof We apply induction on i. Clearly, μ0 = ∅ is the single matching in I 0 and
hence a POM in I 0. We assume that μi−1 is a POM in I i−1 and prove that μi is a
POM in I i .

Assume to the contrary that μi is not a POM in I i . This implies that there is a
matching ξ in I i that dominates μi . Then, for all a ∈ A, ξ(a) �a μi(a) �a μi−1(a).
Recall that the capacities of all applicants in I i are as in I i−1 except for the capacity
of ai that has been increased by 1. Hence, for all a ∈ A \ {ai}, |ξ(a)| does not
exceed the capacity of a in instance I i−1, namely bi−1(a), while |ξ(ai)| may exceed
bi−1(ai) by at most 1.

Moreover, it holds that |ξ(ai)| ≥ |μi(ai)|. Assuming to the contrary that |ξ(ai)| <

|μi(ai)| yields that ξ is feasible also in instance I i−1. In addition, |ξ(ai)| < |μi(ai)|
implies that it cannot be the case that ξ(ai) �ai μi(ai), and this, together with
ξ(ai) �ai μi(ai) �ai μi−1(ai), yields ξ(ai) �ai μi(ai) �ai μi−1(ai). But then ξ

dominates μi−1 in I i−1, a contradiction to μi−1 being a POM in I i−1.
Let us first examine the case in which GSDT enters the ‘while’ loop and finds an

augmenting path, hence μi dominates μi−1 in I i only with respect to applicant ai

that receives an additional course. This is one of her worst courses in μi(ai) denoted
as cμ. Let cξ be a worst course for ai in ξ(ai). Let also ξ ′ and μ′ denote ξ \ {(ai, cξ)}
and μi \ {(ai, cμ)}, respectively. Observe that both ξ ′ and μ′ are feasible in I i−1,
while having shown that |ξ(ai)| ≥ |μi(ai)| implies through Lemma 6 that ξ ′ weakly
dominates μ′ which in turn weakly dominates μi−1 by Lemma 5. Since μi−1 is a
POM in I i−1, ξ ′(a) �a μ′(a) �a μi−1(a) for all a ∈ A, therefore ξ dominates μi

only with respect to ai and cξ �ai cμ. Overall, ξ(a) �a μi(a) �a μi−1(a) for all
a ∈ A \ {ai} and ξ(ai) �ai μi(ai) �ai μi−1(ai).

Let tξ and tμ be the ties of applicant ai containing cξ and cμ, respectively, where
tξ < tμ because cξ �ai cμ. Then, Lemma 5 implies that there is a path augmenting
f i−1 (i.e., the flow corresponding to μi−1) in the network Ni,tξ . Let also t ′ be the
value of curr(ai) at the beginning of stage i. Since we examine the case where GSDT
enters the ‘while’ loop and finds an augmenting path, Cai

t ′ �= ∅. Thus, t ′ indexes the
least preferred tie from which ai has a course in μi−1. The same holds for ξ ′ since
ξ ′(ai) �ai μi−1(ai). Because ξ ′ is obtained by removing from ai its worst course
in ξ(ai), that course must belong to a tie of index no smaller than t ′, i.e., t ′ ≤ tξ .
This together with tξ < tμ yield t ′ ≤ tξ < tμ, which implies that GSDT should have
obtained ξ instead of μi at stage i, a contradiction.

It remains to examine the cases where, at stage i, GSDT does not enter the ‘while’
loop or enters it but finds no augmenting path. For both these cases, μi = μi−1,
thus ξ dominating μi means that ξ is not feasible in I i−1 (since it would then also
dominate μi−1). Then, it holds that |ξ(ai)| exceeds bi−1(ai) by 1, thus |ξ(ai)| >

|μi(ai)| yielding ξ(ai) �ai μi(ai). Let tξ be defined as above and t ′ now be the most
preferred tie from which ai has more courses in ξ than in μi . Clearly, t ′ ≤ tξ since
tξ indexes the least preferred tie from which ai has a course in ξ . If t ′ < tξ , then
the matching ξ ′, defined as above, is feasible in I i−1 and dominates μi−1 because
ξ ′(ai) �ai μi−1(ai), a contradiction; the same holds if t ′ = tξ and ai has in ξ

716 Theory Comput Syst (2016) 59:700–721

at least two more courses from tξ than in μi . Otherwise, t ′ = tξ and ai has in ξ

exactly one more course from tξ than in μi ; that, together with |ξ(ai)| > |μi(ai)|
and the definition of tξ , implies that the index of the least preferred tie from which ai

has a course in μi−1 and, therefore, the value of curr(ai) in the beginning of stage
i, is at most t ′. But then GSDT should have obtained ξ instead of μi at stage i, a
contradiction.

The following statement is now direct.

Corollary 8 GSDT produces a POM for instance I .

To derive the complexity bound for GSDT, let us denote by L the length of the
preference profile in I , i.e., the total number of courses in the preference lists of all
applicants. Notice that |E3| = L and neither the size of any matching in I nor the
total number of ties in all preference lists exceeds L.

Within one stage, several searches in the network might be needed to find a tie
of the active applicant for which the current flow can be augmented. However, one
tie is unsuccessfully explored at most once, hence each search either augments the
flow thus adding a pair to the current matching or moves to the next tie. So the
total number of searches performed by the algorithm is bounded by the size of the
obtained matching plus the number of ties in the preference profile, i.e., it is O(L).
A search requires a number of steps that remains linear in the number of arcs in the
current network (i.e., Ni,curr(ai)), but as at most one arc per E1, E2 and E4 is used,
any search needs O(|E3|) = O(L) steps. This leads to a complexity bound O(L2)

for GSDT.
The next theorem will come in handy when implementing Algorithm 1, as it

implies that for each applicant a only one node in T corresponding to a has to be
maintained at a time.

Theorem 9 Let Ni,t be the network at stage i while tie t of applicant ai is examined.
Then, there is no augmenting path with respect to f i−1 in Ni,t that has an arc of the
form ((aj , �), c) where j ≤ i and � < curr(aj).

Proof Assume otherwise. Let P be such an augmenting path that is found in round i

and used to obtain μi . Hence P corresponds to an augmenting path coalition C of the
following form 〈ai, cr , . . . , cs, a

j , cq, . . .〉 where cr is in the t’th indifference class
of ai and both cs and cq are in the �’th indifference class of aj , � < curr(aj). Note
that as � ≥ 1 thus curr(aj) > 1. It then follows from the description of Algorithm 1
that either aj is matched to at least one course in curr(aj) under μi or she is exposed
(which would be the case when curr(aj) > n2 or Caj

curr(aj)
= ∅).

We first show that ai and aj are not the same applicant. Otherwise, C′ =
〈aj , cq, . . .〉—obtained from C by discarding all courses and applicants that appear
before aj —is an augmenting path coalition with respect to μi−1 in I i . Clearly the
matching obtained from μi−1 by satisfying C′ Pareto dominates μi , as � < t ,
contradicting that μi is a POM in I i .

Theory Comput Syst (2016) 59:700–721 717

In the remainder of the proof we assume that ai �= aj . Let us first consider the
case where aj is matched to a course in Caj

curr(aj)
under μi , and therefore by Lemma

1 to a course c ∈ Caj

curr(aj)
under μi−1. Let C′ = 〈c, aj , cq, . . . 〉, i.e., C′ is obtained

from C by discarding all courses and applicants that appear before aj and replacing
them with c. Since � < curr(aj), we have cq�aj c. It is then easy to see that C′ is an
alternating path coalition with respect to μi−1 in I i−1, and hence μi−1 is not a POM
in I i−1, a contradiction. We now consider the case where aj is exposed in μi , and
hence exposed in μi−1 with respect to I i−1. Let C′ = 〈aj , cq, . . . 〉, i.e., C′ is obtained
from C by discarding all courses and applicants that appear before aj . It is clear that
C′ is an augmenting path coalition with respect to μi−1 in I i−1, contradicting that μ′
is a POM in I i−1.

Next we show that GSDT can produce any POM. Our proof makes use of a
subgraph of the extended envy graph of Definition 1.

Theorem 10 Given a CA instance I and a POM μ, there exists a suitable priority
ordering over applicants � given which GSDT can produce μ.

Proof Given an instance I and a POM μ, let G = (V , E) be a digraph such that
V = {ac : (a, c) ∈ μ} and there is an arc from ac to a′c′ if a �= a′, c′ /∈ μ(a) and
c′ �a c. An arc (ac, a′c′) has weight −1 if a prefers c′ to c and has weight 0 if she is
indifferent between the two courses. Note that G is a subgraph of the extended envy
graph G(μ) introduced in Definition 1. We say that ac envies a′c′ if (ac, a′c′) has
weight −1.

Note that if there exists an applicant-course pair ac ∈ μ and a course c′ such that
c′�ac and ac′ /∈ μ, then c′ must be full under μ, or else μ admits an alternating path
coalition and is not a POM.

Moreover, all arcs in any given strongly connected component (SCC) of G have
weight 0. To see this, note that by the definition of a SCC, there is a path from any
node to every other node in the component. Hence, if there is an arc in a SCC with
weight −1, then there must be a cycle of negative weight in that SCC. It is then
straightforward to see that, by Lemma 1, μ admits a cyclic coalition, a contradiction.

It then follows that if c′�ac, then ac′ and ac cannot belong to the same SCC.
Should that occur, there would be an arc (of weight 0) from ac′ to some ver-
tex a′c∗ in the same SCC, implying that c∗ �a c′ and thus c∗�ac. This in turn
would yield that there is an arc of weight −1 from ac to a′c∗ in this SCC, a
contradiction.

We create the condensation G′ of the graph G. It follows from the definition of
SCCs that G′ is a DAG. Hence G′ admits a topological ordering. Let X′ be a reversed
topological ordering of G′ and X be an ordering of the vertices in G that is consistent
with X′ (the vertices within one SCC may be ordered arbitrarily). Let � be an order-
ing over applicant copies that is consistent with X (we can think of it as obtained from
X by removing the courses). We show that GSDT can produce μ given �. Note that

718 Theory Comput Syst (2016) 59:700–721

technically � must contain b(a) copies of each applicant a. However, as μ is Pareto
optimal, upon obtaining μ the algorithm will not be able to allocate any more courses
to any of the applicants, even if we append more applicant copies to the end of �.

We continue the proof with an induction. Recall that X is an ordering over the
matched pairs in μ. We let X(ai) = c where aic is the ith element of X. Let μi

denote the matching that corresponds to the first i elements of X; hence μ|μ| = μ.
We claim that given �, GSDT is able to produce μi at stage i, after augmenting f i−1

through an appropriate augmenting path.
For the base case, note that a1X(a1) does not envy any other vertex in G

and hence it can only be that X(a1) ∈ C1
a1 . It is then easy to see that the path

〈σ, a1, (a1, 1), X(a1), τ 〉 is a valid augmenting path in N1,1 and hence GSDT might
choose it.

Assume that GSDT produces μ� at the end of each stage � for all � < i. We prove
that it can produce μi at the end of stage i. Assume, for a contradiction, that this is
not the case. Let r denote the indifference class of ai to which X(ai) belongs. Note
that course X(ai) is not full in I i , so if the path 〈σ, ai, (ai, r), X(ai), τ 〉 is not chosen
by GSDT, it must be the case that GSDT finds an augmenting path in Ni,t for some
t < r . Let C denote the corresponding augmenting path coalition with respect to the
matching μi−1, which would be of the form

ai, cj1 , a
i1, . . . , ciy−1 , a

iy−1 , cjy

where cj1 ∈ Ct
ai

and cjy is exposed in μi−1. It follows, from the definition of an
augmenting path, that there is an edge (aik cjk

, aik+1cjk+1) in G for all k, 1 ≤ k ≤
y−2. Furthermore, as cj1�ai μ(ai), there is an edge of weight −1 in G from aiX(ai)

to ai1cj1 ; therefore ai1cj1 belongs to a SCC of higher priority than the one to which
aiX(ai) belongs. If cjy is exposed in μ, then C′ that is obtained by adding X(ai) to
the beginning of C is an alternating path coalition in μ, a contradiction to μ being a
POM. Therefore cjy must be full in μ.

As cjy is not full in μi−1 and full in μ, there must exist an az, z > i, such that
(az, cjy) ∈ μ. It follows, from the augmenting path coalition C, that there is a path
in G from ai1cj1 to azcjy . If there is also a path from azcjy to ai1cj1 , then the two
vertices belong to the same SCC; as ai1cj1 belongs to a SCC of higher priority than
the one to which aiX(ai) belongs, so must azcjy , implying that azcjy must have
appeared before aiX(ai) in X, a contradiction to z > i. If there is no such a path, then
azcjy belongs to a SCC that is prioritized even over the SCC to which ai1cj1 belongs,
and hence must have appeared before aiX(ai) in X, a contradiction to z > i.

5 Truthfulness of Mechanisms for sPOMs

It is well-known that the SDM for HA is truthful, regardless of the given prior-
ity ordering over applicants. We will show shortly that GSDT is not necessarily

Theory Comput Syst (2016) 59:700–721 719

truthful, but first prove that this property does hold for some priority orderings
over applicants.

Theorem 11 GSDT is truthful given � if, for each applicant a, all occurrences of a
in � are consecutive.

Proof Without loss of generality, let the applicants appear in � in the following
order:

a1, a1, . . . , a1︸ ︷︷ ︸
b(a1)-times

, a2, a2, . . . , a2︸ ︷︷ ︸
b(a2)-times

. . . , ai−1, ai−1, . . . , ai−1︸ ︷︷ ︸
b(ai−1)-times

, ai, ai, . . . , ai︸ ︷︷ ︸
b(ai)-times

, . . .

Assume to the contrary that some applicant benefits from misrepresenting her pref-
erences. Let ai be the first such applicant in � who reports P ′(ai) instead of P(ai) in
order to benefit and P ′ = (P ′(ai),P(−ai)). Let μ denote the matching returned by
GSDT using ordering � on instance I = (A, C,P, b, q) (i.e. the instance in which
applicant ai reports truthfully) and ξ the matching returned by GSDT using � but on
instance I ′ = (A, C,P ′, b, q). Let s = (��<ib(a�)) + 1, i.e., s is the first stage in
which our mechanism considers applicant ai . Let j be the first stage of GSDT such
that ai prefers ξj to μj , where s ≤ j < s + b(ai).

Given that applicants a1, . . . , ai−1 report the same in I as in I ′ and all their
occurrences in � are before stage j , Lemma 5 yields μj (a�) �a�

ξ j (a�) for
� = 1, 2, . . . , i − 1. Also μj (a�) = ξj (a�) = ∅ for � = i + 1, i +
2, . . . , n1, since no such applicant has been considered before stage j . But then,
all applicants apart from ai are indifferent between μj and ξj , therefore ai

preferring ξj to μj implies that μj is not a POM in I j , a contradiction to
Theorem 7.

The next result then follows directly from Theorem 11.

Corollary 12 GSDT is truthful if all applicants have quota equal to one.

There are priority orderings for which an applicant may benefit from misreport-
ing her preferences, even if preferences are strict. This phenomenon has also been
observed in a slightly different context [6]. Let us also provide an example.

Example 13 Consider a setting with applicants a1 and a2 and courses c1 and c2, for
which b(a1) = 2, b(a2) = 1, q(c1) = 1, and q(c2) = 1. Let I be an instance
in which c2�a1c1 and a2 finds only c1 acceptable. This setting admits two POMs,
namely μ1 = {(a1, c2), (a2, c1)} and μ2 = {(a1, c1), (a1, c2)}.

GSDT returns μ1 for � = (a1, a2, a1). If a1 misreports by stating that she prefers
c1 to c2, GSDT returns μ2 instead of μ1. Since μ2�a1μ1, GSDT is not truthful
given �.

The above observation seems to be a deficiency of GSDT. We conclude by
showing that no mechanism capable of producing all POMs is immune to this
shortcoming.

720 Theory Comput Syst (2016) 59:700–721

Fig. 2 Four instances of CA used in the proof of Theorem 14. In all four instances b(a1) = 2, b(a2) = 1,
q(c1) = q(c2) = 1. For each of instances I1 to I3, a matching is indicated using circles in applicants’
preference lists

Theorem 14 There is no universally truthful randomized mechanism that produces
all POMs in CA, even if applicants’ preferences are strict and all courses have quota
equal to one.

Proof The instance I1 in Fig. 2 admits three POMs, namely μ1 = {(a1, c1), (a2, c2)},
μ2 = {(a1, c1), (a1, c2)} and μ3 = {(a1, c2), (a2, c1)}. Assume a randomized mech-
anism φ that produces all these matchings. Therefore, there must be a deterministic
realization of it, denoted as φD , that returns μ1 given I1. Let us examine the outcome
of φD under the slightly different applicants’ preferences shown in Fig. 2, bearing in
mind that φD is truthful.

• Under I2, φD must return μ2. The only other POM under I2 is μ3, but if φD

returns μ3, then a2 under I1 has an incentive to lie and declare only c1 acceptable
(as in I2).

• Under I3, φD must return μ2. The only other POM under I3 is μ3, but if φD

returns μ3, then a1 under I3 has an incentive to lie and declare that she prefers
c1 to c2 (as in I2).

I4 admits two POMs, namely μ2 and μ3. If φD returns μ2, then a1 under I1 has an
incentive to lie and declare that she prefers c2 to c1 (as in I4). If φD returns μ3, then
a2 under I3 has an incentive to lie and declare c2 acceptable—in addition to c1—and
less preferred than c1 (as in I4). Thus overall φD cannot return a POM under I4 while
maintaining truthfulness.

6 Future Work

Our work raises several questions. A particularly important problem is to investigate
the expected size of the matching produced by the randomized version of GSDT. It
is also interesting to characterize priority orderings that imply truthfulness in GSDT.
Consequently, it will be interesting to compute the expected size of the matching pro-
duced by a randomized GSDT in which the randomization is taken over the priority
orderings that induce truthfulness.

Acknowledgments This research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds under Thales grant MIS 380232 (Eirinakis, Mourtos), by grant
EP/K010042/1 from the Engineering and Physical Sciences Research Council (Manlove, Rastegari),
grants VEGA 1/0344/14, 1/0142/15 from the Slovak Scientific grant agency VEGA (Cechlárová), stu-
dent grant VVGS-PF-2014-463 (Oceľáková) and OTKA grant K108383 (Fleiner). The authors gratefully
acknowledge the support of COST Action IC1205 on Computational Social Choice.

Theory Comput Syst (2016) 59:700–721 721

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments
in house allocation problems. Econometrica 66(3), 689–701 (1998)

2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation
problems. In: Proc. ISAAC ’04, volume 3341 of LNCS, pp. 3–15. Springer (2004)

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., Upper Saddle River (1993)

4. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theory
100(2), 295–328 (2001)

5. Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences. Econometrica
72(1), 257–279 (2004)

6. Budish, E., Cantillon, E.: The multi-unit assignment problem: Theory and evidence from course
allocation at harvard. Amer. Econ. Rev. 102(5), 2237–71 (2012)

7. Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Manlove, D., Mourtos, I., Oceľáková, E.,
Rastegari, B.: Pareto optimal matchings in many-to-many markets with ties. In: Proceedings of the
Eighth International Symposium on Algorithmic Game Theory (SAGT’15), pp. 27–39 (2015)

8. Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.: Pareto optimality in
many-to-many matching problems. Discret. Optim. 14(0), 160–169 (2014)

9. Chen, N., Ghosh, A.: Algorithms for Pareto stable assignment. In: Conitzer, V., Rothe, J. (eds.) Proc.
COMSOC ’10, pp. 343–354. Düsseldorf University Press (2010)

10. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. Math. Program. 85, 227–311
(1999)

11. Fujita, E., Lesca, J., Sonoda, A., Todo, T., Yokoo, M.: A complexity approach for core-selecting
exchange with multiple indivisible goods under lexicographic preferences. In: Proc. AAAI ’15 (2015)

12. Gärdenfors, P.: Assignment problem based on ordinal preferences. Manag. Sci. 20(3), 331–340 (1973)
13. Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: Models of bounded rationality.

Psychol. Rev. 103(4), 650–669 (1996)
14. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. Technical Report STAN-CS-92-

1429, Stanford University (Stanford, CA, US) (1992)
15. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(2),

293–314 (1979)
16. Klaus, B., Miyagawa, E.: Strategy-proofness, solidarity, and consistency for multiple assignment

problems. Int. J .Game Theory 30, 421–435 (2001)
17. Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the House Allocation

problem. Technical Report 1404.5245, Computing Research Repository, Cornell University Library.
A shorter version appeared in the Proceedings of EC’14 (2014)

18. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific (2013)
19. Saban, D., Sethuraman, J.: The complexity of computing the random priority allocation matrix. In:

Proc. WINE ’13, volume 8289 of LNCS, pp. 421. Springer (2013)
20. Svensson, L.G.: Queue allocation of indivisible goods. Soc. Choice Welfare 11(4), 323–330 (1994)
21. Zhou, L.: On a conjecture by Gale about one-sided matching problems. J. Econ/ Theory 52(1), 123–

135 (1990)

http://creativecommons.org/licenses/by/4.0/

	Pareto Optimal Matchings in Many-to-Many Markets with Ties
	Abstract
	Introduction
	Our Contribution
	Organization of the Paper

	Preliminary Definitions of Notation and Terminology
	Characterizing Pareto Optimal Matchings
	The Case for a Repeated Course
	The Case for a Repeated Applicant
	The Iterative Procedure

	Constructing Pareto Optimal Matchings
	Truthfulness of Mechanisms for sPOMs
	Future Work
	Acknowledgments
	Open Access
	References

