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Abstract

The quantum ontological feature of contextuality apart from being central to foun-

dations of quantum theory forms the basis of quantum advantage in a multitude of

information processing tasks. In particular, the contextuality of preparation proce-

dures was shown to power a particular two-party information processing task “parity

oblivious multiplexing” (Spekkens et al. Phys Rev Lett 102:010401 (2009). Specifi-

cally, it was shown that there exists a limit to how well any preparation noncontextual

theory can perform in this task. This limit constitutes a noncontextuality inequal-

ity. Moreover, the authors demonstrated quantum violation of this inequality along

with preparation contextuality associated with the ontic description underlying two-

level completely mixed quantum state. In this work, we extend these arguments to

apply to arbitrary dimensions by introducing a class of two-party information pro-

cessing tasks, namely d-level parity oblivious random access codes. We analytically

obtain classical (or equivalently preparation noncontextual) bounds on the success

probability for these tasks for arbitrary d. For each value of d, this bound constitutes

a unique noncontextuality inequality. Remarkably, these bounds are independent of

the amount of communication. Furthermore, we find a classical protocol utilizing a

dc = d-dimensional classical message which saturates this bound. In order to estab-

lish nontriviality of these inequalities, we provide evidence of significant quantum

violations. Specifically, by numerical techniques, we show that for d = 3, . . . , 10, the

noncontextuality bound is violated by quantum theory. (1) We provide explicit quan-

tum protocols which violate the associated noncontextuality inequality for d = 3, 4, 5

employing dq = d-leveled quantum systems. (2) Using see-saw semi-definite pro-

gramming (SDP) technique, we find evidence (lower bounds) of significant quantum

violation of these inequalities for d = 3, . . . , 10. (3) With the help of state-of-the-art

(NPA-hierarchy like) SDP technique, we provide upper bounds (independent of the

dimension of the involved quantum systems) on quantum violation for d = 3, . . . , 10.
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The introduced class of information tasks, thus, provides for operational depiction of

preparation contextuality of the ontic description underlying mixed higher dimensional

quantum systems.

Keywords Preparation contextuality · Parity oblivious random access codes ·
See-saw SDP

1 Introduction

Kochen–Specker (KS) contextuality theorem and Bell’s nonlocality theorem are

quintessential to foundations of quantum mechanics (QM). These theorems estab-

lish the impossibility of certain classes of ontic (hidden variable) explanations of

QM. The derivation of Bell’s theorem assumes the fundamental premises of reality

and locality [1], while in the derivation of KS theorem, the locality assumption is

replaced by that of noncontextuality [2–4]. Apart from their foundational importance,

Bell nonlocality and KS contextuality form the key ingredients for a wide range of

emerging quantum technologies such as device-independent quantum key distribu-

tion [5,6], device-independent quantum random number generation [7–11], quantum

computation [12], and other applications in quantum information processing [13–17].

The notion of contextuality was generalized recently, by Spekkens, to arbitrary oper-

ational theories, and for different experimental schemes, viz. preparation procedure,

measurement procedure, and transformation procedure [18,19]. The conventional

notion of contextuality, i.e., KS contextuality, addresses only measurement contexts

and has been extensively studied [20–24]. Recently, a number of interesting results

have been uncovered with aid of the generalized framework [19,25–40]. In par-

ticular, preparation contextuality has been shown to be intimately linked with KS

contextuality and Bell nonlocality [25–27,36]; moreover, preparation contextuality has

demonstrated usefulness as a resource for an operational task called parity-oblivious

multiplexing [28]. In this paper, we introduce a family of information processing tasks

and derive corresponding noncontextuality inequalities which enables an operational

depiction of preparation contextuality of ontic distributions associated with mixed

states in higher dimensions.

Preparation contextuality is defined as the impossibility of representing two oper-

ationally equivalent preparations by identical ontological distributions. Suppose two

operational preparations are equivalent in the sense that for all measurements, the out-

come probability distributions for both of these preparations are identical, i.e., the two

preparations are empirically indistinguishable. Then, a hidden variable model (ontic

model) which reproduces the operational statistics is preparation noncontextual, if any

two equivalent preparations impose equivalent probabilistic descriptions of the system

at the ontological level (ontic distributions) [18]. The ontic distributions underlying

any mixed quantum state are known to be preparation contextual [18,25].

In this work, we address the question whether preparation contextuality of higher

dimensional mixed quantum states can be useful in some operational tasks. Interest-

ingly, we get an affirmative answer to this question. We define a class of information

tasks, namely parity oblivious d-level random access codes, henceforth abbreviated
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as d-PORAC. These tasks are derivatives of the traditional random access code, which

forms an important cryptographic primitive. We find the optimal success probabilities

(bounds) for these tasks in any preparation noncontextual theory. For any d, such a

bound constitutes a noncontextuality inequality, and a violation of the corresponding

inequality by an operational theory implies that the theory and parity state must have a

preparation contextual ontic description. Remarkably, these inequalities are indepen-

dent of the dimension of the physical system under consideration and therefore are to

be attributed similar status as the Bell inequalities. Then, for a three-level quantum

system (dq = 3), we employ an exotic measurement bases, namely mutually asym-

metrically biased bases (MABB), to construct a quantum protocol which exhibits the

preparation contextuality of completely mixed state of three-level quantum system.

We give two more explicit protocols showing quantum violation of respective inequal-

ities for d = 4 and d = 5 employing dq = 4-dimensional and dq = 5-dimensional

quantum systems, respectively. For d = 3, . . . , 10, we provide evidence of significant

quantum violation of the respective inequalities by finding lower bounds to quantum

violation using see-saw semi-definite programming (SDP) algorithm [41–44]. Just

like NPA-hierarchy [45] yields upper bounds on the violation of Bell inequalities

and NV-hierarchy [46] upper bounds on the violation of dimension witnesses, we

provide dimension-independent upper bounds on maximal quantum violation of the

inequalities (defined in this work) using a state-of-the- art SDP technique tailored to

preparation contextuality-related scenarios. Since the family of information process-

ing tasks that we consider here provides for preparation noncontextuality inequalities

in any finite dimension, it opens the possibility for operational depiction of preparation

contextuality of ontic distributions underlying mixed sates of arbitrary dimension.

The paper is organized as follows: In Sect. 2, we introduce the tasks called d-level

parity oblivious random access codes (d-PORAC) and analytically derive the optimal

average classical success probabilities for these tasks for any d which is saturated by

a dc = d-dimensional classical message; in Sect. 3, we derive upper bounds on the

success probabilities of d-PORAC tasks in any preparation noncontextual theory which

consequently provides for a class of noncontextual inequalities; in Sect. 4, we provide

explicit quantum protocols which demonstrates quantum violation of these inequalities

for d = 3, 4, 5 utilizing dq = 3, 4, 5-dimensional quantum systems. Furthermore, we

provide numerical evidence for quantum violations of these noncontextual inequalities

by providing lower bounds on the success probability and simultaneously, capping the

quantum maximal violation using SDP for d = 3, . . . , 10. The final Sect. 5 contains

our concluding remarks.

2 Parity oblivious d-level random access codes

Consider the following two-party communication task. Alice receives uniformly at

random some length-2 string x = x1x2, where xn , for n ∈ {1, 2}, takes values from

a d-level alphabet set {0, 1, . . . , d − 1}. Bob receives, uniformly at random, an index

y ∈ {1, 2}. Bob’s task is to recover the yth dit (i.e., xy) in Alice’s string. Alice can

send some information about her string to help Bob; however, there is a restriction

on Alice’s communication to Bob which can be stated as follows; Restriction (R):
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no information about the parity x1 ⊕d x2 of Alice’s string can be transferred to Bob,

where ⊕d denotes addition modulo d. Let us denote Bob’s guess about xy by b and

then the average success probability in this game can be expressed as p(b = xy).

The restriction on information transfer, i.e., R, induces a partition over the set of

all strings {x1x2 : x1, x2 ∈ {0, 1, . . . , d − 1}}, into d equal parts which is defined

as Pl := {x1x2 | x1 ⊕d x2 = l}, where l ∈ {0, . . . , d − 1}. Then, R implies that no

information about to which partition Pl Alice’s string x1x2 belongs can be transferred.

It is of crucial importance to differentiate the symbol d used to denote the levels of

the classical inputs of Alice in the PORAC task from the symbols dc which denotes

the dimension of the classical message and dq which denotes the dimension of the

quantum message. Notice that while d is the parameter of task, there is no restriction

on the amount of communication and hence dc and dq may be arbitrarily large.

2.1 Classical success of d-PORAC

Here, we derive the optimal classical average success probability for this game. First,

we prove a lemma which is crucial to obtain the classical bound for d-PORAC task.

Lemma 1 More than 1-dit information from Alice to Bob always carries some infor-

mation about the parity x1 ⊕d x2.

Proof A classical encoding–decoding strategy could be either randomized or deter-

ministic. Let us first consider the deterministic case.

In a deterministic strategy, for sending more than 1-dit information, it is necessary

for Alice to encode her strings into more than d number of symbols. Then, let Alice

have some encoding onto map,

E : {0, . . . , d − 1}2 −→ {0, . . . , dc}, (1)

where d ≤ dc ≤ d2 − 1 and dc is dimension of the classical message. Any such

encoding map partitions the set of all strings (total d2 in number) into dc +1 parts E j ,

with 0 ≤ j ≤ dc. On receiving the symbol j from Alice, Bob gets the information that

Alice’s string belongs to the partition E j , and then, Bob will not get any information

about the parity of Alice’s string if and only if C(E j ∩ Pl) = C(E j ∩ Pl ′) for all

l, l ′ ∈ {0, . . . , d − 1}, where C(·) denotes cardinality of a set. Now, whenever dc ≥ d,

there exists at least one partition, say E j∗ , in which the number of strings is strictly

less than d. This further implies that there exists at least one partition Pl∗ such that

C(E j∗ ∩Pl∗) = 0. Therefore, obtaining the symbol j∗ from Alice, Bob will conclude

that parity of the Alice’s string is not l∗, and as a result, Bob can guess some other

parity (except l∗) with a probability greater than 1
d

.

A randomized strategy is a probabilistic mixture of deterministic strategies. There-

fore, playing with some randomized strategies, say R, means playing a finite number

of deterministic strategies Ds : s ∈ {1, 2, . . . , m} according to some probability distri-

butions (p1, p2, . . . , pm). More than 1-dit (average) information transfer implies that

at least one deterministic strategy Dα for which dc ≥ d is played with some nonzero

probabilities. Now from our proof for deterministic case, we know that whenever this

happens some information about parity is transferred. ⊓⊔
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According to Lemma 1, no more than 1-dit of effective information is allowed

from Alice to Bob, which seems to be a similar restriction as in the d-level RAC task

recently studied in [47]. However, this is a remarkable coincidence, as in a d-PORAC

task there is no a priori restriction on the amount of communication, Alice may employ

arbitrary large classical system with dimension dc as long as it does not reveal any

information about the parity but dc = d suffices, whereas in d-RAC, the restriction

is amount of communication, i.e., no more than 1-dit information transfer is allowed.

It is important to note that, the class of tasks we consider here is different from the

parity-oblivious multiplexing (POM) task in [28]. POM is a task between two parties

where some n-bit strings are given to the one party and the task of the other party is to

guess an arbitrarily chosen single bit of the string; additionally, a restriction is imposed

on allowed communication which in turn determines the possible classical protocols.

The only allowed classical protocols for POM are those that effectively encode only a

single bit (chosen arbitrarily) but at a fixed position in n-bit input strings. In contrast

to this, for our d-level PORAC task, the considered restriction effectively allows 1-dit

communication in more general ways.

Theorem 1 The optimal classical success probability of d-PORAC is 1/2(1 + 1/d).

Proof From Lemma 1 and the discussion soon after, it is clear that the optimal classical

success probability of d-PORAC cannot be more than that of d-RAC. Recently, it has

been shown that for d-RAC of string length 2, the optimal classical success probability

is 1/2(1 + 1/d) [48]. The remaining argument is to show that even in d-PORAC, this

optimal value of d-RAC is achievable. If Alice always encodes her first (second) dit

and sends it to Bob, then Bob can perfectly guess about the first (second) dit and

he guesses the other dit randomly; this protocol gives the required optimal average

success probability the same as in d-RAC. Note that these protocols require dc = d-

dimensional classical message and the message does not carry any information about

the parity. ⊓⊔

3 d-PORAC in a generalized operational theory

Alice and Bob can try to play this game using resources from a generalized operational

theory [49,50]. However, in the following, we prove a no-go result which states that

for certain class of such theories, the success probability for the d-PORAC game is

no more than the optimal classical success.

3.1 Generalized operational theory

A generalized operational theory, as discussed in [18,19], merely specifies the proba-

bilities p(k|M, P) of different outcomes k ∈ KM that may result from a measurement

procedure M ∈ M performed on a system following some preparation procedures

P ∈ P , where M and P denote the sets of measurement procedures and prepara-

tion procedures, respectively and KM denotes the set of measurement results for the

measurement M . As an example, in an operational formulation of quantum theory
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(QT), preparation P is associated with a density operator ρ on some Hilbert space,

and measurement M is associated with a positive operator-valued measure (POVM)

{Ek | Ek ≥ 0 ∀ k and
∑

k Ek = I}. The probability of obtaining outcome k is given

by the Born rule, p(k|M, P) = Tr(ρEk).

For playing the d-PORAC game in a generalized operational theory, Alice encodes

her strings x in some state (preparation) Px and sends the encoded state to Bob. For

decoding yth dit, Bob performs some d outcome measurements My and guesses the

dit according to the measurement results. The average success probability can be

expressed as:

p(b = xy) =
1

2 × d2

∑

y∈{1,2}

∑

n∈{0,...d−1}2

p(b = xy |Px , My). (2)

To satisfy the parity oblivious condition, Alice’s encoding must satisfy the following

relations:

∑

x∈Pl

p(Px |k, M) =
∑

x∈Pl′

p(Px |k, M), ∀ k, M,

and ∀ l, l ′ ∈ {0, . . . , d − 1}. (3)

Interestingly, due to this restriction, the success probability of d-PORAC in any prepa-

ration noncontextual theory is restricted by the optimal classical value. Before we prove

such result, for completeness we give a short discussion of the general framework for

ontological model of an operational theory and briefly explain the notion of preparation

contextuality in these theories.

3.2 Ontological model

In an ontological model of an operational theory, the primitives of description are

the real properties of a system, called ontic state λ ∈ �, where � is the ontic

state space. A preparation procedure P yields a probability distribution p(λ|P) over

the ontic states. Measurement M performed on a system described by ontic state λ

yields outcome k with probability p(k|λ, M). The ontological model to be compatible

with the operational theory must satisfy the probability reproducibility condition, i.e.,

p(k|P, M) =
∫

λ∈�
dλp(λ|P)p(k|λ, M). An ontological model is preparation non-

contextual, if two operational preparations yielding the same statistics for all possible

measurements also yield the same distribution over the ontic states, i.e.,

∀M : p(k|P, M) = p(k|P ′, M) ⇒ p(λ|P) = p(λ|P). (4)

We now derive the optimal success probabilities of the d-PORAC games in any prepa-

ration noncontextual theory as stated in the following theorem.

Theorem 2 In any preparation noncontextual theory, the success probability of d-

PORAC cannot be more than the optimal classical success probability, i.e., 1/2(1 +
1/d).
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Proof The steps in the proof of this theorem resemble the proof of a similar theorem

in [28], and here, we give a suitably modified proof for our theorem.

In an operational theory, the collection of all preparations P is a convex set, and this

enables any probabilistic mixture of preparation procedures corresponding to different

states of the theory to be again a valid preparation. Consider a mixed preparation Pl

produced by choosing uniformly at random some preparations Px corresponding to

the string x belonging to the partitionPl , i.e, Pl = 1
d

∑

x∈Pl
Px . Given the preparation

Pl , the probability of obtaining outcome k for the measurement M is

p(k|Pl , M) =
1

d

∑

x∈Pl

p(k|Px , M). (5)

Also the preparation Pl yields the distribution on the ontic state λ,

p(λ|Pl) =
1

d

∑

x∈Pl

p(λ|Px ). (6)

In any operational theory, the parity obliviousness puts the restriction described in

Eq. (3). Using Bayes’ theorem and the fact that Alice’s strings come from an uniform

distribution, we can write

∑

x∈Pl

p(k|Px , M) =
∑

x∈Pl′

p(k|Px , M), ∀ k, M,

and ∀ l, l ′ ∈ {0, . . . , d − 1}. (7)

The above expression along with Eq. (5) implies p(k|Pl , M) = p(k|Pl ′ , M) for all

l, l ′ ∈ {0, . . . , d − 1} and for all k, M . In other words, different preparations Pl

corresponding to different partitions Pl are operationally equivalent. If we assume

that an operational theory is preparation noncontextual, then according to Eq. (4), we

have

p(λ|Pl) = p(λ|Pl ′), ∀ l, l ′ ∈ {0, . . . , d − 1}, (8)

or equivalently by using Eq. (6), we can say, for all l, l ′,

∑

x∈Pl

p(λ|Px ) =
∑

x∈Pl′

p(λ|Px ). (9)

Applying Bayes theorem in Eq. (9), we have, for all l, l ′,

∑

x∈Pl

p(Px |λ) =
∑

x∈Pl′

p(Px |λ). (10)

Thus we can say that, for preparation noncontextual models, parity obliviousness at

the operational level implies similar consequence at the level of the hidden variables,

i.e, parity obliviousness should be satisfied at the hidden variable level too.
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Hidden state λ provides a classical encoding of x . But as just shown, for preparation

noncontextual theories, λ cannot contain information about parity. Now the proof of

this theorem follows from the result obtained in Lemma 1 and Theorem 1. ⊓⊔

Theorem 2 constitutes a class of preparation noncontextual inequalities, i.e., if in

some operational theories, the success probability for d-PORAC game is more than the

optimal classical success, then the operational theory must be preparation contextual.

4 Quantum violation of noncontextual inequalities

We first consider the 3-PORAC game and showcase the violation of the corresponding

noncontextual inequality which in turn establishes preparation contextuality of ontic

distribution associated with completely mixed state of a three-dimensional quantum

system (qutrit).

Quantum protocol for 3-PORAC: In 3-PORAC task, the three parity partitions of

Alice’s strings are P0 = {00, 12, 21}, P1 = {01, 10, 22}, and P2 = {02, 20, 11}. For

playing this game in quantum theory, Alice encodes her string x1x2 into some quantum

states ρx1x2 and sends the state to Bob. The parity obliviousness requirement demands

that

ρ00 + ρ12 + ρ21 = ρ01 + ρ10 + ρ22 = ρ02 + ρ20 + ρ11, (11)

If Alice encodes her strings into three orthogonal sets of states (each forming

a basis) A0 = {|ψ00〉, |ψ12〉, |ψ21〉}, A1 = {|ψ01〉, |ψ10〉, |ψ22〉}, and A2 =
{|ψ02〉, |ψ20〉, |ψ11〉} then the above requirement is always fulfilled.

Now consider the following pure state qutrit encoding. Denoting the computational

basis of qutrit as {|0〉, |1〉, |2〉}, any vector |ψ〉 ∈ C3 (dq = 3) can be represented as

|ψ〉 = α|0〉 + β|1〉 + γ |2〉. Alice encodes her strings as follows:

|ψ21〉 = |0〉, |ψ12〉 = |1〉, |ψ00〉 = |2〉;

|ψ01〉 =
1

3
(2|0〉 + |1〉 − 2|2〉),

|ψ10〉 =
1

3
(|0〉 + 2|1〉 + 2|2〉),

|ψ22〉 =
1

3
(2|0〉 − 2|1〉 + |2〉);

|ψ02〉 =
1

3
(ω2|0〉 + 2ω|1〉 + 2|2〉),

|ψ20〉 =
1

3
(2ω2|0〉 + ω|1〉 − 2|2〉),

|ψ11〉 =
1

3
(2ω2|0〉 − 2ω|1〉 + |2〉);

where ω is cube root of unity. These three sets of orthonormal vectors A0, A1, and

A2 have the following property; each vector from any of the set has similar overlap

with vectors from the remaining two sets. More precisely, for example, |ψ21〉 from the

set A0 has similar overlaps (in absolute value) with vectors from set A1 and the set
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A2. With set A1, the overlaps are 2/3 with |ψ01〉, |ψ22〉, and 1/3 with |ψ10〉, and with

A2, the overlaps are 1/3 with |ψ02〉, and 2/3 with |ψ20〉 and |ψ11〉. This feature has a

resemblance to a set of mutually unbiased basis (MUB) [51,52], except that in a MUB

all overlaps are equal; therefore, we call the set of bases a mutually asymmetrically

biased basis (MABB).

For decoding each of the alphabet, Bob performs a three-outcome quantum mea-

surement and guesses the alphabet based on the measurement result. Given the above

encoding, Bob performs measurement
∑2

i=0 |Ei 〉〈Ei | = I3 to guess the first trit x1,

where

|E0〉 =
1

√
7

(|ψ00〉 − |ψ01〉 + |ψ02〉) ,

|E1〉 =
1

√
7

(

|ψ12〉 + |ψ10〉 + e
π i
3 |ψ11〉

)

,

|E2〉 =
1

√
7

(

|ψ21〉 + |ψ22〉 + e
2π i
3 |ψ20〉

)

;

and for the second trit x2, he performs measurement
∑2

i=0 |F j 〉〈F j | = I3, where

|F0〉 =
1

√
7

(|ψ00〉 + |ψ10〉 − |ψ20〉) ,

|F1〉 =
1

√
7

(

|ψ21〉 + |ψ01〉 + e
2π i
3 |ψ11〉

)

,

|F2〉 =
1

√
7

(

−|ψ12〉 + |ψ22〉 + e
π i
3 |ψ02〉

)

.

For this quantum protocol, it turns out that |〈Ei |ψi j 〉|2 = |〈F j |ψi j 〉|2 = 7/9 for i, j =
0, 1, 2. Therefore, the average success probability is P = 1/18

∑

i, j=0,1,2(|〈Ei |ψi j 〉|2

+ |〈F j |ψi j 〉|2) = 7/9 which is strictly greater than the corresponding classical (non-

contextual) bound, i.e., 1/2(1 + 1/3) = 2/3.

In order to establish that in general, the inequalities presented in this work are nontriv-

ial and provide for significant quantum violations, we used the following numerical

methods to compute quantum violation and find the optimal protocol.

4.1 Nonlinear gradient descent

We find quantum protocols for d = 4 and d = 5 employing dq = 4 and dq = 5

dimensional quantum systems for communication, respectively, which violate the cor-

responding noncontextual bounds (see Appendix-A, B). These results were obtained

numerically by optimizing over all possible pure state encoding, respectively, in C4

(dq = 4) and C5 (dq = 5) and all possible projective measurements for decoding. For

d = 4 and d = 5, the obtained quantum protocol gives average success probabilities

0.7405 and 0.7177, respectively, which clearly beat the respective optimal classical

(as well as noncontextual) bounds of 0.625 and 0.6. Specifically, for d = 3, 4, 5, we
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parameterized pure states as preparations for Alice ρx1x2 = |ψx1x2〉〈ψx1x2 | (where

|ψx1x2〉 ∈ Cd ) that sum up to a completely mixed state I

d
for each distinct value of

the parity. For Bob, we parameterized projective measurements |Ei 〉〈Ei | and |Fi 〉〈Fi

(where |Ei 〉, |Fi 〉 ∈ Cd ). Based on these parameterizations, we used a straightforward

gradient descent algorithm (a first-order iterative optimization algorithm for finding

the maximum of a function) to find the optimal quantum protocol. Apart from the

possibility of ending up in a local maximum, this method is exceedingly inefficient. In

particular, the size of the Hilbert space we could handle was limited up to dimension 8.

4.2 See-saw iterative algorithm

We use see-saw SDP technique to obtain lower bounds on d = 3, . . . , 10, demon-

strating violation of the associated preparation noncontextual inequalities. The see-saw

SDP iteration is an efficient algorithm for maximizing an affine functional with respect

to Hermitian operators. The technique was first introduced to quantum information

in [41] to find the maximal quantum violation of Bell inequalities. A variant of the

see-saw SDP algorithm for Bell inequalities with multiple outcomes has also been

described in [42–44]. The optimization problem relevant to this work consists of max-

imizing the success probability of the PORAC task with respect to d ′ dimensional

states ρx0,x1 and d ′ dimensional d outcome POVMs {M
y

b }:

max p(b = xy) =
1

2d2
Tr{ρx0x1 M

y

b=xy
}

subject to ∀ x0, x1 : ρx0x1 � 0;
∀ x0, x1 : Tr{ρx0x1} = 1;
∀ y, b : M

y

b � 0;

∀ y :
∑

b

M
y

b = I � 0;

Notice that the objective function comprises of a product of semi-definite matrices.

This keeps us from deploying this optimization problem as a SDP directly. This neces-

sitates the see-saw iterative algorithm. Heuristically, the see-saw algorithm consists

of fixing one of the two semi-definite variables and optimizing the other iteratively.

In the first step of the algorithm, we choose and fix appropriate random matrices for

Bob’s POVMs (bold) and find optimum preparations for Alice which maximize the

objective function:

max p(b = xy) =
1

2d2
Tr{ρx0x1M

y

b=xy
}

subject to ∀ x0, x1 : ρx0x1 � 0;
∀ x0, x1 : Tr{ρx0x1} = 1;

Notice as now the objective function is linear on the semi-definite variables (Alice’s

preparations), this problem can easily be cast as a SDP. In the second step, we choose

and fix the optimal preparations found in the previous step as Alice’s preparations
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(bold) for this round and optimize Bob’s POVM so as to maximize the objective

function:

max p(b = xy) =
1

2d2
Tr{ρx0x1

M
y

b=xy
}

subject to ∀ y, b : M
y

b � 0;

∀ y :
∑

b

M
y

b = I � 0;

Again as the objective function is a linear function of the semi-definite variables (Bob’s

POVM), this problem can easily be cast as a SDP. Next, we fix Bob’s POVM for the

first step of the next iteration to be the optimal Bob’s POVM found in the last step of

the previous iteration. The algorithm then proceeds to repeat these steps for several

iterations until the success probability reaches convergence. What is not guaranteed

is that the algorithm will converge onto a global maximum. In order to better the

chances for finding a global maximum, the entire procedure is repeated several times

with different initial values. The results and the increasing trend of the ratio of quantum

bias to classical bias are presented in Table 1 and Fig. 1, respectively.

4.3 State-of-the-art SDP hierarchy for upper bounds

Furthermore, we employ state-of-the-art NPA-hierarchy like SDP technique to obtain

upper bounds on the quantum success probability of d = 3, . . . , 10-level PORAC

task. NPA- hierarchy [45] of Bell correlations and NV-hierarchy for finite dimen-

sional correlations [46] use semi-definiteness of cleverly constructed series moment

matrices to bound quantum correlations. Our method is an amalgamation of the meth-

ods presented in [45] and [46]. The resemblance of our method to the one in [45] is

based on the fact that just like Bell inequalities, quantum bound for d-level PORAC

is independent of the dimension of the physical (communicated) system. Our method

relies on semi-definiteness of several distinct moment matrices, and in this sense, it

resembles the method in [46]. The method, its detailed description, and the nuances

thereof will be detailed in an upcoming article [53]. While level = 1 of this hierarchy

is relatively computationally inexpensive, our machines can only perform level = 2 of

this hierarchy for d = 3, 4. The results and the almost linearly increasing trend of the

ratio of quantum bias to classical bias are presented in Table 1 and Fig. 1, respectively.

5 Concluding remarks

The information processing tasks d-PORAC defined in our work lead to a class of

noncontextual inequalities for all finite values of d. These inequalities are independent

of dimension of the classical systems and therefore are similar to Bell inequalities. In

order to establish nontriviality of these inequalities, we provide evidence of significant

quantum violation of these inequalities for d ∈ {3, . . . , 10}. Remarkably, the ratio of
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Table 1 List of bounds on the quantum success probability of d = 2, . . . , 10-PORAC

d See-saw lower bound Level= 1 upper bound Level= 2 upper bound

2 0.85355 0.85355 0.85355

3 0.77778 0.80473 0.78049

4 0.74050 0.78033 0.74827

5 0.71773 0.76568 0.72274

6 0.69312 0.75592 –

7 0.67386 0.74894 –

8 0.66381 0.74371 –

9 0.65000 0.73965 –

10 0.64876 0.73639 –

First column contains lower bounds obtained from within quantum mechanics employing see-saw SDP

technique. The second column contains upper bounds obtained with the aid of level = 1 NPA-hierarchy

like SDP technique. Third column contains upper bounds obtained with the aid of level = 2 NPA-hierarchy

like SDP technique. For level = 2, d = 6 was already too expensive for our machines. Note that the bound

for d = 2 was analytically proved in [28] and serves as a Sanity Test for our numerical methods

4 5 6 7 8 9 10

0.7

0.8

0.9

1.0
quantum upper bound level=1

quantum lower bound

classical

Fig. 1 Trend of success probability in d-PORAC tasks a achievable while using classical or equiva-

lently preparation noncontextual resources (these form our noncontextual inequalities), b lower bounds

on quantum success probabilities obtained via see-saw SDP (these serve as demonstration of violation of

our noncontextual inequalities), and c upper bounds on quantum success probabilities obtained via NPA-

hierarchy like SDP techniques [53] (these bounds are independent of the dimension dq of the system)

quantum bias to classical bias � = pq(b=xy)− 1
2

pc(b=xy)− 1
2

increases with d (the task parameter)

(see Fig. 2).

The PORAC tasks introduced in this work are based on random access codes, which

form an important cryptographic and computational primitive, and therefore, the

d-PORAC has a potential of spawning novel cryptographic and computational appli-

cations like oblivious transfer protocols or privacy preserving computation.
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4 5 6 7 8 9 10

2.0

2.5

3.0

3.5

4.0

4.5

5.0
quantum upper bound level=1

quantum lower bound

Fig. 2 Increasing trend of the ratio of quantum bias to classical bias for the d-PORAC task � =
pq(b = xy )− 1

2

pc(b = xy )− 1
2

using a lower bounds on quantum success probability obtained with aid of see-saw SDP

techniques and b upper bounds on quantum success probability obtained via NPA-hierarchy like SDP

techniques [53]

In contrast to our work, the quantum protocols for the d = 2 case in [28] are the same

as the 2 �→ 1 and 3 �→ 1 quantum random access code (QRAC) protocols [54,55].

This fails for higher d: The d-level QRAC protocols in [47] for string length 2 fail to

satisfy the requirement of parity obliviousness condition (as defined in our information

task) for d = 3. As a result, our encoding–decoding scheme is quite different from the

quantum RAC protocol given in [47]. Furthermore, mutually unbiased basis has found

substantial applications in information processing tasks such as self-testing, quantum

randomness amplification, compressed sensing and has been studied thoroughly, and

here, we introduced mutually asymmetrically biased basis which may have similar

potential for applications and deserves further research.

Our work leads to some open problems. The authors in [26,36] have found the optimal

quantum violation of the noncontextual inequality given in [28]. Though we report on

lower and upper bounds on the noncontextual inequality using SDP techniques, find-

ing the optimal quantum violations of contextuality inequalities derived in this work

can be an interesting problem for future works. Furthermore, just like information

causality bounds the quantum success probability of entanglement-assisted random

access codes, it might be worthwhile to look for information theoretic principles that

bound the quantum success probability of the d-PORAC tasks. More importantly, we

believe that the operational task defined in this work suffices to reveal preparation con-

textuality of ontic distributions associated with mixed states of any finite dimensional

quantum system. For this, construction of generic quantum protocols for arbitrary

values of d is required and which we leave here as an interesting open problem.
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A Quantum protocol for 4-PORAC game

Here, parity partitions of Alice’s strings are P0 = {00, 13, 31, 22}, P1 =
{01, 10, 23, 32}, P2 = {02, 20, 11, 33}, and P3 = {03, 30, 12, 21}. Let Alice encode

her string x1x2 into some quantum states ρx1x2 and send the state to Bob. The parity

obliviousness requirement demands that

ρ00 + ρ13 + ρ31 + ρ22 = ρ01 + ρ10 + ρ23 + ρ32 = ρ02 + ρ20 + ρ11 + ρ33

= ρ03 + ρ30 + ρ12 + ρ21. (12)

If Alice encodes her strings into four orthonormal sets of states

A0 = {|ψ00〉, |ψ13〉, |ψ31, |ψ22〉}, A1 = {|ψ01〉, |ψ10〉, |ψ23, |ψ32〉},
A2 = {|ψ02〉, |ψ20〉, |ψ11, |ψ33〉}, A3 = {|ψ03〉, |ψ30〉, |ψ12, |ψ21〉},

then the above requirement is always fulfilled.

Here, we consider four-dimensional pure state encoding. Denoting the computa-

tional basis of C4 as {|0〉, |1〉, |2〉, |3〉}, any vector |ψ〉 = α|0〉 + β|1〉 + γ |2〉 + δ|3〉
can be represented as |ψ〉 ≡ [α, β, γ, δ]. Alice’s encoding is as follows:

|ψ00〉 = [0, 0, 0, 1], |ψ31〉 = [0, 0, 1, 0], |ψ13〉 = [0, 1, 0, 0], |ψ22〉 = [1, 0, 0, 0];
(13)

|ψ01〉 = [− 0.1345 + 0.0225i,− 0.2539 − 0.3035i, 0.5839 + 0.0576i, 0.6933],
|ψ10〉 = [0.1283 − 0.0404i, 0.3662 + 0.4578i,− 0.3931 − 0.0344i, 0.6947],
|ψ32〉 = [− 0.6624 + 0.2077i,− 0.2564 − 0.3007i,− 0.5853 − 0.0330i, 0.1349],
|ψ23〉 = [− 0.6843 + 0.1143i, 0.3204 + 0.4909i, 0.3862 + 0.0849i,− 0.1366];

(14)

|ψ20〉 = [− 0.6194 + 0.2157i, 0.2488 + 0.2796i, 0.0007 − 0.0001i, 0.6556],
|ψ02〉 = [− 0.6191 + 0.2154i, 0.0004 + 0.0002i,− 0.3737 − 0.0291i,− 0.6556],
|ψ11〉 = [− 0.3285 + 0.1796i,− 0.5105 − 0.4114i, 0.6532 − 0.0575i,− 0.0010],
|ψ33〉 = [0.0005 + 0.0000i, 0.4360 + 0.4899i, 0.6534 + 0.0510i,− 0.3747];

(15)

|ψ30〉 = [0.3702 − 0.1379i,− 0.0719 − 0.1161i, 0.6935 + 0.0054i,− 0.5868],
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|ψ03〉 = [0.3780 − 0.1122i,− 0.4163 − 0.5556i, 0.1361 − 0.0021i, 0.5865],
|ψ12〉 = [0.5494 − 0.2050i, 0.4360 + 0.5393i, 0.1361 − 0.0159i, 0.3954],
|ψ21〉 = [− 0.5627 + 0.1673i, 0.0751 + 0.1129i, 0.6935 + 0.0271i, 0.3941]. (16)

Each of the four sets A0, A1, A2, and A3 forms an orthogonal basis and hence satisfies

the parity obliviousness condition. For decoding the first alphabet, Bob performs a

four-outcome measurement
∑3

i=0 |Ei 〉〈Ei | = I4 and guesses the alphabet according

to the measurement result, where

|E0〉 = [− 0.2490 + 0.0899i, 0.1973 + 0.2519i,− 0.3188 − 0.0254i,− 0.8516],
|E1〉 = [0.3019 − 0.1035i, 0.5355 + 0.6622i,− 0.2626 − 0.0386i, 0.3202],
|E2〉 = [− 0.8013 + 0.2896i, 0.2154 + 0.2354i, 0.3198 + 0.0008i, 0.2646],
|E4〉 = [− 0.3024 + 0.1035i,− 0.1890 − 0.1869i,− 0.8509 − 0.0298i, 0.3197];

(17)

and for second alphabet, Bob performs measurement
∑3

i=0 |Fi 〉〈Fi | = I4, where

|Fo〉 = [0.2496 − 0.0892i,− 0.2004 − 0.2484i, 0.3187 + 0.0114i,− 0.8522],
|F1〉 = [− 0.3082 + 0.0849i,− 0.1800 − 0.1951i, 0.8493 + 0.0679i, 0.3186],
|F2〉 = [− 0.8022 + 0.2868i,− 0.2041 − 0.2454i,− 0.3195 − 0.0067i,− 0.2650],
|F3〉 = [0.3076 − 0.0847i,− 0.5244 − 0.6714i,− 0.2618 − 0.0427i, 0.3195].

(18)

For this above encoding–decoding, we find that P = 1
32

∑

i, j T r [ρi, j Ei + F j ] =
0.7405 while the optimal classical average success probability is 1/2(1 + 1/4) =
0.625.

B Quantum protocol for 5-PORAC game

Here, parity partitions areP0 = {00, 14, 41, 23, 32}, P1 = {01, 10, 24, 42, 33}, P2 =
{02, 20, 11, 34, 43}, P3 = {03, 30, 12, 21, 44}, and P4 = {04, 40, 13, 31, 22}. The

parity obliviousness conditions read

ρ00 + ρ14 + ρ41 + ρ23 + ρ32 = ρ01 + ρ10 + ρ24 + ρ42 + ρ33 = ρ02

+ ρ20 + ρ11 + ρ34 + ρ43

= ρ03 + ρ30 + ρ12 + ρ21

+ ρ44 = ρ04 + ρ40 + ρ13 + ρ31 + ρ22 (19)

Alice encodes her strings into five orthonormal sets of states

A0 = {|ψ00〉, |ψ14〉, |ψ41, |ψ23〉, |ψ32〉}, A1 = {|ψ01〉, |ψ10〉, |ψ24, |ψ42〉, |ψ33〉},
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A2 = {|ψ02〉, |ψ20〉, |ψ11, |ψ34〉, |ψ43〉}, A3 = {|ψ03〉, |ψ30〉, |ψ12, |ψ21, |ψ44〉〉},
A4 = {|ψ04〉, |ψ40〉, |ψ13, |ψ31, |ψ22〉〉}.

where the encoded states written in the computational basis of C5 are as follows,

|ψ00〉 = [0, 0, 0, 0, 1], |ψ41〉 = [0, 0, 0, 1, 0], |ψ14〉 = [0, 0, 1, 0, 0],
|ψ32〉 = [0, 1, 0, 0, 0], |ψ23〉 = [1, 0, 0, 0, 0]; (20)

|ψ10〉 = [0.23497 − 0.07340i, 0.16411 − 0.10914i, 0.42583 + 0.50168i,

− 0.19303 + 0.15607i,− 0.63712],
|ψ01〉 = [− 0.18462 + 0.06593i,− 0.20731 + 0.12870i,− 0.16285

− 0.18055i, 0.51463 − 0.38890i,− 0.65332],
|ψ42〉 = [− 0.24112 + 0.08538i,− 0.56454 + 0.30980i,− 0.12652 − 0.15098i,

− 0.52601 + 0.37747i,− 0.24885],
|ψ24〉 = [− 0.60757 + 0.21215i,− 0.21817 + 0.12492i, 0.41531

+ 0.49038i, 0.16960 − 0.12466i, 0.25570],
|ψ33〉 = [0.62265 − 0.18358i,− 0.57837 + 0.29870i, 0.13628

+ 0.19373i, 0.19499 − 0.14425i, 0.19985]; (21)

|ψ20〉 = [− 0.37409 + 0.52632i,− 0.24065 − 0.01880i, 0.09926 − 0.17359i,

− 0.07590 − 0.25674i, 0.64274],
|ψ02〉 = [0.13977 − 0.20058i, 0.64176 + 0.05606i,− 0.12928

+ 0.21553i, 0.06055 + 0.19160i, 0.64938],
|ψ42〉 = [− 0.37619 + 0.53274i, 0.18936 + 0.01847i,− 0.12115

+0.20752i, 0.19401 + 0.62175i,− 0.23774],
|ψ24〉 = [0.11346 − 0.15816i,− 0.65018 − 0.05766i,− 0.33344

+ 0.55217i, 0.07480 + 0.22713i, 0.25061],
|ψ33〉 = [0.14855 − 0.19490i,− 0.25265 − 0.02560i, 0.34980

− 0.54834i, 0.17203 + 0.61397i, 0.21416]; (22)

|ψ30〉 = [− 0.00534 − 0.24987i, 0.47253 + 0.43074i, 0.24297 + 0.07217i,

− 0.20191 + 0.01868i,− 0.65066],
|ψ03〉 = [0.02569 + 0.64638i,− 0.18296 − 0.16861i,− 0.19043

− 0.04582i, 0.25060 + 0.00014i,− 0.64689],
|ψ12〉 = [− 0.01010 − 0.19929i,− 0.49199 − 0.42851i, 0.63332 + 0.13808i,

− 0.24023 + 0.00154i,−0.23796],
|ψ21〉 = [0.04174 + 0.64483i, 0.15569 + 0.12225i, 0.24257 + 0.04356i,

− 0.65035 + 0.01444i, 0.24365],
|ψ44〉 = [0.00276 + 0.24838i, 0.16596 + 0.19200i, 0.61595

+ 0.19261i, 0.64285 + 0.04428i, 0.20539]; (23)
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|ψ40〉 = [0.12419 + 0.15209i,− 0.04125 − 0.23659i,− 0.02914

− 0.24743i, 0.20620 − 0.62431i, 0.63986],
|ψ04〉 = [− 0.15096 − 0.18341i, 0.03763 + 0.20009i, 0.06565 + 0.64204i,

− 0.07449 + 0.23344i, 0.65234],
|ψ31〉 = [− 0.39083 − 0.51585i, 0.05268 + 0.25138i,− 0.05547 − 0.64174i,

− 0.06555 + 0.18659i, 0.24731],
|ψ13〉 = [− 0.14877 − 0.19642i, 0.14476 + 0.63049i, 0.01710

+ 0.20906i, 0.19415 − 0.61023i,− 0.25833],
|ψ22〉 = [− 0.40081 − 0.51459i,− 0.13601 − 0.63082i, 0.03136

+ 0.24802i, 0.08812 − 0.22522i,−0.19270]. (24)

Bob’s first decoding measurement is
∑4

i=0 |Ei 〉〈Ei | = I5 where,

|E0〉 = [− 0.03309 + 0.25670i,− 0.25437 − 0.07003i,− 0.06867

− 0.25502i, 0.18550 − 0.19008i,− 0.85036],
|E1〉 = [0.25000 + 0.08268i, 0.03584 − 0.27017i, 0.42688

+ 0.73497i,− 0.24068 − 0.09143i,− 0.26020],
|E2〉 = [0.36296 − 0.76531i, 0.17253 − 0.20234i,−0.26009

+ 0.03026i, 0.21365 + 0.17299i,− 0.26023],
|E3〉 = [− 0.22262 − 0.15015i, 0.71573 + 0.45450i, 0.25044

− 0.09303i,− 0.15832 − 0.19830i,− 0.27073],
|E4〉 = [− 0.22262 − 0.15015i, 0.71573 + 0.45450i, 0.25044

− 0.09303i,− 0.15832 − 0.19830i,− 0.27073]; (25)

and the second decoding measurement is
∑4

i=0 |Fi 〉〈Fi | = I5 where,

|F0〉 = [− 0.11375 + 0.23729i,− 0.21967 − 0.13607i,− 0.14148

− 0.23461i, 0.12307 − 0.24902i, 0.84366],
|F1〉 = [0.22685 + 0.13877i, 0.09381 − 0.24781i, 0.26314

− 0.04382i,− 0.57053 + 0.62201i, 0.27479],
|F2〉 = [0.26939 − 0.00519i, 0.81916 + 0.21292i,− 0.24642

+ 0.11038i, 0.24692 + 0.08601i, 0.26415],
|F3〉 = [0.11939 − 0.84029i,− 0.03406 + 0.26824i, 0.19925

− 0.16385i,− 0.21871 − 0.15566i, 0.26064],
|F4〉 = [− 0.25062 − 0.06551i,− 0.17506 + 0.20714i, 0.21985

+ 0.81608i, 0.16329 + 0.20819i, 0.27390]. (26)

For this above encoding–decoding, it turns out that P = 1
50

∑

i, j T r [ρi, j Ei + F j ] =
0.71773 while the optimal classical average success probability is 1/2(1+1/5) = 0.6.
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