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PARISAR: Patch-based estimation and regularized

inversion for multi-baseline SAR interferometry
Giampaolo Ferraioli, Charles-Alban Deledalle, Loic Denis, Florence Tupin

Abstract—Reconstruction of elevation maps from a collection
of SAR images obtained in interferometric configuration is a
challenging task. Reconstruction methods must overcome two
difficulties: the strong interferometric noise that contaminates
the data, and the 2π phase ambiguities. Interferometric noise
requires some form of smoothing among pixels of identical
height. Phase ambiguities can be solved, up to a point, by
combining linkage to the neighbors and a global optimiza-
tion strategy to prevent from being trapped in local minima.
This paper introduces a reconstruction method, PARISAR, that
achieves both a resolution-preserving denoising and a robust
phase unwrapping by combining non-local denoising methods
based on patch similarities and total-variation regularization. The
optimization algorithm, based on graph-cuts, identifies the global
optimum. Combining patch-based speckle reduction methods and
regularization-based phase unwrapping requires solving several
issues: (i) computational complexity, the inclusion of non-local
neighborhoods strongly increasing the number of terms involved
during the regularization, and (ii) adaptation to varying neigh-
borhoods, patch comparison leading to large neighborhoods in
homogeneous regions and much sparser neighborhoods in some
geometrical structures. PARISAR solves both issues. We compare
PARISAR with other reconstruction methods both on numerical
simulations and satellite images and show a qualitative and
quantitative improvement over state-of-the-art reconstruction
methods for multi-baseline SAR interferometry.

Index Terms—SAR interferometry, multi-channel InSAR, Non-
local means, TV regularization

I. INTRODUCTION

Phase unwrapping (PhU) operation is one of the most

challenging tasks when reconstructing the height of earth

surface based on Interferometric Synthetic Aperture Radar

imaging [1]. PhU consists of retrieving the absolute value of

the phase, starting from the 2π-wrapped data. Thanks to the

widely known relation between the measured interferometric

phase and the height of the observed scene [2], it is possible

after adequate calibration steps and a PhU operation to recover

the height of the observed area.

Several PhU algorithms have been developed in the last

twenty years, and they can be classified into two main fami-

lies: path-following methods and global optimization methods.
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Path-following PhU algorithms follow a path in the wrapped

phase and unwrap each pixel locally. Algorithms from the

second family minimize some measure of misfit between

the unwrapped solution and wrapped one while promoting

unwrapped solutions with few discontinuities. A good review

of these algorithms can be found in [3] and [4].

Two difficulties make PhU a non-trivial operation: the first

is due to the perturbations of interferometric noise on the

acquired data; the second is the presence of phase differences

larger than π between two neighboring pixels, violating the

so-called Itoh condition [5]. Such large phase differences arise

when neighboring pixels have very different height values (i.e.

in presence of discontinuities), or due to (strong) interferomet-

ric noise. Most existing algorithms account for the statistics of

interferometric noise. The violation of Itoh condition makes

the PhU problem ill-posed, thus challenging to solve. Com-

monly, to regularize the PhU problem and obtain a unique

solution, differences between neighboring absolute phases are

supposed to be less than π. This hypothesis is satisfied in the

case of height profiles without strong discontinuities and high

slopes, and for small baseline values [1].

PhU can be applied to more complex scenes with strong

discontinuities or steep slopes by increasing the number of

interferograms used during the inversion. By correctly combin-

ing different available interferograms, it is possible to restore

the solution uniqueness without imposing constraints on the

phase difference between neighboring pixels [6]. Multiple

interferograms, commonly known as multi-channel interfer-

ograms, can be obtained in two different ways: using sensors

working at different frequencies or using sensors acquiring

the scene with different baselines. The latter, multi-baseline

interferometry, is the case when the sensor observes the same

scene, repeatedly, from slightly different positions, and is

commonly the adopted one [7].

In the past years, multi-baseline PhU techniques have been

largely investigated for height reconstruction [8], [9], [10],

[11] and also for deformation retrieval applications (i.e. Dif-

ferential Interferometry) [12][13]. More recently, new multi-

baseline height reconstruction algorithms have been proposed.

A technique based on the extension of cluster analysis has

been proposed in [14]. The reduction of memory requirements

when dealing with multiple data is the main aim of [15].

The use of Kalman Filter in case of multiple acquisitions

has been investigated in [16]. Finally, multi-baseline interfero-

grams have also been used together with other information to

improve reconstruction accuracy in urban areas: in [17] multi-

baseline data have been jointly processed with multi-aspect

data while in [18] multi-baseline interferograms have been
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exploited together with amplitude information.

In order to obtain satisfying results using multi-baseline

data, the first step is to correctly combine the available

information. An effective way to combine the available multi-

channel (i.e., multi-baseline) interferometric data is to ex-

ploit statistical estimation methods. These methods propose

to exploit the statistical distribution of the acquired data and

to implement instruments provided by both classical [19],

[20] and Bayesian estimation theory. In particular, for the

latter when Markov Random Fields (MRF) theory is used for

modeling the unknown height profile the so-called Bayesian

Markovian estimation framework arises [21], providing very

effective results in the multi-channel case [22], [23]. Interest-

ing previous works proposed to apply the Bayesian Markovian

framework to single-channel interferograms [24], [3].

In this paper we propose to exploit contextual information to

improve multi-baseline unwrapping. Patch-based approaches,

like NL-SAR [25], can effectively exploit local structural

information in the noisy signal to gather similar samples and

improve the estimation. To do so, they compare small pieces

of information (the patches) and combine the similar ones.

These estimators produce results with non-stationary residual

variance: in regions where many similar patches are found,

the estimate is accurate, while rare configurations are left

almost unchanged, i.e., with the strong original interferometric

variance. At these locations, an additional smoothing is to be

enforced. Moreover, ambiguities due to phase wrapping can

often be solved based on local smoothness priors. Markovian

prior models of the elevation can be defined in this regard:

total variation (TV) or truncated quadratic functions lead to

smooth elevation while allowing strong discontinuities [18].

These regularization models applied alone suffer some limits

like staircasing effects affecting low slope areas and leading

to piecewise constant reconstruction [26]. Following the ap-

proach proposed in [27] for image and video, we investigate

the combination of both a patch-based approach and TV

regularization for elevation estimation in a multi-baseline

interferometric framework, exploiting the whole statistical

distribution of the interferometric data.

Contributions: The paper describes a strategy to perform

this combination of non-local (i.e., patch-based) estimation

and non-convex optimization. There are several possible ways

to modify a regularization method in order to include non-

local similarities. We show that, by using the weighted log-

likelihood to account for these similarities, the complexity of

the regularization step is left unchanged, which is an important

aspect regarding the applicability of the method. Another key

element of the proposed method is to account for the spatially

variant standard deviation of the output of non-local speckle

reduction methods. Regularization thus applies more strongly

to regions with larger residual noise.

Section II describes the proposed model: the weighted log-

likelihood term including patch-based similarities is intro-

duced, then the TV regularization term and the global energy

to be minimized, as well as the adopted optimization scheme

are presented. In section III, an in-depth study of the proposed

model is performed through experiments on simulated data,

while results on real images are presented and discussed in

section IV.

II. THE MODEL

A multi-channel interferogram with D channels is formed

by the collection, for each pixel i, of the D-dimensional

complex-valued scattering vector gi. Under the classical hy-

pothesis of fully developed speckle (Goodman model [28]),

the scattering vector gi is distributed according to a circular

complex Gaussian:

p(gi|Σi) =
1

πDdet(Σi)
exp

(
−g

†
i Σ

−1
i gi

)
(1)

with g
†
i the Hermitian transpose of the column vector gi. This

distribution is parameterized by the D×D complex covariance

matrix Σi = E[gig
†
i ] (E denoting the expectation) at pixel i.

This covariance matrix can be decomposed as:

Σi = R
1/2
i · Γi ·R1/2

i , (2)

where Ri is a diagonal matrix with [Ri]a,a = ra =
E
{
| [gi]a |2

}
the reflectivity at pixel i in channel a, and Γi

is the coherence matrix given by

Γi =




1 s1,2 · · · s1,D
s∗1,2 1 s2,D

...
. . .

...

s∗1,D s∗2,D 1


 , (3)

with sa,b = E
{
[gi]a · [gi]

∗
b

}
/
√
ra rb = γa,b exp(j ψa,b) the

inter-channel complex coherence between channels a and b,
γa,b the coherence and ψa,b the interferometric phase.

Provided that the images have been properly pre-processed

in order to correct for flat earth and atmospheric phase distor-

tions, the interferometric phases ψa,b are related to the height

h through a function fa,b that accounts for the interferometric

baselines [1]:

ψa,b = fa,b(h) = αa,b · h =
4π B⊥(a, b)

λ ρ0 sin θ
h , (4)

where λ is the working wavelength, B⊥(a, b) is the orthogonal

baseline between channels a and b, ρ0 is the distance to the

scene, and θ is the view angle.

In multi-baseline interferometry, a first step generally con-

sists of estimating the covariance matrix Σi at pixel i by

spatial averaging over a square window Wi centered on i:

Σ̂
(box)

i =
1

N

∑

j∈Wi

gjg
†
j . (5)

N being the number of samples in Wi. The phases ψ̂a,b ex-

tracted from this empirical covariance matrix are then inverted,

in a second step, to produce an estimate ĥ of the height such

that ψ̂a,b ≈ fa,b(ĥ) for all channels a and b.
Such an approach suffers from two drawbacks: (i) the

first step involves an averaging procedure that degrades the

spatial resolution by blurring thin structures, and (ii) the height

estimation does not consider estimated heights at neighboring

locations, thereby producing very noisy estimates in low

coherence regions.
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In order to address these drawbacks, we propose to follow

a Maximum a Posteriori (MAP) approach. In Bayesian esti-

mation theory, a MAP estimator is computed by minimizing

the a posteriori energy E , which is the sum of two terms:

the (neg)-log-likelihood term (aka “data term” D) and the a

priori term (aka “regularization”). The bias and variance of

the estimator are controlled by balancing the relative weight

of those two terms. Given the strong fluctuations of point

estimates of interferometric phase, we consider in paragraph

II-A a generalization of the log-likelihood term to include

a form of averaging over similar pixels within an extended

neighborhood. The smoothing enforced by the a priori term

to produce a satisfying estimate has then no need to be as

severe as for a point estimate. We discuss the definition of the

a priori term in paragraph II-B.

A. Weighted log-likelihood term

The statistical model defined by Eq.(1) leads to the follow-

ing log-likelihood term at pixel i (with const. a constant term):

− log p(gi|Σi) = log det(Σi) + g
†
i Σ

−1
i gi + const. (6)

The number of unknowns in Σi is larger than the number

D of observations in gi. Estimation of hi alongside of Ri

and γa,b values with a MAP estimator would thus rely on

the choice of regularization terms expressed on all these

unknowns. Designing such a regularization may be difficult

due to the different nature of the unknowns: radiometry,

coherence, and height, and their non-linear interaction in the

definition of Σi in Eq.(2). To circumvent these problems,

we choose to replace the log-likelihood term of covariance

matrix Σi with a more general expression: the weighted log-

likelihood [29], [30], [31]. This term considers not only the

scattering vector gi but all gj , for j spanning all pixel indices

of an extended1 neighborhood Ni centered on pixel i, as:

Di = −
∑

j∈Ni

ωi,j log p(gj |Σi) (7)

with ωi,j a weight given to gj in the estimation at pixel i. Such

weights are typically chosen in a data-driven way in order

to select only samples that are relevant for the subsequent

estimation. In words, the covariance Σi is not only required

to support the observation at pixel i but also observations at all

the pixels j for which the weights ωi,j are large. Minimizing

(7) while setting the weights ωi,j to be equal to each other

within the square window Wi centered on i and equal to 0

outside leads to Eq.(5), i.e., the boxcar covariance estimator.

Spatially extending the number of observations related to a

given covariance matrix Σi reduces the need for a regular-

ization since the number of unknowns becomes much smaller

than the number of observations. This however comes at a

price: by mixing observations from different spatial locations

j in the estimation of Σi, the spatial resolution is reduced. It

is therefore crucial that the weights ωi,j be carefully chosen so

1while the window used for boxcar filtering is typically smaller than 7× 7

or 9× 9, the extended neighborhood covers several tens of pixels and could
possibly be extended to the whole image, see e.g., [32]; we drop the inclusion
∈ Ni in the following sums.

as to include in Eq.(7) only pixels corresponding to the same

covariance Σi. Designing methods to adaptively compute

weights that preserve at best the resolution has been the

subject of numerous works, starting with Lee’s sigma filter

[33] and oriented windows [34] up to more recent patch-

based methods, see the review [35]. In the following, we

chose to compute the weights using the NL-SAR algorithm

[25] since it is very effective at preserving fine structures, and

its parameters are tuned in an unsupervised way to adapt to the

number of channels D, the sensor, the resolution and the image

content. The derivation of our method is however general

and independent from the choice of a specific algorithm for

computing the weights ωi,j .

We define first the weighted maximum likelihood estimator

Σ̂
(WML)

i as the covariance matrix Σi that minimizes Di.

Proposition 1. The weighted maximum likelihood estimator

is given by the following weighted average:

Σ̂
(WML)

i =
1

τi

∑

j

ωi,jgjg
†
j with τi =

∑

j

ωi,j . (8)

Proof. The definition of Di in Eq.(7) leads to

Σ̂
(WML)

i = argmin
Σi

−
∑

j

ωi,j log p(gj |Σi)

= argmin
Σi

∑

j

ωi,j

[
log det(Σi) + g

†
j Σ

−1
i gj

]

= argmin
Σi

τi log det(Σi) +
∑

j

ωi,j tr
[
Σ

−1
i gjg

†
j

]

= argmin
Σi

τi log det(Σi) + tr

[
Σ

−1
i

(∑

j

ωi,jgjg
†
j

)]
.

The gradient of the objective function with respect to Σi is:

τiΣ
−†
i −Σ

−†
i

(∑

j

ωi,jgjg
†
j

)
Σ

−†
i .

After multiplying from the left and right by Σ
†
i , the first order

optimality condition (null gradient) leads to the desired result.

The expression of the data term Di can be significantly sim-

plified into a single term thanks to the following proposition:

Proposition 2. The weighted log-likelihood data term can be

written in terms of the weighted maximum likelihood estimate:

Di = τi

(
log det(Σi) + tr

[
Σ

−1
i Σ̂

(WML)

i

])
. (9)

Proof. The weighted log-likelihood is defined in Eq.(7) by:

Di = −
∑

j

ωi,j log p(gj |Σi)

=
∑

j

ωi,j

[
log det(Σi) + g

†
j Σ

−1
i gj

]

= τi log det(Σi) + tr

[
Σ

−1
i

(∑

j

ωi,jgjg
†
j

)]

= τi log det(Σi) + τi tr
[
Σ

−1
i Σ̂

(WML)

i

]
,
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were the irrelevant additive constant term has been dropped,

since Di will be involved in minimization problems.

Proposition 2 has important practical consequences. While

the original definition of the weighted log-likelihood data

term Di involved the sum of many terms (typically, several

hundreds in the context of non-local methods) for a single

pixel i, introduction of the weighted maximum likelihood

estimate drastically simplifies the expression of Di into a

single term. This paves the way to a maximum a posteriori

estimation based on data terms Di.

B. Prior term

In urban areas and at meter resolutions, the height is

typically constant from one pixel to a neighboring pixel, or

varies strongly when the two pixels belong to two different

structures, e.g., ground and roof. We therefore select a prior

term that favors piecewise constant images: the total variation

defined by
∑

(i,j)

|hi − hj | , (10)

where (i, j) indicates a pair of neighboring pixels.

Note that in other contexts (coarser resolutions, smooth

surfaces), other convex pairwise regularization terms may be

considered within the framework of our method.

C. A posteriori energy E
The a posteriori energy for a height map h, i.e., a vector of

heights for all pixels, includes both the data term introduced in

paragraph II-A, and the regularization proposed in paragraph

II-B. As the data term is separable in terms of heights hi, the

a posteriori energy reads as:

E(h) =
∑

i

Di(hi) + β
∑

(i,j)

|hi − hj | , (11)

where β is a hyper-parameter that balances the relative im-

portance of the fidelity to the observations (enforced by terms

Di) and the smoothness of the height map h (enforced by the

a priori). Beyond this global tuning through parameter β, it

is necessary to account for the variable number of neighbors

included in the weighted log-likelihood. Weights ωi,j indeed

vary from one pixel to another. In homogeneous regions, many

similar neighbors are identified, thus the weighted maximum

likelihood estimate Σ̂
(WML)

i is reliable. In contrast, in an

isolated structure, very few similar neighbors are identified

and most weights ωi,j are (close to) zero, leading to a very

noisy estimate Σ̂
(WML)

i . To account for this disparity between

estimates, we follow the idea of [27] and set the sum of

weights τi at pixel i (see Eq.(8)) to be inversely proportional

to the standard deviation of the estimator:

τi =

√
L̂i , (12)

with L̂i the equivalent number of looks corresponding to the

weighted neighborhood defined by the weights ωi,j [25]:

L̂i =
(
∑

j ωi,j)
2

∑
j ω

2
i,j

. (13)

D. MAP estimation of the height distribution

The height map h can be estimated in the MAP sense by

solving the minimization problem:

ĥ
(MAP)

= argmin
h

E(h) , (14)

whose expression can be recast as follow.

Proposition 3. Let r̂a, γ̂a,b and ψ̂a,b be the estimated reflec-

tivities, coherences and phases extracted from Σ̂
(WML)

i using

Eq.(2) and (3). Consider reflectivity values and coherences to

be fixed, i.e., r̂a = ra and γ̂a,b = γa,b for all channels a
and b, and optimize only with respect to the height (no joint

optimization). The energy minimization problem (14) becomes:

ĥ
(MAP)

= argmin
h

∑

i

√
L̂i · tr

[
Γ
−1
i (hi) · Γ̂

(WML)

i

]

+ β
∑

(i,j)

|hi − hj | , (15)

with [Γi(hi)]a,b = γ̂a,b · exp
(
j · fa,b(hi)

)

and [Γ̂
(WML)

i ]a,b = γ̂a,b · exp
(
j · ψ̂a,b

)
,

where fa,b is defined in Eq.(4).

Proof. Since det(Σi) does not depend on hi, see [36], the

log det(Σi) terms in Eq.(9) can be dropped in the data terms

Di. The energy minimization problem becomes:

ĥ
(MAP)

= argmin
h

∑

i

√
L̂i · tr

[
Σ

−1
i (hi) · Σ̂

(WML)

i

]

+ β
∑

(i,j)

|hi − hj | .

As r̂a = ra, we have Σ̂
(WML)

i = R
1/2
i Γ̂

(WML)

i R
1/2
i and

Σ
−1
i (hi) = R

−1/2
i Γ

−1
i (hi)R

−1/2
i . Injecting these two equal-

ities in the above equation, and using that γa,b = γ̂a,b and

ψa,b = fa,b(hi) conclude the proof.

This minimization problem is highly non-convex because

of the dependence on h in the data term through a phase

term. Global minimization can still be performed since the data

term is separable (a sum of independent terms over all pixels)

and the regularization is a sum of convex pairwise terms (i.e.,

involving only pairs of pixels). We use the graph construct of

Ishikawa [37] to map the original non-convex problem into

a maximum-flow / minimum-cut problem. We discretize the

range of height values into H heights, then build a graph with

H layers, each layer containing a node for each pixel in the

image. Each node is connected to nodes corresponding to the

spatial neighbors within each layer, and to the corresponding

nodes in the layer immediately above and below. Capacities

of the edges are set according to values of the terms in the

optimization problem (15).
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The size of the graph is thus proportional to the number of

pixels times the number of heights. Memory constraints there-

fore limit the method to regions of size below a million pixels.

Larger regions can be processed either by considering sliding

windows, as in [38], or by using multilabel partition moves

[39]. If a different convex and pairwise regularization term was

preferred (see paragraph II-B), a similar graph construct would

still be possible but it would involve many supplementary arcs.

The convex optimization approach described in [40] would

then be preferable in terms of computational and memory

costs. The choice of a non-convex regularization term (e.g., a

truncated quadratic function of the height differences) would

make the optimization much harder and only approximate

solutions could be sought, at the risk of falling in a local

minimum due to the multi-modal nature of the data term Di.

The height reconstruction algorithm, called PARISAR

(PAtch-based estimation and Regularized Inversion for SAR

interferometry), is summarized in the following box.

Algorithm: PARISAR Height Reconstruction Algorithm

1 Collect the D single-look complex images g1 to g
D

2 Estimate Σ̂
(WML)

i and L̂i for all pixels i (e.g., with NL-SAR)
3 for all h in the discretized range of heights
4 for all pixels i

5 Compute the data term
√

L̂i tr
[
Γ

−1
i

(h) · Γ̂
(WML)

i

]

6 Add a node in the graph for pixel i
with an edge capacity equal to the data term

7 Add edges between neighboring nodes
8 end for
9 end for

10 Compute the minimum cut on the graph

11 Derive the optimal height map ĥ
(MAP)

from the minimum cut

III. VALIDATION ON NUMERICAL SIMULATIONS

The quantitative and qualitative assessment of the method

has been conducted on different test cases. First a quantitative

validation is performed using three different simulated test

cases: an urban-like scenario, a pattern of squares and a

natural scenario, named Ghiglia. The first test case aims at

validating the ability of the proposed approach to unwrap

and regularize areas characterized by height discontinuities,

to correctly handle very low coherence areas (for example

shadow areas), and to retrieve small scale structures. The

second simulation is designed to analyze the performance of

the method for a wide range of configurations (i.e., different

coherence and building height values). The last simulation,

Ghiglia, is a classical numerical simulation used to assess the

behavior of algorithms in a case close to natural height maps.

The datasets are made of three complex images correspond-

ing to different baselines. The adopted system parameters are

summarized in Table I. In particular, the table contains the αa,b

parameters of Eq.(4), the corresponding ambiguity height and

the size of the considered scene. In the following, parameter

β has been manually set. The adopted values are reported for

the different datasets.

In order to compare the results provided by the proposed

algorithm PARISAR, different multi-channel methods have

been considered: MLNL (Maximum Likelihood with Non

Local), MAPNL (Maximum a Posteriori with Non Local) and

MCPU (Multi-Channel Phase Unwrapping). The first one is

a weighted maximum likelihood estimator that exploits the

weighted log-likelihood terms Di, without any regularization;

the second one is a Maximum a Posteriori that implements

the estimator of Eq.(15) with a sub-optimal minimization

procedure based on Iterated Conditional Modes (ICM)); fi-

nally the MCPU proposed in [23] implements a Maximum

a Posteriori estimator based on the statistical independence

between interferograms and on the use of a graph-cut-based

optimal minimization procedure.

The processing is performed by a high-level code written

in Matlab language and based on C/C++ code for NL-SAR

filtering and minimum cut computations, on an Intel Core i7

workstation with Linux Debian as operative system.

A. Urban-like profile

The complex data have been simulated starting from the

height profile and the coherence map, reported in Figures

1(f) and 1(a). The starting height profile is a typical scenario

used to assess the capability of multi-channel algorithms,

made of structures of different heights, characterized by height

discontinuities. The characteristics of the profile and of the

scene are reported in Table I. The height of the buildings

are such that the related phases are ambiguous even for

the smallest considered baseline, making the unwrapping of

the profile a difficult task, even in the absence of noise.

Concerning the coherence of the scene, three areas have

been considered: ground and buildings area, top left building,

shadowing areas (see Figure 1(a)). For the generation of the

data, the following values were adopted for the different

combination of the three images: γ = {0.7, 0.65, 0.6} for

the ground and buildings area, γ = {0.45, 0.35, 25} for

the top left building, γ = {0.1, 0.1, 0.1} for the shadowing

areas. Note that for the considered profile and the adopted

coherence the Itoh condition is not satisfied, thus a single-

channel unwrapping algorithm can not be adopted.

The generated D = 3 interferograms are shown in Figures

1(c), 1(d), 1(e). The mean estimated coherence map, using a

simple box-car filter, is shown in Figure 1(b).

PARISAR and the other previously reported multi-channel

algorithms have been tested on the dataset. From the visual

inspection of the results, the good performances of the pro-

posed algorithm are evident. While all the other considered

techniques either fail in estimating the height of some build-

ings (MCPU), or fail in removing the noise (MLNL) or fail in

retrieving the details of the image, such as borders, the small

structures or shadowing areas (MAPNL), PARISAR is able to

correctly solve all the previously reported issues. The image is

well regularized, all the structures, with the correct heights, are

retrieved. Shadow areas are well reconstructed and the small

structure is not flattened or confused with the surrounding

ground area. A strong reduction of the variance of height

estimation while preserving edges (no blurring phenomenon)

is achieved.

The visual analysis is confirmed by the quantitative analysis

based on the evaluation of the Normalized Reconstruction
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TABLE I
NUMERICAL SIMULATIONS PARAMETERS (SIZES GIVEN IN PIXELS).

Dataset αa,b hamb size

Urban [-0.55 -1 -0.45] [5.7 3.1 6.9]m 70× 70
Squares [-0.55 -1 -0.45] [5.7 3.1 6.9]m 240× 240
Ghiglia [-0.55 -1.2 -0.65] [5.7 2.6 4.8]m 458× 157

TABLE II
NORMALIZED RECONSTRUCTION SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 1.16 0.32 0.29 – 0.03

Squares 3.88 1.07 1.12 – 0.52

Ghiglia 0.29 0.13 – 0.01 0.001

Square Error, defined as the quadratic norm of the difference

between the true height values and the estimated ones, nor-

malized by the the true ones (see [22]) of Table II and on

the Root Mean Square Error, reported in Table III. For both

parameters, PARISAR outperforms the other algorithms.

B. Pattern of squares

This second test aims at analyzing the proposed method

for different configurations, in terms of height and coherence

values. The starting true profile is made of structures of

different heights (Figure 2(f)), while the coherence spans

different values from 0 to 1 (Figure 2(a)). By combining

the true profile and the coherence map with the different

available baselines (system parameters are reported in Table

I), three complex images are generated. The effect of this

combination is an interferogram characterized by different

behaviors: the top left part contains low height structures with

weak noise (high coherence value), while the bottom right

corner is characterized by high heights with strong noise. The

other two quadrants contain low height structures under strong

noise and high height structures under a weak noise.

The dataset is used to test all previously mentioned algo-

rithms. The results are shown in the second row of Figure 2.

MLNL and MCPU provide unsatisfying results: the former

provides a noisy solution, while the latter over-regularizes

the solution creating artifacts. The best results are achieved

in case of MAPNL and PARISAR. Exploiting the non-local

estimation both techniques are able to provide effective results

in almost all the areas. PARISAR outperforms MAPNL, in

terms of noise regularization and correct height retrieval.

This is evident from both visual inspection and quantitative

analysis, reported in Tables II and III (see the corresponding

lines for the Square dataset). As expected, the errors that

appear in PARISAR reconstruction are mainly in the bottom

line, where the interferometric noise is strong.

C. Ghiglia profile

In order to assess the performances of the algorithm on

a natural scenario, a realistic profile generated on the basis

TABLE III
ROOT MEAN SQUARE ERROR

Dataset MLNL MAPNL MCPU PUMA PARISAR

Urban 3.11 1.63 1.56 – 0.52

Squares 5.3 2.78 2.84 – 1.94

Ghiglia 17.41 11.47 – 3.96 1.22

of a real digital elevation model of mountainous terrain

around Isolation Peak, Colorado, is considered [41]. In the

following we will refer to it as Ghiglia profile. The system

parameters are reported in Table I. Three different coherence

values, {0.7, 0.65, 0.6}, are adopted, for the three considered

combinations of images. Three interferograms are generated.

The true profile, the data and the results are reported in Figure

3. The considered profile is not ambiguous: there are no height

discontinuities. In this case, the unwrapping task difficulty

comes from the fringes that tend to overlap, creating a sort of

aliasing. Since the profile is not ambiguous, a single-channel

phase unwrapping can be used to unwrap the profile. The

PUMA algorithm proposed in [42] is considered.

The results obtained using MAPNL, PUMA and PARISAR

are shown in Figures 3(f), 3(g) and 3(h), respectively. The

first and the last are tested using the whole dataset, PUMA

is tested using only the smallest baseline interferogram. It is

evident that, even if not ambiguous, a single-channel algorithm

as PUMA is penalized by using a single interferogram and

therefore fails to correctly retrieve the height, due to the

aliasing of fringes. This problem is solved by PARISAR by

using all the available channels. Note that exploiting the whole

dataset may not be sufficient for correctly retrieving the profile:

the difference between results obtained by MAPCorrNL and

PARISAR show that the regularization role is important. The

quantitative analysis reported in in Tables II and III (see the

corresponding lines for the Ghiglia dataset) confirms the visual

inspection.

IV. APPLICATION TO SATELLITE SAR IMAGES

To qualitatively evaluate algorithm PARISAR on real satellite

SAR images, we considered two datasets: an urban test site

(Napoli) and a natural test site (Serre-Ponçon). The two scenes

have been acquired using two different sensors, COSMO-

SkyMed and ERS, to test the capabilities of the method to

work with different radar frequencies (X-band and C-band)

and sensors. The systems parameters, previously defined in

Eq.(4), are summarized in table IV. For both datasets, the

hypothesis of stationary observed scene is considered. This

hypothesis is met when the temporal baseline span is limited.

For the considered data sets, the maximum temporal baseline

span is of 4 months for Napoli test case and 5 months for

Serre-Ponçon one, which are compatible with the stationary

hypothesis.

A pre-processing procedure is mandatory for all multi-channel

based algorithms: it is needed to correctly combine the differ-

ent available images. The pre-processing consists of two steps:

the first one aims at removing possible phase artifacts (due for
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach, for β = 0.25.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. (a) Starting coherence map, (b) empirical coherence map, (c) first interferogram, (d) second interferogram, (e) third interferogram, (f) original height
profile, (g) estimated solution using MLNL approach, (h) estimated solution using MAPNL approach, (i) estimated solution using MCPU approach, (j)
estimated solution using the proposed PARISAR approach, for β = 0.05.

example to the atmosphere), while the second one consists

in the calibration of the phases. Concerning the first step,

different techniques can be applied according to the extension

and to the topography of the observed scene. The algorithm

proposed in [43] has been adopted for Napoli test case, while

the algorithm proposed in [44] has been considered for Serre-

Ponçon test case. Concerning the second step, commonly a

relative phase calibration is applied based on the identification

of high coherence areas or permanent scatters. After the

reconstruction a constant offset is applied to the final image

(e.g. commonly the value of the offset is such that the ground

is set to zero meters).

A. Urban area: Napoli test case

The first dataset is composed of three 250 × 250 pixels

COSMO-SkyMed Stripmap images acquired close to Naples

TABLE IV
INTERFEROMETRIC CONFIGURATIONS OF THE SATELLITE IMAGES

Dataset Sensor ρ0 λ θ B⊥

Naples CSK 755.190 0.03 0.62 [0 517 251]m

Serre-P. ERS2 825.669 0.05 0.40 [0 36 96]m

train station, in Italy. One of the three available interferograms

is shown in the first row of Figure 4 together with the mean

amplitude (in log scale) and the mean coherence map. The

scene is very complex: different structures, with different

heights, shapes and reflectivities are present. The phase un-

wrapping results are shown in the second row. Independent

estimation of the height at each pixel leads to a very noisy

result (i.e., strong variance of the heights). This is evident from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Empirical coherence map, (b) first interferogram, (c) second interferogram, (d) third interferogram, (e) original height profile, (f) estimated solution
using MAPNL approach, (g) estimated solution using PUMA approach, (h) estimated solution using the proposed PARISAR approach, for β = 0.1.

the results of MLNL of Figure 4(e). Considering MAPNL and

PARISAR, the regularization reduces these fluctuations without

noticeable resolution loss. This reduction is more evident in

case of PARISAR (Figure 4(g)): the building structures are

retrieved, both in terms of shapes and heights. It is interesting

to note the capability of PARISAR in retrieving the low-height

circular structures on the left of the scene, while strongly

reducing noise: these structures are almost invisible both in the

interferogram and in the coherence image (very noisy area). A

quantitative validation of the result for Napoli test case can be

performed using Google Earth height data. The height of the

large building on the left of the scene, provided by Google

Earth, is of about 23m (highest area) and 18m, while the

height of the ground is of 8m. All Google Earth data refer to

the sea level. The relative height of the building is compatible

with the reconstruction of PARISAR. The height of the circular

building on the right of the scene, provided by Google Earth,

is of about 14m, while the height of the ground is of 7m,

on the sea level. The relative height of the building is also

compatible with the reconstruction of PARISAR. A qualitative

evaluation of the reconstruction can be performed based on the

optical images (2D and 3D) of the considered scene provided

by Google (Figures 4(d) and 4(h)), taken at the same time

period: from the radar-optical comparison it appears that the

structures are correctly retrieved, both in terms of shapes and

of relative building heights.

B. Mountainous area: Serre-Ponçon test case

The last 250×250 pixel dataset corresponds to a mountain-

ous area acquired by ERS sensor over Serre-Ponçon (France).

One of the three available interferograms is shown in the first

row of Figure 5 together with the mean amplitude (in log

scale) and the mean coherence map. This area is challenging

due to the presence of very low coherence areas and not

regular phase fringes. Phase unwrapping results are shown in

the second row. Both MLNL and MAPNL fail at correctly

unwrapping the profile. The latter provides a more reliable

result although there are several areas that are not correctly

unwrapped. Using PARISAR, it is possible to largely improve

the results. Wrapping problems are solved and noise is better

suppressed.

V. CONCLUSION

A new methodology to improve multi-baseline phase un-

wrapping has been proposed. Starting from the complete

statistical distribution of the interferometric data, the joint

exploitation of patch-based approaches and TV regularization

for elevation estimation has been discussed. The developed

algorithm, named PARISAR, implements a maximum a pos-

teriori estimator with a properly modified likelihood term,

by means of a two steps strategy: the first step consists of

estimating a covariance matrix at each pixel from the multi-

channel images available using a non-local filtering method

like NL-SAR; the second step introduces a TV penalty for

edge-preserving regularization. PARISAR has been tested on

several datasets and compared to other multi-channel algo-

rithms. The quantitative and qualitative analysis has been

carried out on three different simulated datasets, in order

to validate the effectiveness of the approach in different

configurations (various image structures and coherences). A

qualitative evaluation has been performed on two satellite

image datasets from two different sensors working at different

radar frequencies, displaying different spatial resolutions, on

an urban and a mountainous area. The results in both cases

are promising. PARISAR provides sensible elevation profiles,

seemingly outperforming other methods. Structural details are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) Mean amplitude image, (b) empirical coherence map, (c) one of the available interferograms, (d) optical image of the considered scene provided
by Google, (e) estimated solution using MLNL approach, (f) estimated solution using MAPNL approach, (g) estimated solution using the proposed method
PARISAR for β = 0.05, (h) 3D optical image of the considered scene provided by Google Earth.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) One of the available amplitude, (b) empirical coherence map, (c) one of the available interferogram, (d) estimated solution using MLNL approach,
(e) estimated solution using MAPNL approach, (f) estimated solution using the proposed method PARISAR, for β = 0.5.
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preserved while most of the noise is suppressed. All the

considered datasets were composed of only three images,

to show the potentiality of the technique in working with

a very limited number of images (avoiding problems with

large temporal baselines such as de-correlations, deformations,

etc.). Clearly a larger number of images, if available, can

be used by PARISAR. If the pre-processing of the images is

correctly performed the reconstruction would improve, since

the log-likelihood energy would benefit of additional data.

At the present stage, the method is able to handle shadows

but it does not accounts for the layover phenomenon. Only

tomographic approaches are able to provide a solution in

the case where different echoes, from structures at different

heights (i.e. roof, facade and ground), are integrated within

the same resolution cell. Interferometric approaches could be

used in such layover areas only in the case where one of

the contributions is dominant compared to the others. This

sometimes happens with the facades of the buildings that

are characterized by stronger reflections compared to the

roof and the ground. In this situation, the known layover

ramp appears in the interferograms (see [45], [46]) and the

proposed PARISAR algorithm would correctly manage and

reconstruct the ramp. On the contrary, if there is no dominant

contribution, such distortions can be addressed only using a

tomographic approach. The investigation of a tomographic-

based approach within the proposed framework is the subject

of future research.
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