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Mechanical resonators are emerging as an important new platform for quantum science and

technologies. A large number of proposals for using them to store, process, and transduce

quantum information1–4 motivates the development of increasingly sophisticated techniques

for controlling mechanical motion in the quantum regime. By interfacing mechanical res-

onators with superconducting circuits, circuit quantum acoustodynamics (cQAD) can make

a variety of important tools available for manipulating and measuring motional quantum

states. Here we demonstrate direct measurements of the phonon number distribution and

parity of nonclassical mechanical states. We do this by operating our system in the strong

dispersive regime, where a superconducting qubit can be used to spectroscopically resolve

phonon Fock states. These measurements are some of the basic building blocks for con-

structing acoustic quantum memories and processors. Furthermore, our results open the

door to performing even more complex quantum algorithms using mechanical systems, such
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as quantum error correction and multi-mode operations.

The quantum properties of solid-state mechanical objects have now been unequivocally

demonstrated through a number of seminal experiments5–10. By interfacing mechanical objects

with the strong quantum nonlinearity of superconducting qubits and drawing close analogies to the

well-developed field of circuit quantum electrodynamics (cQED), cQAD has become a particularly

powerful paradigm for creating and studying mechanical quantum states5–8. At the same time, me-

chanical resonators present a set of unique and useful properties that distinguish them from their

electromagnetic counterparts used in cQED. For example, acoustic resonators can be more com-

pact, suffer less from crosstalk, and exhibit longer lifetimes 11, 12 than electromagnetic resonators.

The fact that they are massive mechanical objects that exhibit quantum behavior also makes them

interesting platforms for investigating a variety of questions in fundamental physics13, 14.

A clear and immediate goal for the field is then to use mechanical devices to demonstrate

more complex quantum operations. In order to achieve this challenging goal, cQAD allows us to

adapt tools and techniques from other fields. A particularly useful set of tools becomes available

when a coupled qubit-resonator system reaches the strong dispersive regime, where an excitation

in the qubit (resonator) results in a shift of the resonator (qubit) frequency that exceeds the de-

coherence rates of both systems15, 16. The dispersive interaction is nowadays used ubiquitously

in cQED systems for quantum non-demolition (QND) measurements of the qubit or resonator

state17, 18. In particular, it allows for QND measurements of the photon number parity of a res-

onator without revealing the underlying photon number distribution. This is, for example, a crucial
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error syndrome measurement in many error-correction schemes for quantum information encoded

in harmonic oscillators19, 20. While the basic physics of cQAD is in principle analogous to cQED,

it has thus far been challenging for cQAD systems to reach a regime where the dispersive inter-

action is sufficiently large compared to decoherence to allow for such operations. This is largely

because it is difficult to maintain state-of-the art coherence times for both qubits and mechanical

resonators while combining them into a single device. Nevertheless, previous works have shown

that cQAD systems based on bulk acoustic wave resonators (HBAR) are promising for achieving

a good balance between quantum coherence and electromechanical coupling strength4.

In this work, we experimentally demonstrate a cQAD system operating in the strong dis-

persive regime and use it to perform measurements of the phonon number distribution and parity

of quantum states of a HBAR. Our system is a ~BAR-type device consisting of a plano-convex

HBAR fabricated using piezoelectric aluminum nitride on a sapphire substrate and a supercon-

ducting qubit on a separate sapphire chip5. We use a single-junction, non-flux tunable transmon

qubit and house the ~BAR inside a superconducting Al cavity, which improves the coherence time

of the qubit compared to previous devices. This improvement is crucial for reaching the strong

dispersive regime. All frequency tuning is performed by applying microwave drives to Stark shift

the qubit instead of applying an external magnetic field21. The assembled ~BAR is shown in Figure

1a, with the 3D transmon visible through the HBAR chip. The two components are aligned and

assembled using an industrial flip-chip bonder, which improves the reproducibility and robustness

compared to devices used in previous works22. The magnified view in Figure 1b indicates good

alignment between the qubit electrode and the HBAR.
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The HBAR supports a complex and dense mode structure. The acoustic velocities and di-

mensions of the resonator result in a longitudinal free spectral range (FSR) of∼ 12 MHz, while the

frequency spacing between modes with different Laguerre-Gaussian (LG) transverse mode num-

bers is∼ 1 MHz. This puts constraints on the range of device parameters that would allow us to use

the qubit for dispersive measurements of a single acoustic mode. First, we would like the coupling

strength g of the qubit to the LG-00 mode to be larger than to those with higher-order transverse

mode numbers. Second, g and the detuning ∆ = ωq − ωm between the qubit frequency ωq and

phonon frequency ωm should be much smaller than the FSR. If these constraints are satisfied, the

effective Hamiltonian of our system in the dispersive regime of ∆� g can be approximated as23

H/~ ≈ ωma
†a+

1

2

(
ωq + χa†a

)
σz . (1)

Here a is the lowering operator for the acoustic mode, σz is the Pauli z operator for the qubit, and

1
2
χa†aσz is the dispersive interaction term that shifts the qubit frequency by χa†a, where 24

χ = −2
|g|2

∆

α

∆− α
≈ 2
|g|2

∆
(2)

is the qubit frequency shift per phonon. The approximation is valid in our case, where ∆ is much

smaller than α, the anharmonicity of the qubit. We note that this is the opposite limit from the

usual case in cQED, where typically ∆� α. Furthermore, to satisfy the requirement of g � FSR,

g in our system is limited to . 1 MHz, which is at least one order-of-magnitude smaller than in

most cQED systems. Despite these constraints, we now show that the design and fabrication of

our system leads to quantum coherences that are sufficient for operation in the strong dispersive

regime.
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Figure 1: ~BAR device characterization. (a) Photograph of the flip-chip bonded ~BAR device.

(b) Optical microscope image of qubit antenna and HBAR. The circles around the qubit antenna

are the edges of the dome feature etched into the substrate. The Newton rings visible on the convex

acoustic resonator surface are used in the alignment process. The color is a result of the microscope

light interfering between the chip surfaces. (c) Vacuum Rabi oscillations between qubit and phonon

modes. The lines indicate the frequencies of the LG-00 (dashed) and LG-10 (dotted) modes. (d)

Energy relaxation (top) and Ramsey coherence measurement (bottom) of the LG-00 phonon mode.

Green dots are datapoints, black solid lines are fits to exponential and exponential sine functions,

respectively. The phase at the first point of the T ∗2 measurement is a result of the qubit-phonon

detuning during the delay time combined with the finite duration of the SWAP operation.
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To that end, we first characterize our device by measuring the coherence properties of the

qubit and the phonon mode, as well as the coupling strength between them. Using standard cQED

techniques25, 26 we find for the qubit an energy relaxation time of T q1 = 10.2± 0.4 µs, a Ramsey

decoherence time of T q∗2 = 10.5± 0.5 µs, and an echo decoherence time of T q2e = 11.6± 0.4 µs.

Direct driving and readout of the qubit is performed at a detuning of ∆rest/2π = −4.1 MHz from

the LG-00 phonon mode of interest. Tuning the qubit into resonance with the phonon mode then

allows the two systems to coherently exchange energy through the resonant Jaynes-Cummings

(JC) interaction, which is used to implement qubit-phonon SWAP operations for characterizing

the phonon mode and initializing it in a quantum state in subsequent experiments5, 21. The phonon

mode spectrum and the coupling to the qubit are measured by exciting the qubit at ∆rest, then

tuning it to different frequencies and reading out the qubit state after a variable time (Figure 1c). We

observe two oscillatory features centered around 5.9741 GHz and 5.9752 GHz, corresponding to

vacuum Rabi oscillations between the qubit and the LG-00 and LG-10 phonon modes, respectively.

From these vacuum Rabi oscillations, we extract a coupling strength for the LG-00 mode of g =

259.5± 0.3 kHz.

Using protocols described in previous work21, we find T1 = 81± 1.1 µs and T ∗2 = 138± 2.5 µs

for the phonon mode (Figure 1d), corresponding to a dephasing time of Tφ = 932± 112 µs. Dur-

ing the delay times for both measurements, we tune the qubit back to ∆rest. This allows us to

measure the intrinsic phonon coherence without a significant effect due to Purcell decay through

the qubit. Note that both the qubit and phonon coherence times have increased significantly from

previous devices5.
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Figure 2: Dispersive measurement of phonon coherent states. (a) Spectroscopy of the qubit

while dispersively coupled to coherent phonon states prepared using displacement drives with the

indicated amplitudes. Solid lines are fits to sums of Voigt profiles, used to extract the Fock state

populations Pn. The data is rescaled so that the total population is normalized, and each trace is

shifted vertically by 0.5 for clarity. The |0〉 peak is aligned for all spectra to correct for slow qubit

frequency fluctuations. (b) Pn extracted from the measurements in panel a and corresponding mean

phonon number n̄ from fit to Poisson distribution. Black boxes are the ideal Poisson distributions

assuming an average phonon number of n̄. Inset shows linear relation between the displacement

drive amplitude and |β| =
√
n̄. Error bars represent one standard deviation of the fit uncertainty of

the Poisson distribution. 7



The improved coherence of our system allows us to operate it in the strong dispersive regime,

which we now demonstrate through phonon-number resolving measurements of the qubit spec-

trum. We create coherent states in our phonon mode by driving it on resonance with a microwave

pulse while the qubit is at ∆rest. After the phonon state preparation, we decrease the detuning to

∆coherent/2π = −1.2 MHz to reach a regime where the dispersive shift of the qubit frequency due

to a single phonon should be much larger than the qubit’s intrinsic linewidth γ∗2/2π = 15.1 kHz.

We then perform qubit spectroscopy using a probe pulse with a bandwidth of 10.6 kHz, less than

γ∗2 , thus ensuring that the qubit linewidth is not significantly broadened. Finally, the qubit is read

out at the frequency ∆rest. The resulting qubit spectra for different amplitudes of the displacement

drive on the phonon modes is shown in Figure 2a. At larger amplitudes, we observe multiple res-

onances, as expected from the dispersive interaction with a superposition of phonon Fock states.

We fit each spectrum to a sum of Voigt profiles in order to extract the height of the peaks. These

heights then give the population Pn of each Fock state |n〉 after normalizing such that
∑

n Pn = 1.

From fitting a Poisson distribution to the measured populations, we obtain the mean phonon num-

ber n̄ of the coherent state that most closely matches the data (see Figure 2b). We find a linear

dependence of the extracted coherent state amplitude |β| =
√
n̄ on the drive amplitude (see in-

set 2b), indicating the capability of performing coherent displacements of the phonon mode up to

|β| = 1.9. Additionally, these measurements provide a calibration between the drive amplitude

we set and the resulting displacement amplitude (see Supplementary Information). Both of these

results will be used in the experiments that follow.

We now extend our analysis further to non-classical states prepared in the phonon mode.
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Figure 3: Dispersive measurement of phonon Fock states. Spectroscopy (a) and Ramsey mea-

surement (b) of the qubit while dispersively coupled to the phonon mode, following state prepa-

ration that ideally results in Fock states containing M phonons. For a, the same procedure as in

Figure 2a was used for fitting and rescaling the data to extract the phonon populations. In b, solid

lines are fits with an exponentially decaying cosine. Oscillations do not start from unity due to a

finite qubit population after the phonon state preparation. The dashed red line indicates the Ramsey

interrogation time used for measuring the parity of the prepared state. (c) Parity of the prepared

phonon Fock states measured by spectroscopy (black) and Ramsey (red) measurements. Dashed

lines are guides to the eye. Error bars are smaller than markers.
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We repeat the measurement procedure adopted for Figure 2a, but now with the phonon mode ini-

tialized in Fock states containing M phonons. We perform this initialization up to M = 3 using

repeated qubit excitations and SWAP operations with the phonon mode5. In this case, we set the

detuning during the dispersive interaction to be ∆Fock/2π = −0.8 MHz. The smaller detuning

leads to larger χ and better resolved peaks in the qubit spectrum at the expense of a less ideal

dispersive approximation. Figure 3a shows the qubit spectroscopy measurements, each resulting

in one prominent peak corresponding to the target Fock state. Additionally, smaller peaks corre-

sponding to finite population in lower Fock states can be seen, as expected from imperfect SWAP

operations and phonon decay during preparation and measurement. Calculating the difference in

frequency between the |0〉 peak for the M = 0 case and the |1〉 peak for the M = 1 case yields

χFock/2π = −147 kHz. We observe slightly smaller frequency differences between peaks corre-

sponding to higher phonon populations, which we comment on in the Supplementary Information.

The measured frequency differences are compatible with the dispersive shifts we expect from sim-

ulations. Again we confirm operation of our system in the strong dispersive regime.

The change in qubit frequency due to different phonon states can also be observed in the time

domain by performing Ramsey-type measurements on the qubit15, 27. After initializing the phonon

mode in a Fock state as above, we prepare the qubit in the superposition state (|g〉+ |e〉)/
√

2. We

then move the qubit frequency from ∆rest to ∆Ramsey/2π = −1.9 MHz from the phonon mode,

where we let it dispersively interact with the phonon state for a variable time t. ∆Ramsey is chosen

to be larger than ∆Fock to minimize deviations from the ideal dispersive Hamiltonian while still

maintaining a large enough χ. Finally, we move the qubit back to ∆rest, perform the second π/2-
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pulse, and read-out the qubit state. The phase of the second π/2-pulse is calibrated such that there

is no oscillation in the Ramsey measurement corresponding to the phonon |0〉 state. The measured

data is shown in Figure 3b. We observe decaying oscillations at frequencies equal to the dispersive

shift M |χRamsey|/2π = M × 70 kHz. To explain this observation, we note that, in the frame

rotating at the bare qubit frequency ωq, the initial superposition state evolves due to the dispersive

interaction term into (|g〉+exp(−iMχRamseyt)|e〉)/
√

2. After the second π/2 pulse of the Ramsey

sequence, this relative phase is mapped onto the qubit population. The striking feature of this

protocol is that for an interaction time t0 = π/|χRamsey|, the measurement result in the ideal case is

〈σz〉 = cos(Mπ), which yields the phonon number parity Π. In Figure 3b, we can indeed observe

that at time t0 = 7.1 µs, an even (odd) Fock state results in a high (low) qubit population. We

emphasize here that determining the parity with this procedure requires only a single measurement

with interaction time t0 and does not reveal the underlying phonon distribution. It is therefore

more efficient and more useful for bosonic error correction protocols than the alternative method

of computing the parity using the Pn extracted from the full qubit spectra as Π =
∑

n(−1)nPn.

We compare the two methods in Figure 3c. As expected, the prepared even (odd) Fock states show

positive (negative) parity for both the spectroscopy and the Ramsey-type measurement. For higher

phonon Fock states, both methods show parities close to zero, which we attribute to imperfect

state preparation and decoherence, as explained earlier. We also note here that a non-negligible

g/ |∆Ramsey| ≈ 0.14 limits the QND nature of our current measurements. Improving this figure of

merit will be the subject of our future work.

The measurement of phonon state parity together with coherent displacements gives us the
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Figure 4: Wigner tomography of non-classical phonon states. (a) Sequence used for Wigner

tomography of a phonon mode prepared in |1〉. See main text for details. (b) Measured Wigner

functions of the phonon mode prepared in, from left to right, |0〉, 1√
2
(|0〉+ |1〉), |1〉, and |2〉. Axes

are calibrated using the data in Figure 2 (see Supplementary information). (c) Wigner functions

obtained from master equation simulations of the JC Hamiltonian. The axes are calibrated by

fitting the simulated density matrix of the phonon mode after a displacement. (d) Cuts along the

Im(β) = 0 axis for measured results shown in panel b (black) and simulation results shown in panel

c (red).
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necessary tools to perform Wigner tomography. This is enabled by the fact that the Wigner function

can be expressed as displaced parity measurements28. We again emphasize that, in contrast to

previous work where the parity was determined by first extracting the phonon number distribution

from time-resolved measurements of the resonant qubit-phonon interaction5, here we are able to

measure the parity at each position in phase space with a single averaged measurement on the qubit.

Figure 4a shows the sequence used to perform Wigner tomography of the phonon mode in the |1〉

state (for other states, the sequence differs only in the state preparation step at the beginning).

This is followed by a coherent displacement of the phonon state by the complex amplitude β. Our

device suffers from slow qubit frequency fluctuations on the ∼ 10 kHz frequency scale common

in superconducting qubits29. In contrast to most cQED systems, however, this is comparable to

our dispersive shift. Therefore, we improve our parity measurement protocol by introducing a

dynamical decoupling pulse sequence to mitigate the effect of low frequency noise as follows: We

initialize the qubit in the state (|g〉 + |e〉)/
√

2 and then tune its frequency to ∆Ramsey. After an

interaction time of π/(2|χRamsey|) = 3.53 µs, the qubit superposition has acquired a relative phase

of nπ/2. We then move the qubit frequency back to its rest point, apply a π-pulse, and move the

qubit frequency to a detuning of−∆Ramsey, flipping the sign of the dispersive shift. In combination

with the echo pulse, this results in a total relative phase accumulation of nπ after another interaction

time π/(2|χRamsey|). The relative phase that changes due to low frequency noise (such as shot-to-

shot qubit frequency jumps) does not depend on the sign of the detuning and is thus canceled out.

The echo sequence ends by taking the qubit frequency back to ∆rest and applying a second π/2-

pulse, whose phase is calibrated in order to compensate the effect caused by the Stark shift drive
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used to change the qubit frequency. We also take additional measures to mitigate the effects of

finite g/∆ on our Wigner tomography. The first order effect is a β-dependent deviation from an

ideal parity measurement and is canceled by averaging data taken with four different qubit drive

phases, indicated by θ in Figure 4a. The remaining effect is an interaction-time dependent constant

offset of the Wigner function that oscillates with a frequency much faster than |χ|. This allows

us to precisely choose the interaction time in order to minimize this effect. For details see the

Supplementary Information.

Figure 4b shows measured Wigner functions for the phonon mode prepared in the states |0〉,

(|0〉 + |1〉)/
√

2, |1〉, and |2〉. For comparison, Figure 4c shows Wigner functions obtained from a

master equation simulation30 of our experimental sequence using the full JC Hamiltonian, includ-

ing finite pulse lengths and both decay and decoherence in the system. The results are in good

agreement with the measurements and reproduce features that would not be present in the ideal

case. For example, note that the Wigner function for |2〉 does not show circular symmetry due to

imperfect state preparation, and the non-zero values of the Wigner function at large displacements

can again be attributed to a finite g/ |∆|. The discrepancy of both the measurements and simu-

lations from the ideal Wigner functions, however, is mainly due to qubit and phonon decay and

decoherence.

Our results show that dispersive measurements of mechanical quantum states are now pos-

sible in ~BAR-type cQAD systems. We achieved this through improvements to the coherence

properties of both the qubit and the phonon mode in order to reach the strong dispersive regime.
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We carefully chose the qubit-phonon detuning in order to reach a compromise between ensuring

that the dispersive interaction is strong enough to allow for coherent operations and remaining in

the dispersive regime. For the purpose of performing quantum state tomography, we devised pro-

tocols that mitigated to first order the effect of qubit-phonon energy exchange due to finite g/∆

and qubit frequency fluctuations that are non-negligible compared to χ. However, the decoherence

and energy exchange during the measurement will still degrade the quality of single-shot, QND

measurements that are needed in, for example, error correction protocols. Therefore, continued

improvements to the basic device properties of ~BAR devices remain crucial, and further explo-

ration of the large space of design parameters and their effect on device performance is the subject

of our ongoing work (see Supplementary Information).

While quantum operations that make use of the dispersive interaction are useful ingredients

for quantum information processing, they can be also seen as the first steps toward a much broader

range of future experiments and applications, some of which are unique to mechanical systems.

Quantum states of mechanical resonators such as Fock state superpositions and Schrödinger cat

states have been proposed as resources for quantum-enhanced frequency or force sensing31 and

testing modifications to quantum mechanics at macroscopic scales13, 32. Many existing protocols

for preparing such complex quantum states make direct use of the dispersive interaction33, 34. At the

same time, other protocols for quantum control of bosonic modes, such as parametrically driven

multimode gates2, 35 or autonomous stabilization of nontrivial quantum states36, do not directly

make use of the dispersive Hamiltonian. However, the requirements on coupling strengths and

coherences in order to perform these operations are effectively similar to the strong dispersive
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regime. Our results suggest that these demonstrations will soon be within reach for cQAD devices.
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A Sample design and fabrication The transmon qubit and the HBAR are fabricated on two

separate chips. The fabrication procedure for each element is identical to that in previous work5.

However, the combination of the two chips into a flip-chip device follows a new method. We litho-

graphically define spacers made of the epoxy-based photoresist SU-8 on the HBAR chip, similar

to what has been demonstrated in Ref. 37. Before combining the two chips using a commercial

bonder (SET - FC150), we apply liquid adhesive to the surface of the qubit chip using a PDMS

stamp. Both the spacers and adhesive are close to the corners of the chip and far away from the de-

vice region to avoid additional dielectric loss for the qubit. We align the two chips by matching the

qubit electrode to the Newton rings that are visible in the aluminum nitride dome (see Figure 1b).

More details of the fabrication process will be described in a future publication.

In the process of fabricating and characterizing devices for this work, we have gained a bet-

ter understanding of how various parameters of the system are affected by materials and design

choices. The flip-chip geometry allows us to systematically compare the coherences of our stan-

dard transmon qubits, which typically have T1’s of 30-50 µs, to those that have been bonded to

HBARs, which typically have T1 < 20 µs. The decrease in qubit T1 after incorporation into a

~BAR is consistent with the results from earlier works5, despite the use of different materials and

techniques for flip-chip bonding. This strongly suggests that the piezoelectric material introduces

a dominant loss channel for the qubit, likely through a combination of local dielectric loss in the

material and piezoelectric coupling to unconfined phonon modes38. We have also observed the

coupling strengths of the qubit to the different transverse modes can be modified by changing the

piezoelectric material, qubit geometry, spacing and alignment between the two bonded chips, etc.
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B Device and experimental parameters. Table S1 gives the device parameters for the transmon

and the HBAR resonator.

parameter value parameter value

ωq/2π 5.9762 GHz ωLG−00
m 5.9741 GHz

EC/h 214 MHz ωLG−10
m 5.9752 GHz

EJ/h 22.4 GHz HBAR FSR 12 MHz

γ1/2π @ ∆rest 15.6 kHz κ1/2π @ ∆rest 2.0 kHz

γ∗2/2π @ ∆rest 15.1 kHz κ∗2/2π @ ∆rest 1.2 kHz

γE2 /2π @ ∆rest 13.7 kHz κ1/2π @ ∆Ramsey 2.6 kHz

γ1/2π @ ∆Ramsey 12.1 kHz κ∗2/2π @ ∆Ramsey 2.1 kHz

γ∗2/2π @ ∆Ramsey 15.7 kHz ∆rest/2π -4.1 MHz

γE2 /2π @ ∆Ramsey 12.7 kHz ∆coherent/2π -1.2 MHz

gLG−00/2π 259.5 kHz ∆Fock/2π -0.8 MHz

gLG−10/2π 91.3 kHz ∆Ramsey/2π -1.9 MHz

Table S1: List of qubit and phonon properties and experimental parameters. The qubit fre-

quency ωq is measured at zero Stark shift. For other parameters, we denote the detuning between

qubit and LG-00 phonon mode at which they are measured. EC is calculated from the qubit an-

harmonicity α, which is measured spectroscopically by probing the two-photon transition between

the qubit’s g and f state. Then EC ≈ α = 2Ege − Egf . The energy relaxation and decoherence

rates of the qubit γ and of the LG-00 phonon mode κ are measured in the time domain.
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Figure S1: Coherent state amplitude simulation. (a) Linear relationship between the prepared

coherent state amplitude |βprep| and the amplitude |βfit| extracted from the simulated spectroscopy.

The star indicates the simulation for which the Voigt fit is shown in (b). (b) Example of a qubit

spectroscopy simulation with fit to a sum of Voigt profiles. The relative height of each peak shows

the population of the corresponding phonon Fock state. The data is rescaled to normalize the total

population. Fitting the extracted populations to a Poisson distribution yields |βfit| = 1.44.

C Coherent state amplitude calibration. In Figure 2 we show spectroscopic measurements

of the qubit while it is dispersively coupled to coherent phonon states with different amplitudes

|β|. The coherent states are prepared using a displacement drive on resonance with the phonon

mode. As described in the main text, we use the linear relationship between the amplitude of

the displacement drive and that of the measured coherent state to calibrate the axes in the Wigner

tomography shown in Figure 4b.

During the spectroscopic measurement of the qubit, however, the coherent state amplitude

|β| decays due to energy relaxation of the phonon, such that the measured coherent state ampli-

tude |βfit| is smaller than the prepared |βprep|. To quantify the effect of this decay, we perform
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time-domain simulations of the phonon displacement and qubit spectroscopy sequence. We then

acquire |βprep| from the density matrix of the prepared phonon state directly after the simulated

displacement drive. To acquire |βfit|, we perform a fit of the simulated qubit spectropscopy to a

sum of Voigt profiles to extract the Fock state populations, as we did for the experimental data.

An example of this is shown in Figure S1b. Fitting the populations to a Poisson distribution then

yields |βfit|. Figure S1a shows the linear relationship between the prepared and measured coherent

state amplitudes corresponding to a ratio of |βfit|/|βprep| = 0.86.

We can compare this to an estimate of the expected decay of |β| during the qubit spec-

troscopy. Taking into account the Purcell decay of the phonon through the qubit, the phonon decay

rate at ∆coherent is κcoherent
1 /2π ≈ 3.2 kHz. We can then estimate the ratio of measured to prepared

|β| for a τspec = 15 µs long spectroscopy pulse as

1

τspec

∫ τspec

0

e−κ
coherent
1 tdt = 0.86, (S1)

which agrees well with the simulated value. We use the ratio |βfit|/|βprep| = 0.86 to correct the

axes of the Wigner tomography plots.
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D Deviations from dispersive Hamiltonian and effect on Wigner functions. In this section,

we illustrate how deviations from the dispersive Hamiltonian due to terms of higher order in g/∆

affect the parity measurement implementation. In particular, these terms give rise to a nontrivial

background in the measured Wigner function. We show that these effects can be partially mitigated

by averaging over measurements taken with different phases for the qubit drive pulses (angle θ in

Figure 4) and choosing an appropriate dispersive interaction time.

We start with some relevant expressions that will be needed in the calculation we are going

to present. First, we find a basis transformation which diagonalizes the full Hamiltonian describing

our system. The latter reads

H = ωaa
†a+ ωq

σz
2

+ gσ+a+ g∗σ−a†︸ ︷︷ ︸
≡HJC

, (S2)

where HJC is the (non-diagonal) Jaynes–Cummings interaction term describing the coupling be-

tween qubit and phonon with strengh g. Hamiltonian S2 can be diagonalized perturbatively to first

order in the interaction HJC through the Schrieffer–Wolff (SW) transformation. To this end, we

define the operator

U ≡ exp

[
g

∆
σ+a− g∗

∆
σ−a†

]
= eA

' I + εσ+a− ε∗σ−a† − |ε|
2

2

(
σ+σ−aa† + σ−σ+a†a

)
+O(ε3) , (S3)

where ∆ = ωq − ωa is the detuning between the qubit and the acoustic frequencies, and ε ≡ g/∆.
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The transformed Hamiltonian takes the form

H ′ ≡ UHU †

= H + [A,H] +
1

2
[A, [A,H]] +

1

6
[A, [A, [A,H]]] + ...

= H + ωa
HJC

∆
− ωq

HJC

∆
+

1

2

(
ωa
H2

∆
− ωq

H2

∆
+ 2H2

)
+O(ε3)

= ωaa
†a+ ωq

σz
2

+
1

2
H2 +O(ε3)

= ωaa
†a+ ωq

σz
2

+
|g|2

∆

σz
2

(
I + 2a†a

)
+O(ε3) . (S4)

where in writing the third line we defined H2 ≡
|g|2

∆
σz
(
I + 2a†a

)
and used the relations

Ua†aU † = a†a+
HJC

∆
+

1

2

H2

∆
+O(ε3) (S5)

UσzU
† = σz − 2

HJC

∆
− 1

2

(
2
H2

∆

)
+O(ε3) (S6)

UHJCU
† = HJC +H2 +O(ε3) , (S7)

that are derived from the commutators

[A,HJC] =
|g|2

∆

(
σz + 2σza

†a+ 1
)

(S8)

[A, σza
†a] =

g

∆

(
−2σ+aa†a+ σzσ

+a
)

+
g∗

∆

(
−2σ−a†a†a+ σzσ

−a†
)
. (S9)

Note that in Equation S4, the term HJC is missing, as expected from the fact that the SW

transformation was chosen to result in a Hamiltonian that is diagonal at least to first order in ε. In

fact, here the Hamiltonian is also diagonal to second order, which gives the effective dispersive

Hamiltonian in Equation 1 of the main text.

It is now convenient to further transformH ′ into a frame rotating at frequency ω′q = ωq+ |g|2
∆

,
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for both the phonon and qubit degrees of freedom. Note that this is the frame of the actual measured

qubit frequency. Taking R = eiω
′
qσzt/2eiω

′
qa

†at, the resulting Hamiltonian reads

H ′R ≡ RH ′R† + i
∂R

∂t
R†

= H ′ − ω′q
σz
2
− ω′qa†a

= (ωa − ω′q)a†a+
|g|2

∆
σza

†a

= −∆′a†a+
χ

2
σza

†a , (S10)

where we introduced ∆′ ≡ ∆ +
|g|2

∆
, and χ ≡ 2|g|2/∆. Similarly, the SW transformation acts on

the basis states as

U |g, n〉 = |g, n〉+ ε
√
n|e, n− 1〉 − |ε|

2

2
n|g, n〉+O(ε3) (S11a)

U |e, n〉 = |e, n〉 − ε∗
√
n+ 1|g, n+ 1〉 − |ε|

2

2
(n+ 1)|e, n〉+O(ε3) . (S11b)

Note that the usual dispersive approximation simply treats the dispersive shift as the lowest order

perturabtive correction to the energy of the un-transformed eigenstates |g, n〉 and |e, n〉. Here we

will instead also keep the corrections to the eigenstates that are first and second order in ε, as shown

in Equations S11a and S11b.

Ramsey sequence: To concisely illustrate the effect of the higher order terms in ε, we now

compute the results for the Ramsey-type measurement of the parity. This consists of a π/2 pulse

to the qubit, followed by an evolution for time t0 = π/ |χ| with χ = 2 |g|2 /∆, and then a second

π/2 pulse. Finally, a measurement of 〈σz〉 is performed.

We have also verified that the salient features remain the same for the echo-type measure-
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ments used in Figure 4 of the main text, but do not present the full calculation here. We instead

briefly describe it in the next subsection.

Initially, the qubit is in the |g〉 state, and the joint state of qubit-phonon system is

|ψ0〉 =
∑
n

cn|g, n〉 . (S12)

We now define a π/2|θ pulse on the qubit as a counterclockwise rotation R = e−i
η
2
~u.~σ by η = π/2

around the ~u = − cos(θ)~ey − sin(θ)~ex direction on the Bloch sphere, taking for example |g〉 →

|g〉+ eiθ|e〉. Therefore, after the first π/2|θ pulse to the qubit, the state reads

|ψθ〉 =
1√
2

∑
n

cn
(
|g, n〉+ eiθ|e, n〉

)
. (S13)

After the SW transformation, the qubit state becomes

|ψ′θ〉 = U |ψθ〉

=
1√
2

∑
n

cn

(
|g, n〉+ ε

√
n|e, n− 1〉+ eiθ

(
|e, n〉 − ε∗

√
n+ 1|g, n+ 1〉

))
+O(ε2) . (S14)

For simplicity, in writing this and the following results we will omit terms of order higher than ε

and present the result of order ε2 only at the end. After evolving this state for time t0 = π/ |χ|
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according to the Hamiltonian H ′R, the state reads

|ψ′θ(t = t0)〉 = e−iH
′
Rt0|ψ′θ〉

=
1√
2

∑
n

cn

[
einπ(∆′/|χ|±1/2)|g, n〉+ ε

√
nei(n−1)π(∆′/|χ|∓1/2)|e, n− 1〉

+eiθ
(
einπ(∆′/|χ|∓1/2)|e, n〉 − ε∗

√
n+ 1ei(n+1)π(∆′/|χ|±1/2)|g, n+ 1〉

)]
+O(ε2) (S15)

=
1√
2

∑
n

cne
in(φ±π/2)

[
|g, n〉+ ε

√
ne−inπe−i(φ∓π/2)|e, n− 1〉

+eiθ
(
e−inπ|e, n〉 − ε∗

√
n+ 1ei(φ±π/2)|g, n+ 1〉

)]
+O(ε2) (S16)

where in the last line we defined φ(t) ≡ ∆′t, so φ(t0) = π∆′/ |χ|. For simplicity we only consider

t = t0 here and write φ(t0) as φ, but it should be understood that the results are dependent on t,

which will become important in Section D. The top (bottom) signs are for χ > 0 (χ < 0). Undoing

the SW transformation gives us the state expressed in the original basis of Equation S12:

|ψθ(t = t0)〉 = U †|ψ′θ(t = t0)〉

=
1√
2

∑
n

cne
in(φ±π/2)

[
|g, n〉+ ε

√
n
(
e−inπe−i(φ∓π/2) − 1

)
|e, n− 1〉

+eiθ
(
e−inπ|e, n〉 − ε∗

√
n+ 1

(
ei(φ±π/2) − e−inπ

)
|g, n+ 1〉

)]
+O(ε2) .

(S17)
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After the second π/2|θ that concludes the Ramsey sequence, the state is

|ψf〉 =
1

2

∑
n

cne
in(φ±π/2)

[ (
1− e−inπ

)
|g, n〉+ eiθ

(
1 + e−inπ

)
|e, n〉

+ ε
√
n
(
e−inπe−i(φ∓π/2) − 1

)
(|e, n− 1〉 − e−iθ|g, n− 1〉)

+eiθe−inπ
(
ε∗
√
n+ 1

(
1− einπei(φ±π/2)

)
(|g, n+ 1〉+ eiθ|e, n+ 1〉)

)]
+O(ε2) .

(S18)

For later convenience, we express this state as two sums over even and odd values of n, for which

e−inπ = ±1, respectively. After some additional rearrangement of the terms, this reads

|ψf〉 =
1

2

∑
n even

cne
in(φ±π/2)

(
2eiθ|e, n〉+ ε

√
n
(
e−i(φ∓π/2) − 1

)
(|e, n− 1〉 − e−iθ|g, n− 1〉)

+eiθε∗
√
n+ 1

(
1− ei(φ±π/2)

)
(|g, n+ 1〉+ eiθ|e, n+ 1〉)

)
+

+
1

2

∑
n odd

cne
in(φ±π/2)

(
2|g, n〉 − ε

√
n
(
e−i(φ∓π/2) + 1

)
(|e, n− 1〉 − e−iθ|g, n− 1〉)−

−eiθε∗
√
n+ 1

(
1 + ei(φ±π/2)

)
(|g, n+ 1〉+ eiθ|e, n+ 1〉)

)
+O(ε2) . (S19)
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Finally, a measurement of the σz operator on the qubit state gives

〈σz〉θ = 〈ψf |σz ⊗
∑
m

|m〉〈m||ψf〉

=
∑
n even

|cn|2 −
∑
n odd

|cn|2

+
1

2

∑
n even

[
cne

in(φ±π/2)
(
− c∗n+1e

−i(n+1)(φ±π/2)eiθε∗
√
n+ 1(ei(φ∓π/2) + 1)

−c∗n−1e
−i(n−1)(φ±π/2)e−iθε

√
n(e−i(φ±π/2) + 1)

)
+ c.c.

]
+

1

2

∑
n odd

[
cne

in(φ±π/2)
(
c∗n+1e

−i(n+1)(φ±π/2)eiθε∗
√
n+ 1(ei(φ∓π/2) − 1)

+c∗n−1e
−i(n−1)(φ±π/2)e−iθε

√
n(e−i(φ±π/2) − 1)

)
+ c.c.

]
+O(ε2) (S20)

=
∑
n even

|cn|2 −
∑
n odd

|cn|2

+
∑
n odd

Re
(
cnc
∗
n+1e

−i(φ±π/2)eiθ(ei(φ∓π/2) − 1)ε∗
√
n+ 1

− cn+1c
∗
ne
i(φ±π/2)e−iθ(e−i(φ±π/2) + 1)ε

√
n+ 1

+ cnc
∗
n−1e

i(φ±π/2)e−iθ(e−i(φ±π/2) − 1)ε
√
n

− cn−1c
∗
ne
−i(φ±π/2)eiθ(ei(φ∓π/2) + 1)ε∗

√
n
)

+
|ε2|
2

(
2sin |φ| −

∑
n even

|cn|2 +
∑
n odd

|cn|2
)

+ Re

(
ε2e−2iθ

(
1 + e2iφ

)(∑
n even

cnc
∗
n−2

√
n(n− 1)−

∑
n odd

cnc
∗
n−2

√
n(n− 1)

))

+O(ε3) (S21)

Here we have added back the final result for order ε2. The order ε0 expression Π ≡
∑

n even |cn|2−
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∑
n odd |cn|2 is the result expected from an ideal parity measurement. The higher order terms, on the

other hand, depend on ε and represent deviations from the ideal parity measurement. To partially

cancel out these terms, we can average measurements using different phases θ for the qubit drive

pulses. For example, it’s straightforward to see from Equation S21 that 〈σz〉|θ + 〈σz〉|θ+π cancels

terms to first order in ε. Averaging over four phases π/2 apart also cancels out part of the second

order term (second to last line of Equation S21), leaving only the term |ε|2(sin |φ| − Π/2).

Echo sequence: For the experiment using the echo sequence presented in the main text, we

can extend the above calculation and see that the results are analogous. We start from Equation S16

but for an interaction time t′0 = t0/2 = π/(2 |χ|). We then undo the SW transformation and apply

the echo pulse corresponding to a counterclockwise rotation R = e−i
η
2
~u.~σ by η = π and with the

same phase as the π/2|θ pulses. This transforms |g, n〉 → eiθ|e, n〉 and |e, n〉 → −e−iθ|g, n〉.

Finally, we evolve the state according to the dispersive Hamiltonian with ∆ → −∆ for another

time t′0 and apply the second π/2|θ that concludes the echo sequence. As in the Ramsey case, the

expectation value 〈σz〉|θ contains terms of order ε and higher that give a deviation form the ideal

parity measurement. However, when averaging over measurements taken with four different θ’s

separated by π/2, we again see that all first order terms and some second order terms are canceled

out. This approach results in an ideal parity measurement up to order |ε|2 that is also robust against

low frequency qubit frequency flucuations, thanks to the echo pulse. In Figure S2, we illustrate

this approach for mitigating the non-idealities of the Wigner function measurement by comparing

the experimental results to the analytical ones presented above, along with the results of simulating

the full Hamiltonian of the system given by Equation S2.
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Figure S2: Four phase averaging. Comparison between measured (a), analytically calculated

(b), and simulated (c) Wigner functions for four different initial phases θ of the qubit drive pulses

(left four columns). The two rightmost columns illustrate the result of averaging over two phases,

(〈σz〉|0 + 〈σz〉|π)/2 or four phases (〈σz〉|0 + 〈σz〉|π/2 + 〈σz〉|π + 〈σz〉|3π/2)/4. Row a shows Wigner

functions measured using the echo sequence shown in Figure 4a of the main text. Row b shows

the analytical result in Equation S21 up to first order in ε. Row c shows results of simulating the

full Hamiltonian of the system (Equation S2). Rows b and c use a bare qubit-phonon detuning of

∆ = −1.87 MHz−χ/2 = −1.835 MHz, and an interaction time of 7.04 µs was chosen so that the

analytical and simulated results match the experimental ones. Both correspond to the experimental

parameters to within uncertainties, taking into account qubit frequency fluctuations and finite ramp-

up times of the Stark shift. Rows b and c also do not include the effects of decoherence.
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Figure S3: Dependence of Wigner function on interaction time. Measured Wigner functions

for different interaction times with the phonon in |0〉, with echo sequence and averaging over four

values of θ. The offset level of the Wigner function changes with the interaction time following a

periodic pattern with a period of ∼ 0.23 µs.
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Choice of interaction time. As mentioned above, after averaging over data taken with four

different values of θ, we expect the remaining dominant effect of finite ε to be a slight reduction

in the Wigner function contrast, along with a constant offset given by |ε|2 sin |φ|. By varying the

interaction time t, the value of this offset should oscillate with a frequency of ∆′ � |χ|. This

means that we can choose t such that the offset is zero without significantly affecting the parity

measurement. In Figure S3, we plot the measured Wigner functions for several values of t that

are all close to π/ |χ|. We find that indeed there is a constant offset that depends on t, but the

frequency of oscillations is ∼ 2∆′ rather than ∆′ as expected. We have checked that a master

equation simulation using the full JC Hamiltonian including decoherence, finite pulse lengths, and

the LG-10 mode agree well with our analytical results. Therefore, the origin of this discrepancy is

unclear at the moment. Nevertheless, we can still employ the strategy of choosing an interaction

time that minimizes the offset. For the Wigner functions shown in Figure 4b, we use an interaction

time of 7.05 µs.
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E Dispersive shift measurements and predictions. Here, we discuss in detail how the qubit

frequency shifts depends on the phonon population, taking into account departures from the ideal

dispersive Hamiltonian. We first extract the qubit frequencies corresponding to different phonon

numbers from two spectroscopy measurements, one with the qubit at ∆coherent (Figure 2a, displace-

ment amplitude = 0.4) and another at ∆Fock (Figure 3a, M = 3), as well as from fitting the frequency

of time-domain oscillations in the qubit population with the qubit at ∆Ramsey (see Figure 3b of the

main text). We then compute the qubit frequency difference between n and n + 1 phonons. In

Figure S4, these measured values (◦) are compared with results from numerical diagonalization of

the JC Hamiltonian (♦) and with the analytical result of Equation 2 in the main text (×). Unlike

the constant shift of the qubit frequency by χ for each additional phonon predicted by the disper-

sive Hamiltonian of Equation 1 in the main text, we find that both the measured and calculated

frequency shifts per phonon decreases in absolute value with phonon number. Furthermore, we

observe this decrease to be more significant for smaller qubit-phonon detunings.

We attribute both these effects to the contribution of terms of higher order in g/∆ aris-

ing from the Schrieffer-Wolff transformation. Those terms are negligible in the strong dispersive

regime where |g/∆| � 1. A higher initial Fock state n increases the effective coupling strength

between qubit and phonon to
√
ng. Thus, both a smaller ∆ and larger initial n increase the ra-

tio |g/∆|, requiring higher order terms to be taken into account. We note that for the detuning

∆Ramsey where we performed parity measurements (Figure 3b) and Wigner tomography (Figure 4)

the change in frequency shift with increasing initial Fock state is small, indicating operation well

within the dispersive regime.
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Figure S4: Dispersive shifts for different detunings. Measured (◦), numerical (♦), and analytical

(×) absolute values of the qubit frequency shift due to an increase in phonon population by one

quantum. ◦ and × markers are shifted horizontally to increase visibility. Colors indicate the qubit-

phonon detuning at which the measurement was taken. Refer to Table S1 for numerical values of

the detunings.
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