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Abstract

Quantization has become a popular technique to com-

press neural networks and reduce compute cost, but most

prior work focuses on studying quantization without chang-

ing the network size. Many real-world applications of

neural networks have compute cost and memory budgets,

which can be traded off with model quality by changing the

number of parameters. In this work, we use ResNet as a

case study to systematically investigate the effects of quan-

tization on inference compute cost-quality tradeoff curves.

Our results suggest that for each bfloat16 ResNet model,

there are quantized models with lower cost and higher ac-

curacy; in other words, the bfloat16 compute cost-quality

tradeoff curve is Pareto-dominated by the 4-bit and 8-bit

curves, with models primarily quantized to 4-bit yielding

the best Pareto curve. Furthermore, we achieve state-

of-the-art results on ImageNet for 4-bit ResNet-50 with

quantization-aware training, obtaining a top-1 eval accu-

racy of 77.09%. We demonstrate the regularizing effect

of quantization by measuring the generalization gap. The

quantization method we used is optimized for practicality:

It requires little tuning and is designed with hardware ca-

pabilities in mind. Our work motivates further research

into optimal numeric formats for quantization, as well as

the development of machine learning accelerators support-

ing these formats. As part of this work, we contribute a

quantization library written in JAX, which is open-sourced

at https://github.com/google-research/

google-research/tree/master/aqt.

1. Introduction

While neural networks have brought tremendous

progress to the computer vision field over the last decade,
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Figure 1. Compute cost-accuracy tradeoff curves, using a linear

compute cost model.

they are also often resource-intensive to train and serve. In

many real-world computer vision applications, it is there-

fore of interest to minimize the compute cost (including

power consumption/CO2 output), and the memory foot-

print, ideally without compromising model quality.

Quantization [12] has become a popular technique to

make neural networks, including computer vision models,

more efficient. By reducing the number of bits used, quanti-

zation helps to compress the model, thus reducing its mem-

ory footprint. With support for quantized ops in hardware,

e.g. NVIDIA A100 GPUs [22], quantization can also sig-

nificantly speed up computation and lower power consump-

tion, which can reduce overall compute costs. Quantization

directly reduces per-op power-usage, an important factor in

both chip design and the cost of ownership. Table 1 shows

NVIDIA A100 peak performance in the context of quanti-

zation.

Despite its advantages, there could also be downsides

to quantizing a model, e.g., a possible reduction in model

quality. Figure 2 displays an example showing quanti-

zation steps performed on a series of data, e.g. model

weights. During quantization, the tensors would be scaled
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Input types TOPS

float16 312

bfloat16 312

int8 624

int4 1248

binary 4992

Table 1. NVIDIA A100 performance on quantized types.

down, clipped, rounded to their closest quantization level

and scaled back to their original domain. As it can also

be seen in the figure, some of the values after quantization

could be considerably far from their original values. De-

pending on the model, this could result in a quality reduc-

tion and, in some cases, prevent the model from converging.

A major hurdle to wider adoption of quantization both

in industry and in research is the added engineering com-

plexity introduced by quantization, e.g. some quantization

techniques add hyperparameters for clipping bounds, which

would require tuning as well. This motivates us to focus on

approaches that offer clear benefits while minimizing the

amount of added complexity.

In this work, using ResNet [13] as an example, we seek

to understand how different quantization precisions affect

the compute cost-accuracy tradeoff curves, and find a sim-

ple strategy to compress models at different compute cost

and quality requirements.

After running experiments on ResNet using different

precisions and numbers of parameters, we determined that

4-bit and 8-bit models strongly Pareto-dominate bfloat16

models, and mostly-4-bit models outperform 8-bit models.

We present our results using two compute cost models (lin-

ear and quadratic), based on different assumptions about

the compute speedups when the number of bits are reduced.

Both cost models will be defined and justified in Section 4.

While no hardware with the quadratic cost model is avail-

able yet to our knowledge, our results provide strong moti-

vation for the development of such hardware.

2. Background

2.1. Related Work

One of the advantages model quantization provides is en-

abling more embedded systems to use such models [15].

However, it also provides server-side benefits by reducing

data transfers and computation complexities [20]. There-

fore, there have been many works in recent literature on im-

proving the quality of various quantized neural networks,

leveraging methods such as improved quantization tech-

niques, compact model design, or even a combination of

methods [18]. Leveraging embedded systems and support-

ing hardware for operations such as convolution has also

been proposed to enable 4-bit quantization with low qual-

ity loss and reduce power consumption [33]. MobileNets

[15] reduce convolution complexity by breaking it into two

simpler layers, and use two multipliers in the model to re-

duce size in exchange for an acceptable accuracy loss. The

authors in [32] study a multitude of pre-trained neural net-

works, and observe that they can all be quantized to int8

with their accuracies remaining within 1% of the baseline

model. In order to find the best quantization parameters for

a given network, neural architecture search (NAS) could be

used [38, 9]. EfficientNet [30] uses NAS to explore com-

binations of changing number of channels, resolution, and

depths of different convolutional neural networks, such as

ResNet [13], Inception [29] and AmoebaNet [25], in order

to find the optimal point with resource constraints in mind,

e.g. mobile applications. When compared to a network with

similar accuracy, EfficientNets have shown to be up to 8.4x

smaller and 6.1x faster on hardware during inference. How-

ever, NAS can be very complex and resource-consuming,

prompting us to look for a simpler solution.

Post-training quantization (PTQ) enables the user to con-

vert an already trained float model and quantize it without

retraining [10, 23, 7, 11]. However, it can also result in

drastic reduction in model quality. To address the quality

degradation, quantization-aware training (QAT) has been

proposed and applied in several papers [6, 8, 32] and was

also our method of choice.

Obtaining optimal clipping bounds for quantizing acti-

vations has been studied in several works. Choi et al. [6]

propose a quantization scheme in which an activation clip-

ping parameter for controlling bounds is introduced and op-

timized during training. With this technique, they are able

to quantize weights and activations to 4-bits with little loss

in quality.

2.2. ResNet50

We use the bfloat16 ResNet50 v1.5 model as our base-

line and implemented our quantized model on top of JAX

[4] MLPerf ResNet50 submission. Figure 3 shows the

ResNet50 architecture used in this work. It consists of an

initial convolutional layer (conv init), 16 residual blocks

and a dense layer at the end. Within each residual block,

as shown in Figure 4, there are three convolutional layers

in series. In addition, there is also a projection layer at

the beginning of each block group only (thus 4 in total in

ResNet50), which is responsible for reshaping the inputs so

they can be used by the rest of the convolutional layers in

the block group.

To change the number of model parameters, we multiply

the number of convolutional filters in each layer by a global

filter multiplier c ∈ (0.5, 2).
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Figure 2. Different steps of quantization for a single data value (left to right), including the difference between the original data and the

final quantized output (right).

Figure 3. ResNet50 architecture

Figure 4. ResNet block

3. Quantization Details

In this work, our goal is to study the impact of quantiza-

tion on cost-quality tradeoffs at different precisions and find

practical, hardware-friendly approaches for model com-

pression, so we chose to build our work on top of popular

quantization methods found in literature. We apply quanti-

zation to both weights and activations, and introduce quan-

tization during training. We decided to focus on 8-bit and

4-bit quantization, since these formats are already supported

in existing hardware.

3.1. Uniform Quantization

For our experiments, we employ uniform integer quan-

tization, where all quantization buckets are of equal size.

This is a necessary choice if one wants to benefit from ac-

celeration in existing hardware. We use scaling and clip-

ping to reduce the impact of outliers. This form of quanti-

zation is most popular; for instance, it is found in prior work

[12, 32, 33] and open-source machine learning frameworks

including TensorFlow [1] and PyTorch [24].

Uniform quantization consists of the following steps,

which are also shown in Figure 2:

1. Scale: Scale floating point input x by S, usually to en-

sure efficient use of the target range, e.g. [−127, 127]
for 8-bit signed integers. We compute scales per-

channel for both weights and activations. The process

of obtaining scales will be explained in more detail in

the next section on calibration. Note that we do not

apply shift, which helps us preserve the 0 value.

2. Clipping: An ideal scale would allow us to express

all the quantized values in our quantization range, and

significantly different values once scaled would be fall

into separate quantization buckets. However, that may

not always be possible, especially when outliers are

present. Scale must be chosen in such a way to bal-

ance outlier clipping and bucket resolution. We use

unsigned int types for activations coming out of ReLu

as they are always positive. This effectively gains 1 bit

of precision.

3. Rounding: After all the values are within the same

scale, each value is rounded to the nearest quantiza-

tion step, resulting in quantization error. If we need

B bits to represent a quantized value, there will be

2B steps in the range. However, based on our pref-

erences, the range limits could be either positive or

symmetric, giving us a integer range of [0, 2B − 1] or

[−2B−1 + 1, 2B−1 − 1] respectively.

4. Scaling back: After rounding, the values are scaled

back to the original range by multiplying with 1

S
. The

difference between the original unquantized and the

values after quantization is also known as quantization

error, which is introduced by the clipping and round-

ing steps.

3.2. Calibration of Clipping Bounds

There are several methods to choose the clipping bounds

for the scaling step. One could use hard-coded fixed

bounds, e.g. clip values to a range of [0, 6], which is inspired

by Relu6 [19]. These fixed bounds can also be picked via

hyperparameter tuning, but the number of hyperparameter

quickly explodes e.g. if we want to choose different scales

for different layers or even different channels within a layer.

Prior work [32] as well as our own experiments have shown
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that automatically picking bounds during training, a pro-

cess also known as calibration, yields better accuracy and

requires far less hyperparameter tuning compared to fixed

bounds. It also allows us to easily customize bounds for

each layer and even channel within a layer. For example, if

the weight tensor has shape [3× 3× 6] where 6 is the num-

ber of output channels (or convolutional filters), we would

have 6 different scales for each of the channels.

To obtain the clipping bounds for activations, we use the

following calibration method:

1. For the first N training steps, we do not quan-

tize activations, but compute per-channel statistics of

max(abs(x)) values and keep track of their exponen-

tial moving averages (EMA). We also experimented

with other calibration methods, e.g. c×stddev(x), but

found that EMA of max(abs(x)) worked best for the

ResNet case, and doesn’t add sensitive hyperparame-

ters.

2. At training step N , we finalize the calibration of clip-

ping bounds by setting them to their most recent mov-

ing averages, turn on activation quantization with the

new clipping bounds, and continue training with quan-

tization. Importantly, we only calibrate activation clip-

ping bounds once during training, as we found that

more frequent calibrations can lead to feedback loops

(e.g. vanishing or exploding bounds) as well as worse

results. This choice makes the model insensitive to

EMA hyperparameter. The specific step N at which to

finalize the calibration and turn on activation quantiza-

tion is a hyperparameter, but we found that the model

is insensitive to the specific choice of the step. We rec-

ommend turning on activation quantization and setting

the bounds between 10% and 40% of the total num-

ber of training steps it takes to reach convergence. We

used 20% in all our experiments.

To obtain the clipping bounds for weights, we use the

maximum absolute value of the current weight tensor per

channel as clipping bounds. As this simple dynamic method

has worked well for us, we did not try more complicated

calibration methods for weights.

3.3. Quantization Library in JAX and Flax

We implemented a collection of quantization techniques

and quantized neural networks on top of the JAX framework

[4] and the Flax library [14] to enable fast experimentation,

and used it to run the experiments in this paper. All code

is at https://github.com/google-research/

google-research/tree/master/aqt. To our

knowledge, this is the first open source quantization library

for JAX and Flax.

Highlighted Features:

1. Quantized JAX dot and Flax layers: We wrote a cus-

tom version of jax.lax.dot (matrix multiply) with

optional weight and activation quantization. We also

implemented quantized versions of common Flax lay-

ers, including Dense and Conv, which can be used as

drop-in replacements.

2. Multiple quantization strategies: The user can choose

between several algorithms to calibrate bounds auto-

matically, including running mean of maximum values

or statistics-based methods e.g. standard deviation or

absolute-deviation of activations.

3. Flexible configuration system: Our configuration sys-

tem enables fine-grained control of quantization set-

tings, e.g., allowing the user to set separate precisions

and quantization strategies for different layers which

can useful for experimenting with mixed-precision

models. Weights and activations within a layer can be

set to different precisions as well.

4. Support for unsigned and signed quantization: We

allow the user to configure whether to use unsigned

or signed precision. This is especially useful for 4-

bit quantization of positive activations (e.g. after a

ReLU activation function) without shifting, since the

unsigned integer doubles the resolution in the positive

range.

5. What you train is what you serve: Optionally, the user

can choose to apply our Accurate Quantized Training

(AQT) method instead of using fake-quantization [16].

AQT ensures that the forward-pass during training is

the same as the forward pass during inference, i.e. the

matrix multiplies are in true integer domain. This pro-

vides better quality guarantees, enables training-time

cost savings and simplifies compiler logic for infer-

ence, since no conversion is needed from training to

inference graphs.

4. Cost Models for Quantized Neural Networks

4.1. Linear Cost Model for Existing Hardware

Some processors [22, 1] can support operations with

reduced-precision operands. These operations are faster

and consume less power than full-precision operations. In

particular, integer operations can provide a higher through-

put and lower cost than floating point operations [32]. The

NVIDIA A100 [22] processor architecture supports 16-bit,

8-bit, and 4-bit multiplications. As Table 1 shows, the hard-

ware can process convolution and matrix multiplication op-

erations twice as quickly when their inputs are quantized

to 8 bits as when they are quantized to 16 bits. In other

words, 8-bit computations have half the compute cost of 16-

bit computations. Moving from 8 bits to 4 bits provides a
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similar benefit. This means that there is a linear relationship

between the (power of 2) total number of bits in the opera-

tion and the cost of that operation for these processors.

4.2. EnergyMotivated Quadratic Cost Model

In the process of quantizing a model, each halving of

number of bits used leads to power usage being at least

halved for all hardware aspects of running that model

(SRAM and DRAM memory reads and writes, data move-

ment around the chip, arithmetic operations and nonlinear

functions). For the multiplications, however, power usage

scales better than linear as the precision is reduced. Given

the extreme importance of multiplier power to ML acceler-

ators (e.g. in matrix multiplications, einsums, and convolu-

tions), this motivates a closer look at the fundamental cost

model for multiplications.

Hardware multiplication of two n-bit numbers requires

reducing n2 bits to 2n bits i.e.,

a · b =
∑

0≤i,j<n

2i+j AND (ai, bi)

This is done using appropriately wired adder circuits, e.g.

Wallace trees. Each of them takes 3 bits of input and pro-

duces two bits of output. This means that an n-bit mul-

tiplier requires roughly n2 adders and AND gates. Multi-

plying two 2n-bit numbers therefore requires 4n2 adders.

Further, one 2n-bit multiplier is roughly equivalent to four

n-bit multipliers. This relationship motivates a quadratic

cost model. The quadratic relationship holds for both the

area and the power of integer multiplier circuits.

4.3. Cost Modeling of Layers and Full Network

The compute cost of the whole neural network is mod-

eled as the sum of the costs of each layer. Since the cost

of multiplication operations usually dominates the cost of

arithmetic operations [2], layer cost is approximated by the

sum of the costs of all the multiplication operations. While

we use this approach to assign a cost to each layer, a ResNet

model mostly consists of convolution layers and dense lay-

ers. The computational costs for these layers is a follows:

CostConv2D = BKhKwAwAhCinCinM

CostDense = BCinCoutM

B is batch size, Kh and Kw are kernel width and height,

Aw and Ah are layer’s output image width and height, Cin

and Cout are number of input and output channels, M is

either a linear or quadratic cost coefficient defined above.

We report only relative costs between quantization levels

so for bfloat16, 8-bit integer, and 4-bit integer layers, M is

respectively 16, 8, 4 in the linear cost model and 16, 4, 1 in

the quadratic cost model.

Similarly, as a metric of memory usage, memory cost

can also be approximated to the total number of weight bits

(ignoring biases and other small contributions) in the entire

model. The number of bits for each convolution and dense

layer will be as below:

MemConv2D = KhKwCinCinM
′

MemDense = CinCoutM
′

where M ′ for bfloat16, 8-bit integer, and 4-bit integer lay-

ers is 16, 8, 4 respectively in both the linear and quadratic

cost models. This is an appropriate approximation of mem-

ory consumption because within a given layer, we quantize

weights and activations to the same precision.

5. Experiments and Results

To evaluate the model quality, in all the experiments we

computed and saved the top-1 accuracy on the ImageNet

eval dataset [26]. We first compare our 4-bit results on

ResNet50 without changing the number of parameters to

prior work. We then share and discuss the results from com-

pute cost-accuracy tradeoff experiments, where we change

the number of parameters and quantization bits.

5.1. Comparison to Prior Work

While the primary focus of our work is to evaluate the

impact of quantization on Pareto curves, we want to pro-

vide evidence for the competitiveness of our quantization

method compared to prior work. Table 2 shows the top-

1 accuracy of a ResNet50 model quantized using various

methods, differing by goals and constraints, which we did

our best to take into account as much as possible. As can be

seen, our quantization method achieves or beats the results

found in prior work on ResNet-50 quantization. E.g. our

4-bit model (with first and last layers in 8-bit) achieves a

higher accuracy compared to results in the PACT paper [6],

as well as the XILINX paper [33].

One may notice that even though all the results in Table 2

are obtained on ResNet50, they differ significantly in Top-1

accuracy, potentially due to differences in ResNet versions

and hyperparameter choices. Therefore, we focus on quan-

tization loss, i.e. the difference between Top-1 of unquan-

tized and quantized model, as the main metric to evaluate

quality of the quantization algorithms. In our case, both

our 4-bit model (with first and last layers in 8-bit) and our

fully 8-bit model outperform the bfloat16 baseline model,

highlighting a regularizing effect of quantization. This reg-

ularizing effect can be clearly seen in the last three rows of

Table 2. Differences in the generalization gap show that the

unquantized model is overfitting significantly more to the

training data than the quantized models do. We would like
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to point out that other works may differ slightly due to quan-

tization of ops other than Conv2D or MatMul, BatchNorm

folding, etc.. We did not attempt to catch all the differences.

Figure 5. Quadratic compute Cost-Accuracy Tradeoff Curves

Figure 6. Memory Cost-Accuracy Tradeoff Curves

Figure 7. Accuracy with respect to filter multiplier. Models with

the same multiplier have the same number of parameters.

5.2. Compute CostAccuracy Tradeoff Experiments

We ran experiments on ResNet50 with different num-

ber of parameters and quantization bits. To change the

Figure 8. Number of parameters with respect to filter multiplier.

number of parameters, we multiply the number of filters

in each convolutional layer by a global scalar, which we

refer to as filter multiplier. We swept over nine filter mul-

tipliers {0.5, 0.62, 0.75, 0.87, 1.0, 1.25, 1.5, 1.75, 2.0}. For

instance, standard ResNet50 (multiplier 1.0) has 25.5M pa-

rameters and a filter multiplier of 2.0 results in 97.8M pa-

rameters. See Figure 8 for a plot showing how filter mul-

tipliers affect the number of parameters. We explored four

quantization settings which are represented as four curves

on the figures. All settings apply both to weights and acti-

vations.

1. 4-bit: All convolutional and dense layers including

first and last layers (conv init and dense) in 4-bit.

2. 4-bit, with first/last in 8-bit: All layers in 4-bit, except

first and last layers are in 8-bit. It is common practice

to quantize these two layers to a lesser extent [6, 33, 6],

since they tend to be most sensitive to quantization.

We also found through our own layer sensitivity anal-

ysis that the first layer in ResNet is the most sensitive

to quantization, followed by the last layer. Some solu-

tions exist to address the challenge of quantizing first

and last layers in neural networks, e.g. by remapping

the input features [35]. We chose not to explore these

special case methods, as it is not the focus of this work.

3. 8-bit: All layers quantized to 8-bit.

4. bfloat16: Baseline, all layers in bfloat16.

The cross-product of the filter multipliers and quantiza-

tion settings results in a total of 36 experiments.

Figure 1 showcases compute cost and Top-1 eval accu-

racy for ResNet50 with different parameters and quanti-

zation settings. The x-axis shows the linear compute cost

(see Section 4.1) normalized to that of the baseline bfloat16

model. In this figure, we are comparing the four quantiza-

tion settings described above. Each curve corresponds to a

quantization setting, the different points on the curve corre-

spond to different filter multipliers. The Pareto curves show

the tradeoff between the compute cost and the accuracy in

our experiments (towards upper-left is better).

As the curves in Figure 1 show, the 4-bit models with the

first and last layers quantized to 8 bits achieve the best com-

pute cost-accuracy Pareto curve, outperforming bfloat16,
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Prior work float (baseline) int8 int8 quantization loss int4 int4 quantization loss

IAO [16] 76.40% 74.90% -1.50% - -

OCS [36] 76.10% 75.70% -0.40% 66.20%a -9.90%

XILINX [33] v2d 77.60% 77.47% -0.13% 74.12% -3.48%

KURE [27] 76.30% - - 74.30% -2.00%

XILINX [33] v1d 76.15% 76.02% -0.13% 74.59% -1.56%

LQ-Net [34] 76.40% - - 75.10% -1.30%

SSPS [28] 77.15% - - 76.22%c -0.93%

PACT [6] 76.90% - - 76.50%b -0.40%

HAQ [31] 76.15% - - 76.14%c -0.01%

ZeroQ [5] 77.72% 77.67% -0.05% - -

TQT [17] 75.20% 75.40% +0.20% - -

FAQ [21] 76.15% 76.52% +0.37% 76.25% +0.10%

PQ+TS+Guided** [37] 75.60% - - 75.90% +0.30%

NICE [3] 76.15% - - 76.50% +0.35%

NVIDIA QAT [32] 76.16% 76.85% +0.69% - -

This work 76.65% 77.43% +0.78% 77.09%b +0.44%

Train log-loss (this work) 0.633 0.723 - 0.762 -

Eval log-loss (this work) 0.974 0.881 - 0.889 -

Generalization gap (this work) 0.341 0.158 - 0.125 -

a int8 activations b int4 w/int8 first/last layer c Mixed precision d ResNet v1 and v2; quantizes element-wise operations

Table 2. ImageNet Top-1 accuracy comparison of baseline and quantized ResNet-50 models sorted by int8 and int4 quantization loss which

is defined as difference in Top-1 between baseline and quantized model. Last tree rows list models’ train log-loss (the value optimized by

the training process) and eval log-loss. Generalization gap is the difference between them.

8-bit and all-4-bit models. The differences in the Pareto

curves become more pronounced if we use the theoretical

quadratic cost model (see 4.2 Quadratic Model), as shown

in Figure 5. As expected, the Pareto curves are now sepa-

rated more, showing an even clearer advantage of quantized

models and 4-bit in particular. This motivates the devel-

opment of hardware where quadratic cost savings are sup-

ported.

Figure 6 displays the memory cost-accuracy tradeoff

points for the quantized models versus the baseline, which

shows a very similar pattern to the compute cost-accuracy

figures.

Figure 7 summarizes the same experiments, however

the x-axis is now showing the filter multiplier applied to

all convolution layers. Models with the same multiplier

have the same number of parameters/model architecture.

We observe that the 4-bit models w/8-bit first/last achieve

a better accuracy than the baseline bfloat16 starting at

multiplier = 0.75 and gets very close to the 8-bit quan-

tized model towards multiplier = 2.0. The 8-bit models

have better accuracies than bfloat16 models for all multi-

pliers we tried. This means that even without changing the

number of parameters, quantization offers an accuracy im-

provement for most multipliers, most likely due to its regu-

larization effects.

5.3. TradeoffAware Quantization Recipe

Based on our analysis, we propose a simple recipe for

model compression on ResNet with minimal hyperparame-

ter tuning.

1. Quantize all layers to 4 bits, and first and last layers

(conv init and dense) to 8 bits.

2. Change the number of parameters with a global filter

multiplier to achieve the desired tradeoff based on the

compute cost/memory cost and quality requirements.

Future Work

We intend to expand our analysis to additional models,

especially those with architectures already optimized for ef-

ficiency, such as MobileNet, EfficientNet and Transform-

ers. Furthermore, we would like to extend our research to

binary quantization, with the goal to finding even more ef-

ficient networks. Another area of future work is to improve

training costs with quantization, as this work focuses on op-

timizing inference costs. In addition, we hope to evaluate

our quantized models on real hardware supporting these for-

mats, e.g. NVIDIA A100.
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Conclusion

In this work, we analyzed how quantization at different

precisions influences the compute cost-quality Pareto

curves on ResNet models. We found that quantization

consistently improves the tradeoff regardless of where

we are on the compute cost-quality tradeoff graph. In

other words, for each bfloat16 model, we found quantized

models with lower compute cost and higher accuracy.

Additionally, models in 4-bit (with first and last layers

in 8-bit) offer a consistent advantage over 8-bit, using

both linear and quadratic cost models. This observation

suggests that 4-bit may be a preferred numeric format

for quantizing neural networks. Based on our results, we

proposed a simple practical approach to compress models

given compute cost and quality constraints, consisting of

two steps: quantize the model to 4-bit, then multiply the

number of parameters in each layer by a global factor to

achieve the desired tradeoff. We invite further research into

comparing different numeric formats for quantization, and

hope that this line of work will inform the development of

future hardware. We also encourage more works in model

compression to compare methods on cost-quality tradeoff

graphs, as this provides a more nuanced and thorough

analysis. Lastly, we open-sourced our quantization library,

in the hopes that it will accelerate quantization research

and deployment with JAX.
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