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Abstract: The role of oscillatory alpha activity (8–13 Hz) in cognitive processing remains an open ques-
tion. It has been debated whether alpha activity plays a direct role in the neuronal processing required
for a given task or whether it reflects idling and/or functional inhibition. Recent electroencephalogra-
phy (EEG) studies have demonstrated that alpha activity increases parametrically with load during
retention in working memory paradigms. While it is known that the parieto-occipital cortex is involved
in the generation of the spontaneous alpha oscillations, it remains unknown where the sources of the
memory-dependent alpha activity are located. We recorded brain activity using magnetoencephalogra-
phy (MEG) from human subjects performing a Sternberg memory task where faces were used as stim-
uli. Spectral analysis revealed a parametric increase in alpha activity with memory load over posterior
brain areas. We then applied a source reconstruction technique that allowed us to map the parametric
increase in alpha activity to the anatomical magnetic resonance (MR) images of the subject. The pri-
mary sources of the memory-dependent alpha activity were in the vicinity of the parieto-occipital sul-
cus. This region is not directly involved in working memory maintenance of faces. Our findings are
consistent with the notion that alpha activity reflects disengagement or inhibition of the visual dorsal
stream. We propose that the disengagement reflected in alpha power serves to suppress visual input in
order to devote resources to structures responsible for working memory maintenance. Hum Brain Mapp
28:785–792, 2007. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

In the late 1920s the first electroencephalographic scalp
recordings in humans were performed by Hans Berger
[1929]. The dominating feature in the EEG was oscillatory
activity in the alpha band (8–13 Hz). Even though alpha
band activity has been the subject of multiple EEG and
MEG studies, its actual role in cognitive processing
remains unclear. It has been proposed that oscillatory
alpha activity reflects a state in which the brain is idle but
ready to be engaged [Adrian and Matthews, 1934;
Pfurtscheller et al., 1996]. However, the notion of idling
has recently been challenged by working memory studies.
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Alpha activity was found to be enhanced with working
memory demands [Jensen et al., 2002; Klimesch et al.,
1999]. In particular, Jensen et al. [2002] showed that alpha
activity increased systematically with memory load in a
modified version of the Sternberg task. This increase was
sustained during most of the 3-s retention interval.

The working memory load-dependent alpha activity is
open to several interpretations. One interpretation is that
alpha activity reflects disengagement or inhibition of poste-
rior brain areas [Cooper et al., 2003; Jensen et al., 2002;
Klimesch et al., 2000; Ray and Cole, 1985; Vanni et al., 1997].
As the demands to the working memory system increase,
areas not necessary for the task are disengaged. The function
of this disengagement could be to reduce interfering sensory
inputs to areas involved in working memory maintenance.
The higher the working memory load, the stronger the need
for disengagement, and thus the stronger the alpha rhythm.
A second interpretation is that alpha activity reflects activity
from brain regions performing the neuronal processing
required for working memory maintenance. The more items
in working memory, the stronger the alpha power becomes.
Indeed, it has been suggested that rhythmic alpha activity
could reflect neuronal processing required for attention and
memory operations [Kolev et al., 2001; Maltseva et al., 2000;
Sewards and Sewards, 1999]. Specifically, Sauseng et al.
[2002] proposed that synchronization in the upper alpha
band reflects information transfer between working and
long-term memory areas. It has also been suggested that
long-range coherence in the alpha band reflects perceptual
and cross-modal binding [Hummel and Gerloff, 2005; Mima
et al., 2001].

The aim of our study was to identify the sources
accounting for the increase in alpha activity with working
memory load using MEG. We hypothesized that if the
neuronal sources of the memory-dependent alpha activity
are found in areas known to be required for working
memory, this would speak in favor of an active role of
alpha activity in memory processing. However, if the sour-
ces are found in other areas not directly associated with
working memory maintenance, this would speak in favor
of the alpha inhibition hypothesis.

SUBJECTS AND METHODS

Subjects

Five right-handed male subjects, age 23–26 years partici-
pated in the experiment. All subjects had corrected to nor-
mal vision and reported having no neurological impair-
ments. After an explanation of the paradigm, informed
consent was obtained from the subjects. The studies were
approved by the local ethics committee.

MEG Acquisition

Brain activity was recorded using a whole-head MEG
system (CTF/VSM MedTech, Vancouver, Canada) with

151 first-order axial gradiometer sensors. The vertical elec-
tro-oculogram (EOG) was simultaneously recorded. The
MEG signals were lowpass-filtered at 200 Hz and sampled
at 600 Hz. To measure the position of the head with
respect to the sensor array, three coils were placed at ana-
tomical landmarks (left, right ear canal, and the bridge of
the nose). The positions of the coils were determined from
the magnetic signals produced by the coils when currents
were passed through them before and after the experi-
ment. MRIs were obtained using a 1.5 T Siemens Sonata
scanner (Erlangen, Germany) and aligned to the MEG data
according to the coils and anatomical landmarks. Visual
stimuli were presented to the subjects using an LCD pro-
jector and nonmagnetic buttons were used for behavioral
responses.

Experimental Procedure

A modified Sternberg task using pictures of faces as
mnemonic items was applied (Fig. 1). Each trial started
with the word ‘‘Blink,’’ encouraging the subjects to make
eye blinks in order to reduce artifacts later in the trial.
After 2.5 s, memory lists of 1–4 faces were sequentially
presented. Each face was presented for 0.3 s with 1.25-s
intervals between the items. Following a 2.7-s delay pe-
riod, a probe face was presented for 0.3 s. Subjects were
instructed to indicate whether the probe matched an item
in the memory list (‘‘positive probes’’) or did not (‘‘nega-
tive probes’’). The responses were given by pressing one of
two buttons, one by the right and the other by the left
index finger. Feedback on correct and incorrect responses
was presented at the end of each trial. After 2 s the next
trial started. In the control condition three crosses were
shown instead of the faces. After these three crosses, fol-
lowing a 2.7-s delay period, another cross was presented
as a probe and the subjects were instructed to press the
right button. The experiment consisted of six blocks of 60
trials presented randomly. The face database was provided
by the Max-Planck Institute for Biological Cybernetics

Figure 1.

The Sternberg task using faces as stimuli. Each trial started with

a blink period lasting 2.5 s. A list of 1–4 faces were then pre-

sented sequentially at a rate of 1.25 s per item. After a delay pe-

riod of 2.7 s, a probe was shown. Subjects had to respond to

whether the probe face was in the list or not. Feedback was

given after every response. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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(Tübingen, Germany). Subjects were trained on the task
for 15–30 min prior to the recordings.

Data Analysis

Incorrect trials and trials contaminated by artifacts
caused by eye movements, SQUID artifacts, and muscle
activity were excluded from the analysis. The sensor level
analysis was performed on data that was numerically
transformed to a representation of the planar field gradient
[Bastiaansen and Knosche, 2000]. The horizontal and verti-
cal components of the planar field gradient were estimated
at each sensor location using the signals from the neigh-
boring sensors. The planar field gradient computed in this
way approximates the signals measured by physical planar
gradiometers (e.g., as in Neuromag systems, Elekta Neuro-
mag Oy, Stockholm, Sweden). Power representations cal-
culated for the horizontal and vertical gradient for a given
sensor location were subsequently summed. This proce-
dure simplifies the sensor-level analysis of the MEG sig-
nals in the frequency domain, since the strongest power
usually is situated directly above the neural source [Hämä-
läinen et al., 1993].

Time-frequency representations (TFRs) of power were
characterized using a spectrogram computed from short
sliding time-windows [Percival and Walden, 1993]. The
data in each time window were multiplied with a Slepian
taper (k ¼ 1). The Fourier transforms and power of the
tapered time windows were then calculated. The power
estimates were subsequently averaged over multiple trials
for a given memory load. We applied a 0.4-s time window
and 2-Hz frequency smoothing. The absolute change in
power of the TFRs was then calculated by subtracting the
baseline power from a 0.5-s period prior to the presenta-
tion of the first memory item. Since the TFRs of power
were calculated for the individual trials and then aver-
aged, oscillatory activity that is not phase-locked to the
stimuli can be detected. To examine parametric changes in
power of the TFRs with respect to load, L, we fitted power
to the function P ¼ a+b�L. b is the regression coefficient
(or the slope):

b ¼
P

LiPi � 1
n

P
Li
P

Pi
P

L2
i � 1

n ð
P

LiÞ2
ð1Þ

and a the intercept. The test statistic following Stu-
dent’s t-distribution with n�2 degrees of freedom is:

t ¼ bsL
sP�L

ðn� 1Þ1=2 ð2Þ

where:

s2
L ¼

P
ðLi � �LÞ2

n� 1
ð3Þ

s2
P�L ¼

P
ðPi � �P� bðLi � �LÞÞ2

n� 2
ð4Þ

and n the number of trials.
To test the statistical significance of the regression coeffi-

cient, a nonparametric randomization procedure was
applied that controls for multiple comparisons over sensors
[Maris, 2004; Maris and Oostenveld, submitted]. This method
first identifies sensors for which the t-statistic of the regression
coefficient is below a threshold (P < 0.05). Clusters of spatially
contiguous sensors exceeding the threshold are then identified.
The cluster-level statistic is defined as the sum of the t-statistics
of the sensors in a cluster. The Type I error rate for the com-
plete set of 151 sensors is controlled by evaluating the cluster-
level test statistic under the randomization null distribution of
the maximum cluster-level test statistic. The randomization
null distribution was obtained by randomly distributing the
trials over the four memory loads within every participant. For
every randomization the regression coefficients and t-statistics
were recomputed, the sensors were thresholded, clusters were
identified, cluster-level statistics were calculated, and their
maximum was taken. The randomization distribution was
approximated by performing 1,000 randomizations and calcu-
lating the maximum cluster-level statistic for each of them. The
P-value was approximated by the proportion of these 1,000
random permutation in which the maximum cluster-level sta-
tistic exceeded the observed maximum cluster-level statistic.

A beamforming technique called dynamical imaging of
coherent sources (DICS) was applied to identify the sour-
ces of the memory-dependent alpha power (10.5 Hz). The
technique uses adaptive spatial filters to localize power in
the brain [Gross et al., 2001; Liljestrom et al., 2005]. The
brain volumes for individual subjects were discretized to a
grid with 0.5 cm resolution. Using head-shapes identified
from the MRIs of the individual subjects, we constructed a
forward model for each grid point using a multiple sphere
approximation [Huang and Mosher, 1997]. From the for-
ward models and cross-spectral densities at the frequency
of interest, spatial filters were constructed for each grid
point. This resulted in power estimates for each grid point.
Note that the DICS estimates were calculated from the pla-
nar sensor data directly, not from the synthetic planar gra-
dient. The output of the DICS calculations (‘‘source
power’’) for the four memory loads was fitted to P ¼
a+b�L. This yielded a volume of regression coefficients, b,
which then was colocalized on the MRI of each subject.

All the analyses were done using Matlab (MathWorks,
Natick, MA) and the FieldTrip toolbox developed at the F.C.
Donders Centre for Cognitive Neuroimaging (Nijmegen,
The Netherlands, http://www.ru.nl/fcdonders/fieldtrip/).

RESULTS

The behavioral data were characterized in terms of reac-
tion time and amount of errors for the different memory
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loads. The grand average showed a systematic increase in
reaction time (40 ms/item) and errors with increasing
memory load for both positive and negative probes
(Fig. 2). The increase for both positive and negative probes
combined was significant (P < 0.034; t-test of regression anal-
ysis); for positive probes the increase was significant (P <
0.005) and for negative probes there was a trend (P < 0.115).
This demonstrates that the basic finding of the original Stern-
berg task was reproduced, namely, a parametric increase in
reaction time with memory load [Sternberg, 1966].

To characterize the alpha activity at the sensor level, we
first analyzed the spectral components of the brain activity
during the retention interval. Trials with artifacts and
wrong answers were rejected (&25%). Figure 3a shows a
TFR of the power for all memory loads and the five sub-
jects combined for a single sensor. The sensor that showed
the strongest alpha power for the averaged conditions was
selected in each subject. Note that we calculated the spec-
tral representations for the individual trials prior to aver-
aging in order to be able to study oscillatory activity not
necessarily phase-locked to the stimuli. Strong alpha activ-
ity (8–12 Hz) emerged about 1 s after the presentation of
the last items in the list. The relative increase was about 2-
fold with respect to baseline and highly significant. The ac-
tivity was sustained during the retention interval until the
probe was presented. Changes in power with respect to
memory load were quantified using the regression coeffi-
cient b and averaged over the five subjects. As seen in Fig-
ure 3b, we observed a load-dependent increase in the
alpha band. The load dependence with respect to time and
frequency followed the profile of the alpha activity (Fig.
3a). Figure 3c shows the alpha activity (8–12 Hz) for the
four memory loads and the control condition. Note the
systematic increase in alpha power as the memory load
increases. The alpha power of the control condition was
not statistically different from the power of memory load S
¼ 1. Nevertheless, the alpha power was significantly dif-
ferent for load S ¼ 2, 3, and 4 when individually com-
pared to the control condition. When comparing the con-

Figure 2.

The behavioral data from the modified Sternberg task. a: Reac-

tion times for both positive and negative probes increase sys-

tematically with memory load (slope 40 ms/item). b: The

response errors as a function of memory load. Error bars indi-

cate SEM (n = 5).

Figure 3.

The time-frequency representations (TFRs) of the posterior alpha ac-

tivity for occipital sensors averaged over the five subjects. The last

item was presented at t = 0 s and the probe item at t = 3 s. a: The

TFRs of all four memory loads averaged. Strong alpha activity (8–12

Hz) is clearly visible. b: The TFR of the regression coefficient b relating

power to memory load. c: The temporal development of alpha power

(8–12 Hz) with respect to the four memory loads. Alpha increased

systematically with memory load.
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trol condition (three items; no memory requirement) to
the load three memory condition, the alpha power of
the memory condition is higher (see Fig. 3c). This argues
that the alpha increase is related to working memory
maintenance rather than task-related effects such as tim-
ing. As seen in Figure 3a, some beta power (18–22 Hz)
was also present during the retention interval. This beta
activity might be explained by harmonics of the alpha ac-
tivity; however, it did increase significantly with memory
load.

The spatial extent of the memory-dependent alpha activ-
ity at the sensor level was characterized by calculating the
regression coefficient of alpha activity with memory load
(t ¼ 1.5–2.5 s; f ¼ 10.5 Hz) for the planar field gradient.
The topographical distribution of the regression coeffi-
cients is shown in Figure 4a. In all subjects we identified
at least one cluster of sensors with a significant memory-
dependent alpha increase (uncorrected; see Fig. 4a). To
control for multiple comparisons over sensors we used a
clustering-based randomization test (see Subjects and
Methods). In four of the five subjects the increase was sig-
nificant when controlling for multiple comparisons over

sensors. The power spectra of the sensors in the clusters
with the largest t-value (‘‘most significant cluster’’) are
displayed in Figure 4b. The power spectra were calcu-
lated by averaging the spectral time-frequency represen-
tations from 1.5 to 2.5 s. The power spectra are domi-
nated by alpha activity that is load-dependent. Finally,
we performed a source reconstruction by means of DICS
(see Subjects and Methods) to identify the sources of the
load-dependent alpha activity. Figure 4c shows regres-
sion coefficients for the increase in alpha activity (8–12
Hz) with memory load projected on the brain surface. In
four subjects the dominant source of the load-dependent
alpha activity was found around the parieto-occipital
sulcus (marked by a green line in Fig. 4c). In the fourth
subject the alpha increase was centrally located but
strongest in occipital cortex. This difference might be
explained by a lower signal-to-noise of the alpha, result-
ing in a slight mislocalization (see Fig. 4b). It should be
noted that even though both alpha power and response
times increased with memory load for this subject, the
response times were in general slower compared to the
other subjects.

Figure 4.

Characterizing the memory-dependent alpha activity in individual

subjects. a: The topographical maps illustrate the regression

coefficient b of the alpha activity with respect to memory load.

Only statistically significant clusters of positive regressions coeffi-

cient are shown (see Subjects and Methods). A significant

increase was found in four subjects; the increase in the fifth sub-

ject showed a trend but it was not significant. b: The power spec-

tra for the cluster of sensors with significant increase in alpha ac-

tivity with memory load. c: Maps of the regression coefficient b

of the memory-dependent alpha activity estimated in source

space and colocalized on the individual subjects’ MRIs. The coeffi-

cients in the 3D volume are projected to the brain surface. The

green lines indicate the parieto-occipital sulcus. The maps are

thresholded for each subject with respect to 50% of the maximal

correlation coefficient.
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DISCUSSION

In this study we have reproduced previous findings

demonstrating a parametric increase in alpha activity with

load during working memory retention. Whereas in a pre-

vious study the memory items were consonants [Jensen

et al., 2002], we now used faces. We were able to localize

the neuronal sources of the memory-dependent alpha ac-

tivity to brain regions in the vicinity of the parieto-occipi-

tal sulcus. This location is consistent with the sources ac-

counting for the ‘‘classical alpha activity’’ emerging when

subjects rest with their eyes closed identified in previous

studies [Salenius et al., 1995; Salmelin and Hari, 1994]. We

conclude that the working memory-dependent alpha activ-

ity is most likely produced by sources that also are respon-

sible for the resting alpha activity.
There are several novel elements in the data analysis

that we have applied. The use of the planar gradient has
previously proven useful in systems with physical planar
gradiometers [Hämäläinen et al., 1993]. We used a simple
algorithm to estimate the planar gradient from axial gradi-
ometer signals. This is particularly advantageous when
analyzing power of oscillatory signals: in the axial gradi-
ent, dipolar fields produce two regions of power adjacent
to the source. The power estimate in the synthetic planar
gradient produces primarily one region of power directly
above the source. As a result, the planar gradient provides
a more spatially focal power estimate compared to axial
gradiometers [Bastiaansen and Knosche, 2000]. The appli-
cation of a cluster randomization technique for analyzing
the significant effects at the sensor level provides a power-
ful approach to control for multiple comparisons with
respect to sensors (Maris and Oostenveld, submitted).
Finally, we made use of a beamforming technique to esti-
mate parametric changes in power of the measured sig-
nals. The approach allowed us to colocalize the regression
coefficients of parametric changes on the subjects MRIs.
This effectively deals with the problem of noise bias with
respect to depth as discussed in Van Veen et al. [1997].

In a previous study we also identified an increase in alpha
power with working memory load; however, source local-
ization was not attempted since the recordings were based
on 32 channels EEG and anatomical information was not
acquired [Jensen et al., 2002]. The EEG study not only
reported on a memory-dependent alpha increase in poste-
rior sensors, but an alpha increase was also observed in sen-
sors over the central band. This might suggest the involve-
ment of somato-motor areas in producing memory-depend-
ent alpha activity. Nevertheless, in the current MEG study
we did not find evidence for the engagement of somato-
motor sources. It should also be emphasized that EEG topog-
raphies are highly spatially smeared due to volume conduc-
tion and cannot be directly compared to MEG topographies.

What is the functional role of the memory-dependent
alpha activity? One possibility is that neuronal rhythmic
activity synchronized at �10 Hz is required for the active
maintenance of working memory. Another possibility is

that the alpha activity reflects modulation and/or inhibi-
tion of areas not required for the memory maintenance.
Recently, Druzgal et al. [2003] used functional MRI (fMRI)
to study the brain activation in a Sternberg task that was
similar to ours. They identified a parametric increase the
blood oxygenation level-dependent (BOLD) signal with
memory load in prefrontal and inferior temporal areas.
These areas have been associated with working memory
maintenance and face processing, respectively [Curtis and
D’Esposito, 2003; Kanwisher et al., 1997]. The MRI-studies
did not report on load-dependent activity around the parieto-
occipital sulcus. Thus, we conclude that the memory-
dependent alpha activity is not likely to reflect neuronal
processing directly required for working memory mainte-
nance. Often, brain activity related to working memory
maintenance has been shown to be lateralized. We do not
find a lateralization in the memory-dependent alpha activ-
ity, which is consistent with the idea that alpha reflects in-
hibition of the dorsal visual stream. We would like to
emphasize that our findings are not compatible with the
idling hypothesis, given that the notion of idling cannot
explain the increase in alpha power with memory load
[Pfurtscheller et al., 1996].

Is the increase in alpha activity due to a rebound follow-
ing visual stimulation? The rebound effect is observed as a
decrease in alpha power after visual stimulation followed
by a transient increase. In the case of the memory task,
one could hypothesize that the more items presented, the
stronger the rebound. However, several findings are not
consistent with the rebound hypothesis. First, the degree
of initial alpha suppression (0.2–0.7 s) with respect to base-
line does not increase with memory load. Second, the
alpha power is sustained during most of the retention
interval (see Fig. 3b and Jensen et al. [2002, fig. 3D]),
whereas an alpha rebound would be transient. Third, note
that the alpha increase was much stronger during the
retention period compared to the recall period. It should
be noted that the stimulation protocol was different in the
previous EEG study in the sense that the items were pre-
sented simultaneously rather than sequentially. Despite
these differences the time-course and load dependence of
the alpha activity were similar.

In line with other studies, we propose that the load-de-
pendent alpha activity reflects inhibition or disengagement
of the dorsal visual stream [Cooper et al., 2003; Jensen
et al., 2002; Jung-Beeman et al., 2004; Ray and Cole, 1985;
Vanni et al., 1997]. This inhibition might serve to suppress
visual inputs in order to prevent interfering signals to
brain areas involved in actual working memory mainte-
nance. The inhibition hypothesis is consistent with EEG
findings demonstrating that directed visual attention sup-
presses alpha activity in posterior areas contralateral to the
hemifield of attention [Worden et al., 2000]. Why does
alpha activity result in functional inhibition? One simple
hypothesis is that if neurons are strongly entrained by a
10-Hz rhythm, they will not fire more often than every
100 ms. This will effectively prevent the neurons from par-
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ticipating in information processing. Thus, in the case of
working memory retention, the alpha activity in the pari-
eto-occipital sulcus will block the dorsal information flow
from visual areas.

Which areas provide the signal that results in an
increase of alpha power with memory load? One possibil-
ity is that frontal areas engaged in executive control re-
quired for the memory task provide a top-down drive,
which increases with working memory load. This top-
down drive could either be phasic or constant. A phasic
drive could be measured as coherence in the alpha band
between frontal and posterior areas during working mem-
ory maintenance. This is in line with work by Von Stein
et al. [2000], who propose that top-down processing can be
studied by measures of synchronization in the lower fre-
quency bands (theta and alpha). Indeed, several EEG stud-
ies have identified fronto-posterior coherence in the alpha
band in working memory tasks [Sauseng et al., 2005;
Schack et al., 2005]. If the posterior alpha activity during
memory maintenance is due to a top-down drive, meas-
ures of causal interactions [e.g., Brovelli et al., 2004] should
reveal that the posterior alpha activity is controlled by
frontal activity. Further investigations of fronto-temporal
coherence in the alpha band and measures of directionality
as a function of memory load would help to elucidate
whether the posterior alpha activity is a consequence of
phasic top-down inhibition.
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