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We revisit extensions of the Einstein-Cartan theory where the cosmological constant Λ is promoted to a

variable, at the cost of allowing for torsion even in the absence of spinors. We remark that some standard notions

about FRW Universes collapse in these theories, most notably spatial homogeneity and isotropy may now co-

exist with violations of parity invariance. The parity violating solutions have non-vanishing Weyl curvature even

within FRW models. The presence of parity violating torsion opens up the space of possible such theories with

relevant FRW modifications: in particular the Pontryagin term can play an important role even in the absence

of spinorial matter. We present a number of parity violating solutions with and without matter. The former

are the non-self dual vacuum solutions long suspected to exist. The latter lead to tracking and non-tracking

solutions with a number of observational problems, unless we invoke the Pontryagin term. An examination of

the Hamiltonian structure of the theory reveals that the parity even and the parity violating solutions belong

to two distinct branches of the theory, with different gauge symmetries (constraints) and different numbers of

degrees of freedom. The parity even branch is nothing but standard relativity with a cosmological constant

which has become pure gauge under conformal invariance if matter is absent, or a slave of matter (and so not an

independent degree of freedom) if non-conformally invariant matter is present. In contrast, the parity violating

branch contains a genuinely new degree of freedom.

I. INTRODUCTION

In previous work [? ? ] the possible variability of the cos-

mological “constant”, Λ, was examined from two standpoints.

First, there is the apparent obstruction presented by Bianchi

identities to the variability of the Λ term in the Einstein equa-

tions, and the fact that this obstacle is promptly removed in the

first order formalism if torsion is permitted. That the presence

of torsion can change dramatically the perspective of prob-

lems is not new (see for example [? ? ? ? ? ? ? ? ? ? ?

? ]). In the context of [? ] the requisite torsion is provided

by a topological term (the Euler invariant) multiplied by an

appropriate function of Λ uniquely specified by the Bianchi

identities. Then, not only is a varying Λ allowed, but in the

absence of matter and Weyl curvature, Λ is left unspecified by

the field equations and is totally free.

More importantly, there was a second perspective, put for-

ward in [? ] and [? ]. Could Λ, or a function thereof, be pro-

moted to a dynamical variable canonically conjugate to the

imaginary part of the Chern-Simons invariant? The latter is

a well-known measure of time capable of surviving quantum

gravity [? ]. The prospect of a quantum complementarity

principle between cosmological time and Λ leads to interest-

ing speculations regarding the possible disruption to an om-

nipresent time-line for our Universe [? ? ]. More mundanely

it is natural to ask: can such quantum complementarity arise

from a classical Poisson bracket in a well defined Hamiltonian

theory?

Regrettably the minimal realization explored in [? ? ] leads

∗ j.magueijo@imperial.ac.uk
† zlosnik@fzu.cz

to a drastically unviable cosmology. This is not altogether

surprising. Against current trends, the proposed new theory

of gravity has fewer free parameters than General Relativity

(GR), instead of a multitude of new knobs that can be turned

at will to fit any dataset, as is often the case with modifica-

tions to GR. No wonder a preliminary investigation ends in

phenomenological disaster [? ].

In this paper we revisit the work of [? ? ] and push it be-

yond a first exploration. As a central result, we show that tor-

sion opens up the doors to non-parity invariant homogeneous

and isotropic cosmological models. These live on a separate

branch from the parity even solutions reported in [? ]. The

two branches have qualitatively different equations and this is

reflected in the different structures of Hamiltonian constraints,

and even different number of degrees of freedom. It can be ar-

gued that they constitute separate theories; or, at the very least,

are two entirely independent phases of the same theory.

It is not difficult to see that such solutions may exist, and

that parity invariance is not a symmetry necessity for homo-

geneous and isotropic Universes, but, rather, results from the

field equations that impose zero torsion in standard GR. Fol-

lowing the notation of [? ], homogeneity, isotropy (and the

vanishing of spatial curvature) imply the tetrad:

e0 = dt (1)

ei = adxi (2)

where a(t) is the expansion factor, t is proper cosmological

time and xi are comoving cartesian coordinates (later in this

paper we shall reinstate spatial curvature). No violation of

parity is allowed for the tetrad. However, the torsion T a =
Dea ≡ dea + ωa

be
b is a 2-form, so using only homogeneity
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and isotropy it can take the general form:

T 0 = 0 (3)

T i = −T (t)e0ei + P (t)ǫijke
jek. (4)

The term in P (t) is parity-odd and can be excluded if we im-

pose parity invariance in addition to homogeneity and isotropy

(as in [? ]), but not otherwise. This term was first introduced

by Cartan [? ] and has been considered more recently in [?

? ]. The new solutions in our paper result directly from this

term. They imply terms in the curvature that drop out of Ein-

stein’s equations. The parity-odd torsion P produces Weyl

as well as Ricci curvature in FRW, whereas T only produces

Ricci curvature. Thus, the vanishing of the Weyl tensor in

homogeneous and isotropic Universes is also not a symme-

try requirement, but an implication of the field equations in

certain theories (but not in [? ]).

As we shall see below, the parity-odd term in the torsion

not only reveals a new branch in the Hamiltonian structure of

the theory proposed in [? ? ], but opens up the space of pos-

sible theories with relevance for homogeneous and isotropic

models. An action term proportional to the Pontryagin invari-

ant was discounted in [? ] because it vanishes identically for

parity-even FRW models. The possibility of parity violating

solutions brings this term into play. In Section II we propose

a possible construction where the Immirzi parameter γ con-

trols the strength of the Pontryagin term. In Section III we

derive the equations of motion and reduce them to FRW Uni-

verses. We find that indeed new terms appear in the FRW

equations when γ is finite, due to the Pontryagin and the P
terms. In view of the complexity of the equations we defer

to future work the detailed study of these Pontryagin homo-

geneous and isotropic cosmologies. The rest of the paper as-

sumes |γ| → ∞ and is organized as follows.

In Section IV we present solutions to the parity violating

branch of the FRW models studied in [? ? ]. For vacuum

solutions we find the non-self dual solutions previously sus-

pected to exist. In the presence of matter we find the tracking

and non-tracking solutions, presenting also some preliminary

simple results for finite γ. We identify several observational

problems and the way to fix them. We conclude that finite γ
is needed for a viable cosmology.

In the remaining Sections V, VI and VII we find the Hamil-

tonian structure of the theory. We show that setting P = 0 or

not leads to different theories, with different numbers of con-

straints and degrees of freedom. We identify the presence of

an extra constraint with respect to GR if P = 0, and prove

that it represents conformal invariance. Switching on the par-

ity breaking term in the torsion amounts to breaking confor-

mal invariance. The solutions found in [? ], therefore, are

nothing but conformal gauge transformations performed upon

GR, unless non-conformal matter is added. In contrast our

new solutions represent a genuinely new degree of freedom.

II. THEORIES WITH A VARYING-Λ AND SELF-DUALITY

In the exploration of theories with a variable Λ in [? ? ], it

was found that the duality interchanging

Rab ↔ Λ(x)

3
eaeb, (5)

plays a central role. This duality is satisfied by the solutions

to the Einstein equation in the absence of matter and Weyl

curvature:

Rab =
Λ

3
eaeb (6)

and these are called self-dual (SD) solutions. It was noted in

[? ] that the SD condition trivially survives the promotion of Λ
to a field. One may ask what is the most general gravitational

action which

1) is at most quadratic in the curvature;

2) leaves the standard Einstein equations (the e equation)

unmodified;

3) contains the Palatini action as a term (or reduces to stan-

dard torsion-free GR should Λ be constant);

4) is SD, remains invariant under duality (5)?

A possible answer is:

Sg = −
∫

3

2Λ

(

ǫabcd +
2

γ
ηacηbd

)(

Rab − Λ

3
eaeb

)(

Rcd − Λ

3
eced

)

− 2

γ

∫

T aTa. (7)

This action is evidently symmetric under (5). It has the prop-

erty that it satisfies a stronger version of 3), in that it reduces

to the Holst action for constant Λ. It can be unwrapped into

four terms Sg = SPal + SEul + SNY + SPont according to:

SPal =

∫

ǫabcd

(

eaebRcd − Λ

6
eaebeced

)

, (8)

SEul = − 3

2Λ

∫

ǫabcdR
abRcd, (9)

SNY =
2

γ

∫

eaebRab − T aTa, (10)

SPont = − 3

γΛ

∫

RabRab. (11)
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The first term is the usual Palatini action, as required by point

3. The second term is the quasi-Euler term in the form con-

templated in [? ]. The pre-factor − 3
2Λ is fully determined by

the duality. Following the “quasi-topological principle” advo-

cated in [? ] (see Section II of that reference) one could add

other quasi-topological terms preserving the duality. The term

SNY is the Nieh-Yan invariant. Its first term is associate the

Holst term, with γ the Immirzi parameter. To this term one

must generally add the “torsion-squared” second term, to en-

sure it forms a boundary term (and comply with our require-

ment 2). If this term is present, then the simple form of the

action Eq. (7) (which is just a special realization of the SD

condition, albeit one with particular aesthetic appeal) requires

the presence of the term SPont. This is the Pontryagin in-

variant multiplied by − 3
γΛ . The last two terms vanish if the

Immirzi parameter γ is infinite 1. If γ is finite then the action

(7) does not transform homogeneously under a parity trans-

formation acting on fields with local Lorentz indices.

We stress that this pleasant looking form of the action is

not the most general one. The first term in (7) is manifestly

SD and built from basic blocks (ηab and ǫabcd), but to make

it comply with condition 3 we had to subtract the torsion

squared second term in (7). But we could equally well have

subtracted the the Holst term contained in the first term in (7),

so that the proposed action would just differ from that pro-

posed in [? ? ] by the Pontryagin invariant multiplied by a

function of Λ. Once the connection with the Holst term is lost,

the factor multiplying the Pontryagin could be any function of

Λ. This results from the fact that the Pontryagin term already

is invariant under (5), or rather, the term needed to make it

manifestly invariant is zero (it is proportional to eaebeaeb).

The pre-factor could be any constant divided by Λ on dimen-

sional grounds. If the constant κ = 8πG can be used here the

pre-factor could also be any power of Λ. In spite of this, for

simplicity we shall use (7) for the rest of this paper.

Eq. (7) is the proposed gravity action. Matter can be added

to it as usual:

S =
1

2κ
Sg(e, ω,Λ) + Sd(Φ, e), (12)

where we assume that the matter Lagrangian does not depend

on ω. The stress-energy 3-form is given by:

τa =
1

2

δSM

δea
(13)

and no spin current is present generating torsion from matter.

This is likely to be a very good approximation in cosmology

and is exact if spinors are assumed to couple to the torsion-

free spin-connection.

1 The theory in the limit of infinite γ also corresponds to a specific gauge

theory of gravity based on de Sitter or anti de Sitter groups in a symmetry

broken phase with remnant Lorentz symmetry [? ? ? ].

III. THE FIELD EQUATIONS AND THEIR FRW

REDUCTION

It is easy to verify that variation of the action (7) with re-

spect to e, ω and Λ leads to:

ǫabcd

(

ebRcd − 1

3
Λebeced

)

= −2κτa (14)

T [aeb] = − 3

2Λ2
dΛRab +

3

4γΛ2
ǫabcddΛRcd (15)

ǫabcd

(

RabRcd − 1

9
Λ2eaebeced

)

+
2

γ
RabRab = 0 (16)

Since the Nieh-Yan term is a topological term (rather than a

quasi-topological term) it does not contribute to any of the

three field equations. As promised by the need to satisfy

requirement 3, the first equation is the unmodified Einstein

equation. Thus, only the last 2 equations receive new terms

with respect to the equations in [? ? ], and these arise solely

from the quasi-topological Pontryagin term SPont. For action

(7) they are tied to the Immirzi parameter (but see the proviso

explained in Section II), and vanish for γ → ∞.

We can now reduce these equations to a homogeneous and

isotropic Universe using (1) and (2) for the tetrad ea, and (3)

and (4) for the torsion T a. Then, the definition T a ≡ Dea =
dea + ωa

be
b implies:

ωi
0 = g(t)ei =

(

ȧ

a
+ T

)

ei (17)

ωij = −Pǫijkek, (18)

where for the time being we have assumed vanishing spatial

curvature and with the usual Hubble parameter replaced by

the function:

g =
ȧ

a
+ T, (19)

- where dots denote derivatives with respect to cosmic proper

time - and the parity-odd component of the torsion, P , induc-

ing the spatial components ωij of the connection. Therefore,

the curvature 2-form Rab ≡ dωab + ωa
cω

cb has components:

R0i =
(ag).

a
e0ei + gPǫijkejek (20)

Rij = (g2 − P 2)eiej − (aP ).

a
ǫijke0ek (21)

and we see that no longer do R0i ∝ e0ei and Rij ∝ eiej ,

with possibly different proportionality constants, as is the case

for parity invariant solutions (with implications studied else-

where). By looking at the projection ǫabcde
bRcd we can find

the Ricci and Weyl components of the curvature, Rab and

Wab, respectively. With Rab = Rab +Wab we have:

R0i =
(ag).

a
e0ei (22)

Rij = (g2 − P 2)eiej (23)



4

for the Ricci component entering the Einstein equation, and

W0i = gPǫijke
jek (24)

Wij = − (aP ).

a
ǫijke

0ek (25)

for the Weyl curvature. Whereas the parity-even part of the

torsion, T , contributes only to Ricci curvature, the parity-odd

component, P , contributes to both Ricci and Weyl curvature.

It is therefore possible to have Weyl curvature in FRW models,

if the appropriate form of (parity-odd) torsion is present. It

is the presence of Weyl in FRW models that allows for the

novelties found in this paper.

Avoiding simplifications that would obscure comparison

with previous work, the full set of equations (14)-(42) applied

to FRW becomes:

g2 − P 2 =
Λ+ κρ

3
(26)

(ag).

a
=

Λ

3
− κ

6
(ρ+ 3p) (27)

T =
Λ̇

2Λ2

(

Λ + κρ− 6

γ
gP

)

(28)

P =
3Λ̇

Λ2

(

gP +
Λ+ κρ

6γ

)

(29)

(Λ + κρ)
(

Λ− κ

2
(ρ+ 3p)

)

− Λ2 = 18gP
(aP ).

a
+

9

γ

(

Λ + κρ

3

(aP ).

a
+

2

3

(

Λ− κ
ρ+ 3p

2

)

gP

)

(30)

It can be checked that differentiation of the equation (26) and

the use of equations (27)-(30) implies that

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (31)

and this equation can be used to replace (27) to produce a

very practical complete set of equations. As already noted

in [? ], Eq. 31 implies that matter is covariantly conserved

with regards to the torsion-free connection. As explained in [?

], this result is actually very general, and can be proved using

Noether’s theorem and an appropriate set of assumptions.

By letting γ → ∞ we see that we can set P = 0 and recover

the equations (31)-(34) of reference [? ]. However, the parity

even solutions with P = 0 are merely a branch of the theory,

and we can explore more general solutions with P 6= 0 and

investigate how these relate to the original ones found in [?

]. Furthermore if γ is finite we cannot consistently set P =
0 (except for trivial solutions, which are briefly discussed in

Section V E) if is finite. Thus the presence of the Pontryagin

term in the action precludes the existence of parity invariant

solutions.

Even before we start looking in the detail at the new solu-

tions, we can see that, with the introduction of P , the system

of equations obtained is qualitatively very different. Crucially,

no longer is the Lambda equation (30) an algebraic equation,

a fact behind much of the behaviour reported in [? ]. This

is directly due to the presence of Weyl tensor in parity violat-

ing solutions. Without Weyl curvature, the Euler term in (42)

(first term) can be eliminated in terms of Λ and ρ and p via the

Einstein equation, and the last (Pontyagrin) term in (42) van-

ishes. If Weyl curvature is present, it contributes to the Euler

invariant with terms that cannot be determined by the Einstein

equations in terms of matter and Λ (recall the Enstein equa-

tion remains unmodifed and so dependent only on the Ricci

tensor). Also the Pontryagin term no longer vanishes (and

neither can it be eliminated by the Einstein equation). The re-

sult is a differential equation, as evidenced by the right hand

side of (30). The Lambda equation is only algebraic if Weyl

curvature vanishes, as is the case with parity even solutions.

IV. THE NEW BRANCH OF THE γ → ∞ THEORY

In this paper we focus on parity breaking solutions with-

out Pontryagin term. By letting γ → ∞ equations (26)-(30)

simplify to:

g2 − P 2 =
Λ+ κρ

3
(32)

(ag).

a
=

Λ

3
− κ

6
(ρ+ 3p) (33)

T =
Λ̇

2Λ

(

1 +
κρ

Λ

)

(34)

P =
3Λ̇

Λ2
gP (35)

18gP
(aP ).

a
= (Λ + κρ)

(

Λ− κ

2
(ρ+ 3p)

)

− Λ2. (36)

Setting P = 0 we recover equations 31-34 in [? ], as al-

ready stated. Specifically, we see that without matter we have

Λ2 = Λ2 for the equation of motion (EOM) of Λ, signalling

that it remains unspecified. Whether this is a true degree of

freedom will be examined in Sections V and VI. If there is

matter, then the Lambda algebraic EOM implies that Λ tracks
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matter, except in the case of pure radiation, where the equa-

tion sets the radiation density to zero, and we are back to pure

Λ. Again, we shall re-examine this in the next Section, and

understand it in relation to the conformal invariance of radia-

tion. Finally, we note that Eq. (35) is absent for P = 0, since

it reduces to 0 = 0.

However, if P 6= 0 an entirely new branch of the system

emerges, with qualitatively different behaviour. We gain a

new differential equation, since (35), rather than collapsing

to 0 = 0, now states:

1 =
3Λ̇

Λ2
g. (37)

In addition the equation obtained by varying Λ is no longer

algebraic, as announced. The rest of this Section is devoted to

finding the new solutions, and the next Section to examine the

meaning and orgin of the new branch.

In Appendix I we present an alternative derivation of the

field equations following from the action (7). One starts by

writing down the action for FRW and only then variations are

taken. This will be useful for an examination of the Hamil-

tonian structure later. A first order closed system can then be

found.

A. Solutions without matter

We now consider solutions where P 6= 0 (parity violation),

but Λ 6= 0 and ρ = p = 0. These are the non-SD vacuum

solutions speculated to exist in [? ? ]. From now on, for

convenience, we will often use “conformal” versions of both

P and g defined from:

c = Pa (38)

b = ga. (39)

It can be shown (see Appendix I) that the equations of motion

then reduce to

da

dt
= b− a2Λ

6b
(40)

db

dt
=

1

3
aΛ (41)

dΛ

dt
=

aΛ2

3b
(42)

dc

dt
= 0 (43)

with Hamiltonian constraint:

k − c2 + b2 =
1

3
a2Λ (44)

where we have allowed for a non-zero spatial curvature k.

Eq. (43) implies constancy of the conformal version of P :

c = c0, (45)

so we see that the parity violating term behaves like negative

curvature in the Hamiltonian constraint. Also, Eqs. (41) and

(42) can be combined to yield

b = b0Λ. (46)

Then, the Λ evolution equation combined with the Hamilto-

nian constraint can be used to obtain an ordinary differential

equation for Λ that can be integrated to yield, for k − c20 > 0
and b0 > 0, the parametric expression:

Λ =

√

k − c20
b0

sinh

(

η − η0

)

(47)

a
√

Λ/3 =
√

k − c20 cosh

(

η − η0

)

(48)

where η0 is an integration constant and we’ve define the coor-

dinate η via dη =
√

Λ/3dt (not conformal time, therefore).

For the case c20−k > 0 and b0 > 0 there is instead the implicit

solution

η − η0 = ln

∣

∣

∣

∣

√

b20Λ
2

c20 − k
− 1 +

b0Λ
√

c20 − k

∣

∣

∣

∣

(49)

Thus for η ≫ η0 in both cases, Λ increases as eη .

These are the non-SD vacuum solutions of the theory when

γ → ∞. We notice that indeed they have non-vanishing Weyl

tensor, even though they are homogeneous and isotropic (but

not parity invariant). From (24) and (25) we see that Wij = 0
for these solutions, but W01 6= 0. Because the Weyl tensor is

non-zero, Einstein’s equations in vacuum no longer reduce to

Eq. (6).

We defer to future work a complete study of the equivalent

solutions under the influence of the Pontryagin term. As a

brief illustration of differences that can arise when γ is finite,

we note that for this case the following solution exists 2:

Λ = Λ0 (50)

c = 0 (51)

a = e

√

Λ0

3
t

(52)

i.e. this solution corresponds to de Sitter space and repre-

sents as a General Relativistic limit as Λ is constant and the

torsion vanishes. Now consider small homogeneous pertur-

bations around this solution, for example Λ(t) = Λ0 + λ(t),
c(t) = δc(t). It can then be shown that

δc(t) = e−2
√

Λ0

3
tC1 (53)

λ(t) = −2γ
√
Λ0√
3

e−
√
3Λ0tC1 +A1 (54)

Therefore, this solution is stable against small time-dependent

perturbations.

2 This is a solution that corresponds to a foliation of de Sitter space with

k = 0; the general solution for a involves a decaying exponential that

allows for the correct k > 0 and k < 0 forms.
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B. Tracking solutions in the presence of matter

It was found in [? ] that when c = 0, matter dramatically

altered the behaviour of the theory. We now investigate the ef-

fect of matter when Pa = c 6= 0. We provisionally set k = 0
(in effect assuming that curvature provides a negligible contri-

bution to the Einstein equations) and look for solutions where

the gravitational fields in some sense scale in the same way

as the dominant matter component. We take this component

to be a perfect fluid with pressure p = wρ. From the matter

conservation equation, Eq. 31), it follows that ρ ∼ a−3(1+w).

We adopt a notation:

8πGρ

3
≡ Ωwa

−3(1+w) (55)

and we make the “scaling” or “tracking” ansatz:

Λ = 3ΩΛa
−3(1+w) (56)

c2 = (Pa)2 = Ωca
−(1+3w) (57)

b2 = (ga)2 = Ωba
−(1+3w) (58)

where the Ωi are constants. The Hamiltonian constraint equa-

tion then reads:

Ωb = Ωw +ΩΛ +Ωc (59)

In the limit γ → ∞, the system of equations of motion (see

Appendix I) becomes a set of algebraic equations for the Ωi.

The solutions can be categorized as follows, with the sub-

scripts enumerating various cases:

Ω(1)Λ =
3(1 + w)(1 + 3w)

5 + 3w
Ωw, Ω(1)c = −1

2
(2 + 3w)Ωw

(60)

Ω(2)Λ = 0, Ω(2)c = −Ωw (61)

Ω(3)Λ = 0, Ω(3)c =
1

2
Ωw (62)

Ω(4)Λ = −3(1 + w)

1 + 3w
Ωw, Ω(4)c =

2

1 + 3w
Ωw (63)

For Case 1, Ωc is negative for w > −2/3 and hence - from

(57) - c ∈ iR and therefore the solution is unphysical for

cosmologies possessing periods of matter or dust domination.

Similarly Case 2 is excluded and whilst for Cases 3 and 4, Ωc

is positive, its magnitude is too great to give a realistic expan-

sion history of the Universe.

Thus, the scaling solution for infinite γ are as unviable as

those studied in [? ]. We defer to future work a more complete

study of the finite γ case, but here give a preliminary result.

It may be shown that in the case of finite γ, the quantities

RΛ ≡ ΩΛ/Ωw, Rc ≡ Ωc/Ωw obey the equations:

RΛ

(

2γ
√
RcRΛ

(2Rc +RΛ + 1)
(

γ
√
Rc +

√
Rc +RΛ + 1

) + 3(1 + w)

)

= 0 (64)

−
(

2
√

Rc

√

Rc +RΛ + 1 (2RΛ − 3w − 1) + γ(1−RΛ) + 3γw (RΛ + 1)
)

=
2γ(3w + 1)

3(w + 1)
RcRΛ (65)

These equations admit solutions where RΛ = 0, which always

satisfies (64), leading to (65) taking the form

2γR2
c + γRc + 2

√

Rc + 1R3/2
c + 3

√

Rc + 1
√

Rc − γ = 0,
(66)

which possesses solutions 0 < Rc ∼ γ2/9 ≪ 1 for 0 < γ ≪
1 (see Figure 1). We do not consider γ < 0 here as it may be

shown that solutions for Rc are either negative or greater than

or equal to 1/2.

C. Non-tracking solutions in the presence of more realistic

matter content

For completeness, we now look at solutions to the field

equations in the presence of realistic matter content (com-

bined radiation and dust in typical abundances). The evolu-

tion of c2 for several cosmological models is shown in Figure

2.

We see that if c2 begins above the tracking solution, it can

stay close to the tracking solution for a time, eventually de-

parting to take on a constant value. When this happens, the c
field - in having an effective density which scales as c2/a2 -

gravitates in the same way as curvature. The departure from

the tracking solution indicates that this effective curvature has

begun to dominate the matter components (with the fields c
and Λ then being well approximated by the results of Section

IV A), leading to conflict with data if this happens too early.

Closeness to the tracking solution yields in the radiation era

an additional radiation component with half of the energy den-

sity of the combined photon and neutrino fluid which is also

in conflict with data.

We have therefore identified the culprit for the phenomeno-
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FIG. 1. Plot of a solution for Rc = Ωc/Ωw as a function of tan−1 γ,

with ΩΛ = 0. The solid curve represents that exact solution, which

asymptotes to Rc = 1/2 as γ → ∞ and the dashed curve is the ap-

proximate solution Rc = γ2/9, applicable for γ ≪ 1. Interestingly,

this soluton is independent of the equation of state w of the dominant

matter component.
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FIG. 2. Typical cosmological evolution of c2 in the presence of radi-

ation and dust. The dashed line is the tracking solution (62).

logical troubles of these models. But we have also found how

to fix the problem. The existence at finite γ of tracking solu-

tions for which the energy density due to c is much smaller

than that due to radiation (see Fig. 1) is ultimately what en-

ables such models to result in a realistic cosmology. These

will be explored in future work. It is conceivable that the

new gravitational degrees of freedom are capable of produc-

ing the late-time acceleration of the universe. We emphasize

that Fig. 1 and Fig. 2 display the evolution of parity-violating

torsionful quantities and it is not clear whether counterparts

could exist in a torsion-free scalar tensor theory.

Finally, we note that if c2 begins below the tracking solu-

tion, it tends to result in Universes that do not persist to the

present moment. To understand this, we note that the c equa-

tion of motion can be written as follows:

dc2

da
= −a3

(

Λ(3p− ρ) + 3ρ(ρ+ 3p)

)

(

6b2 − 3a2ρ− a2Λ

) (67)

and so generally if c2 has decreased to reach 0, it will continue

attempting to decrease which is an impossibility for c ∈ R.

Interestingly, similar behaviour was observed by Toloza and

Zanelli [? ] for the analogue of the field c in a theory which

differs from the one under consideration here by fixing the Λ
in (8) to be a constant 3.

V. HAMILTONIAN STRUCTURE OF THE TWO

BRANCHES

The Hamiltonian analysis of the system with γ → ∞ sheds

light on the nature of the two branches c = Pa = 0 and c 6= 0.

A simple way to derive the Hamiltonian can be found in two

steps applied to the action (147) derived in Appendix I, which

is nothing but (7) specialized to FRW symmetry, with slightly

different conventions and allowing for spatial curvature for

generality.

Step 1 We start by noting that the Euler term (i.e. the

last two terms in (147)) can be rewritten in terms of the time

derivative of the Chern-Simons (CS) time of the system (see [?

? ]). Indeed (147) is equivalent to:

Sg =

∫

dt

(

2a2ḃ+
6

Λ

d(bc2 − 1
3b

3 − bk)

dt

+2Na

(

k − c2 + b2 − Λ

3
a2
))

, (68)

where indeed:

τCS = 6b(c2 − 1

3
b2 − k) (69)

is the CS time of the system (i.e. the imaginary part of the CS

functional [? ? ]). We can therefore integrate the second term

by parts to identify the momentum Π conjugate to Λ−1, and

rephrase this in the form of a primary constraint forcing Π to

be proportional to the CS time seen as a function of connection

variables b and c. In other words, we can introduce a Lagrange

multiplier V to propose an action with the same equations of

motion (since it is the same up to a boundary term):

Sg′

=

∫

dt

(

2a2ḃ+Π
dΛ−1

dt
+ 2Na

(

k − c2 + b2 − Λ

3
a2
)

+V

(

Π

6
+ bc2 − bk − 1

3
b3
))

. (70)

3 Similar ‘catastrophic complexification’ of fields has also been observed in

other modified theories of gravity [? ].
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Step 2 Having done this, we note that c does not appear dot-

ted or mutiplying any dotted quantity in the action, that is, it

has no conjugate momentum. Within this approximation (spa-

tial homogeneity and isotropy), this exposes the fact that c is

a connection degree of freedom which does not have a con-

jugate metric variable (there is no parity odd possible compo-

nent for ea). We could express this fact by introducing a term

of the form ċΠc in the action and add and a further constraint

forcing Πc ≈ 0 on-shell. This would lead to a second-class

constraint (as we shall see in Section VII). Due to the compli-

cations inherent to second-class constraints we therefore opt

to eliminate c directly using the algebraic equation obtained

by varying with respect to c:

2Nac− bV c = 0 (71)

At once we see that this has two distinct branches: c = 0
and V = 2Na/b leading to two different theories.

Theory 1 If c 6= 0 then:

V = N
2a

b
(72)

and so the theory only has one independent constraint. Elimi-

nating V we have:

Sg′

=

∫

dt

(

2a2ḃ+Π
dΛ−1

dt
+ 2Na

(

2

3
b2 − Λ

3
a2 +

Π

6b

))

.

(73)

This is the theory containing the parity-odd solutions studied

in this paper. Note that both the spatial curvature k and c
disappear from the constraint.

Theory 2 If c = 0 then V and N remain independent:

S′ =

∫

dt

(

2a2ḃ+Π
dΛ−1

dt
+ 2Na

(

k + b2 − Λ

3
a2
)

+V

(

Π

6
− bk − 1

3
b3
))

(74)

This is the theory studied in [? ], and it does not break parity.

We can write both Theory 1 and Theory 2 in the following

form:

S =

∫

dt

(

p
da2

dt
+Π

dΛ−1

dt
−H(a2, p; Λ−1,Π)

)

(75)

where p ≡ −2b and we have integrated by parts. Hence, the

basic symplectic structure of both theories is:

{a2, p} = 1 (76)

{Λ−1,Π} = 1 (77)

where the brackets denote the Poisson bracket. We now exam-

ine the structure of constraints of these two theories. We will

distinguish between vacuum solutions and solutions where

matter has been added in the form of either a dust fluid or

a radiation fluid. The details of the steps to the Hamiltonian

formulation of these models are presented in Appendix II.

A. Structure of Theory 2

For Theory 2 the Hamiltonian:

H2 = −2N
√
a2H2 − V V2 (78)

is made up of two constraints:

H2 = k +

(

p

2

)2

− Λ

3
a2 (79)

V2 =
Π

6
+

p

2
k +

1

3

(

p

2

)3

(80)

multiplied by appropriate Lagrange multipliers. The con-

straints form a closed algebra:

{V2,H2} =
Λ

6
H2 (81)

so they are functional first-class constraints (they close, but the

“structure constants” are functions of phase space). There is

no need to add any further constraints to the total Hamiltonian

to make the algebra close.

The first constraint generates variations:

δNa2 = {a2,H2} =
p

2

δNp = {p,H2} =
Λ

3

δNΛ−1 = {Λ−1,H2} = 0

δNΠ = {Π,H2} =
Λ2a2

3
(82)

The second constraint generates:

δV a
2 = {a2,V2} =

k

2
+

1

2

(p

2

)2

≈ Λ

6
a2

δV p = {p,V2} = 0

δV Λ
−1 = {Λ−1,V2} =

1

6
δV Π = {Π,V2} = 0. (83)

The latter are shifts in Λ, together with a change in a2 obtained

from the Hamiltonian constraint. As we shall see in the next

Section, the symmetry associated with these transformations

is conformal symmetry. The first (Hamiltonian) transforma-

tions are a combination of a time lapse (resulting from the

invariance under time reparameterizations) and a conformal

transformation which would leave Lambda unchanged.

Thus the time evolution is given by the Hamiltonian evolu-

tion plus a conformal transformation. This is always the case

with constrained systems (see [? ]; pp 11). Specifically, for a

general quantity f

ḟ = −2Na{f,H2} − V {f,V2} (84)
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so the time evolution equations with N = 1 (proper time) are:

ȧ = b− V
Λa

3
(85)

ḃ =
Λa

3
(86)

(Λ−1). = − Λ̇

Λ2
= −V

6
(87)

Π̇ =
2

3
a3Λ2. (88)

Together with H2 ≈ 0 and V2 ≈ 0, the full content of these

is:

ȧ = b− Λ̇

2Λ
a (89)

ḃ =
Λa

3
(90)

and they are equivalent to the equations 31-34 of [? ]. The first

equation may also be written as ȧ = b−Ta with T = Λ̇/(2Λ).
Therefore, the arbitrariness of Λ found in [? ] merely re-

flects the fact that Lambda is pure gauge. The time evolu-

tion is given by the Hamiltonian evolution (keeping Λ con-

stant) plus a conformal transformation resulting in whatever

Lambda evolution we want. For a given Λ(t) we should set

V = 6
Λ̇

Λ2
= 12

T

Λ
. (91)

B. Structure of Theory 1

For Theory 1 we have:

H1 = −2N
√
a2
(

2

3

(

p

2

)2

− 2Π

6p
− Λ

3
a2
)

(92)

with the single (Hamiltonian) constraint. The constraint gen-

erates transformations

δNa2 = {a2,H1} =
p

3
+

Π

3p2

δNp = {p,H1} =
Λ

3

δNΛ−1 = {Λ−1,H1} =
1

3p

δNΠ = {Π,H1} =
Λ2a2

3
(93)

and these result directly in the time evolution of the system.

Choosing N = 1 and evaluating ḟ = −2a{f,H1} for all

quantities leads to the system of ODEs derived above.

C. The structure of the theories in the presence of matter

We now look at the effect of the inclusion of matter. For

ease of illustration we will focus on the cases where the mat-

ter content is either in the form of a pressureless dust or a

radiation fluid. This will be sufficient to make the point re-

garding the crucial difference between conformally invariant

matter and non-conformally invariant matter.

It can be seen using the results of Appendix II that the dust

and radiation do not couple to c and so equation (71) still ap-

plies and leads to a similar phenomenon of branching depend-

ing on whether c(t) = 0 or not and we will retain the designa-

tions Theory 1 and Theory 2 based on this distinction. We can

write the combined matter and gravitational action as follows:

S =

∫

dt

(

p
da2

dt
+Π

dΛ−1

dt
+ P dφ

dt

−H(a2, p; Λ−1,Π, φ,P)

)

(94)

where the symplectic structure is supplemented by the

{φ,P} = 1 amongst matter field φ and its momentum P .

1. Theory 2 in the presence of dust matter

Using the results of Appendix II, it can be seen that for

Theory 2 in the presence of dust we now have the Hamiltonian

H2 = −2N
√
a2H2 − V V2 (95)

where V2 retains the form (80) and now

H2 = k +

(

p

2

)2

− Λ

3
a2 − P

2a
. (96)

Working out the Poisson bracket between the two constraints

we now find:

{V2,H2} =
Λ
(

1− 3P
4a3Λ

)

6
H2 +

ΛP
(

2a3 − 3P
Λ

)

48a4
. (97)

Therefore time evolution according to H2 only preserves the

constraints if, furthermore, a secondary constraint

W2 ≡ 2a3 − 3P
Λ

= 0 (98)

is additionally present. This constraint requires that Λ be en-

tirely fixed in terms of the dust momentum P = (2/3)κρa3

which is equivalent to the result found in [? ]: one must have

ρ = Λ for w = p/ρ = 0. We further require that the con-

straint (98) is preserved by time evolution. It can be shown

that {W2, H2} ≈ 0 if

V = −9p

2a

N

Λ
. (99)

Therefore (as in Eq. 72 for Theory 1) V cannot be specified

independently of {p, a,Λ, N}, signalling that the gauge free-

dom present in Theory 2 without matter is no longer present

(as we will see the symmetry is conformal invariance, broken

by dust).
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There is, however, a function that has a weakly vanishing

Poisson bracket with all the other constraints:

Z2 =
1

Na
H2m

∣

∣

∣

∣

V→−(9p/2a)N/Λ

(100)

= −2H2 +
9

2

p

a2Λ
V2. (101)

On the constraint surface defined by the three constraints, we

have that {Z2,W2} = {Z2,H2} = {Z2,V2} = 0.

Therefore, if we take constraints to be (V2,W2,Z2) we

form the algebra:

{Z2,V2} ≈ 0 (102)

{Z2,W2} ≈ 0 (103)

{V2,W2} ≈ 1

108
a2Λ3 (104)

This suggests that in Theory 2 in the presence of pressureless

dust there are two second-class constraints (V2,W2) and one

first-class constraint Z2. We will see presently how this af-

fects the counting of the number of degrees of freedom of the

theory.

2. Theory 2 in the presence of a radiation fluid

For Theory 2 in the presence of a radiation fluid we have

the Hamiltonian

H2 = −2N
√
a2H2 − V V2 (105)

where V2 retains the form (80) and now

H2 = k +

(

p

2

)2

− Λ

3
a2 − χ

P4/3

a2
(106)

as explained in Appendix II. Working out the Poisson bracket

between the two constraints we find:

{V2,H2} =
Λ

6
H2 +

Λ

6a2
χP4/3. (107)

Therefore, time evolution according to H2 only preserves the

constraints if there is a secondary constraint:

W2 ≡ P = 0. (108)

Recalling that ρ ∝ P4/3/a4 we see that this is nothing but

the conclusion found in [? ] that for w = 1/3 the radiation

density in the Universe is zero and thus the theory reduces to

the vacuum theory (this follows directly from Eq. (30), setting

the right hand side to zero).

Unsurprisingly we recover the structure of Theory 2 in vac-

uum. It can be checked that {W2,V2} = {W2,H2} = 0 and

therefore V and N remain arbitrary and independent func-

tions of time. The Hamiltonian equation of motion for φ

yields φ̇ ∝ P1/3 ≈ 0, showing that φ = cst. on the con-

straint surface. Due to the global shift symmetry of the scalar

field action of Appendix II, this constant can be set to zero

without loss of generality, meaning that consistent dynamics

takes place on a submanifold of phase space where P ≈ 0
and φ ≈ 0. Then, the symplectic structure {φ,P} = 1 can be

interpreted as non-commutation of constraints i.e. the pres-

ence of second-class constraints. We have {φ,V2} = 0 and

{φ,H2} ≈ 0, therefore we have two first-class constraints

(H2,V2) and two second-class constraints (φ,P).

3. Theory 1 in the presence of matter

It may be shown that in the presence of dust in the case of

Theory 1 we now have:

Hd
1 = −2N

√
a2
(

2

3

(

p

2

)2

− 2Π

6p
− Λ

3
a2 − P

2a

)

(109)

whereas in the presence of radiation we have

Hr
1 = −2N

√
a2
(

2

3

(

p

2

)2

− 2Π

6p
− Λ

3
a2 − χ

P4/3

a2

)

(110)

As in the absence of matter, the theory contains one con-

straint and Hamilton’s equations will be equivalent to equa-

tions (148)-(151).

D. Degrees of freedom

Having found the constraint structure in the cases with and

without matter (dust or radiation), we can now compute the

degrees of freedom for each theory following the formula [?

]:

Ndof =
1

2

(

Dimph − 2F − S

)

(111)

where Dimph is the dimensionality of the unconstrained

phase space, F is the number of first-class constraints, and

S is the number of second-class constraints. Without mat-

ter, phase space is coordinatized by (a2, p,Λ−1,Π) and so

Dimph = 4. For Theory 2 we have two first-class constraints

and no second-class constraints and hence Ndof = 0. For

Theory 1 we have one first-class constraint and no second-

class constraints and hence Ndof = 1. In the presence of

either radiation or dust, the phase space can be coordinatized

by (a2, p,Λ−1,Π, φ,P) and so Dimph = 6. For Theory 2 in

the presence of dust we have one first-class constraint and two

second-class constraints and hence Ndof = 1 whilst for The-

ory 2 in the presence of radiation we have three two-class con-

straints, two second-class constraints and hence Ndof = 0.

For Theory 1 we have one first-class constraint and no second-

class constraints and hence Ndof = 2.
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Dimph F S Ndof

GR (no matter) 2 1 0 0

GR (matter) 4 1 0 1

Theory 1 (no matter) 4 1 0 1

Theory 1 (w. matter) 6 1 0 2

Theory 2 (no matter) 4 2 0 0

Theory 2 (w. dust) 6 1 2 1

Theory 2 (w. radiation) 6 2 2 0

TABLE I. The structure of phase space and its constraints for vari-

ous theories, as discussed in this Section. Within FRW symmetry,

Dimph is the dimensionality of the unconstrained phase space, F is

the number of primary constraints, S the number of secondary con-

straints, and Ndof the resulting number of degrees of freedom.

The situation can therefore be summarized in table I, where

we have included standard GR for comparison. As we can see

Theory 2 does not have any new degrees of freedom in addi-

tion to GR. In addition, if its matter content is radiation, the

the theory is equivalent to GR without matter. On the contrary

the parity violating Theory 1 does have a genuine new degree

of freedom. We will understand this better when we identify

the origin of the new constraint in Section VI.

E. Hamiltonian structure for general values of γ

Even though we defer to future work a more complete study

of finite γ, we add some comments here for completeness. For

a general value of γ the action (70) is modified in that the term

multiplying V in the Lagrangian now has additional terms in

it and the equation of motion obtained from varying c now

takes the form

V (b2 − c2 + k + 2bcγ) = 4caγN (112)

Thus outside of the limit |γ| → ∞ this equation is not auto-

matically satisfied by the special solution c(t) = 0 but would

additionally require b2(t) = −k to leave V undetermined,

which from the N equation of motion would then imply Λa2

being constrained to vanish. Outside of this special case, it is

generally possible to solve for c and V from their combined

equations of motion - as in Theory 1 in the γ → ∞ limit - and

yield a Hamiltonian formulation with one constraint.

VI. THE CONFORMAL INVARIANCE OF THE THEORY

It was conjectured by Dirac [? ] that all primary and all

secondary first-class constraints generate gauge transforma-

tions4. Here we show that the new constraint V unveiled by

4 A possible resolution to this issue may be found in [? ], where an algorithm

for creating all the generating functions associated with gauge symmetries

is presented. In some exotic cases, secondary first-class constraints can end

up not appearing in the gauge generators. Blagojevic in his textbook [? ]

claims that for all known relevant physical applications, Dirac’s conjecture

holds.

the Hamiltonian analysis of the system is conformal invari-

ance.

Under a conformal transformation:

ẽa = φ1/2ea (113)

R̃ab = Rab (114)

Λ̃ =
Λ

φ
, (115)

we have that the Lagrangian L derived from the action (7), as

in S =
∫

L, transforms up to a boundary term as:

L̃ = φL. (116)

The fact that the Lagrangian is not invariant (but only a con-

formal density) implies that the EOM obtained by integration

by parts (e.g. the ωab equation) will not generally be confor-

mally invariant. All the other equations, however, will be.

Note that the torsion is not a conformal tensor, since:

T̃ a = φ1/2

(

T a +
dφ

2φ
ea
)

, (117)

however this does not spoil the conformal invariance (with

weight 1) of the total action. Note also that in a FRW back-

ground it is the parity-even component of the torsion that fails

to be a conformal tensor:

T̃ =
1√
φ

(

T − φ̇

2φ

)

(118)

P̃ =
P√
φ
. (119)

Hence we see all the relevant quantities transform as:

dt̃ =
√

φdt (120)

ã =
√

φa (121)

b̃ = b (122)

c̃ = c (123)

Λ̃ =
Λ

φ
, (124)

(it is easy to see that g̃ = g/
√
φ for the new Hubble parameter,

g, defined in Eq. (19)). By setting φ = 1 + V Λ/6, with V ≪
1, we see that these imply (83).

Having identified the symmetry behind the extra constraint

of the system we may now investigate why this is preserved

when c = 0, but broken otherwise. The reason is that, as

already noted, the gravitational Lagrangian is not strictly con-

formally invariant, but a density (Lg is multiplied by φ; cf.

Eq. (116)). Thus, any field equations involving integrations

by parts will not be conformally invariant. In our case the rel-

evant equation is the connection equation (15). Indeed it can

be checked that in general this is only conformally invariant

for SD solutions (satisfying (6)). For the FRW reduction, the

connection equations are (28) and (29). It can be seen that

equation (28) with no matter and γ → ∞ becomes:

T =
Λ̇

2Λ
, (125)
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which is conformally invariant, even though its LHS and RHS

are not. However equation (29) is not conformally invariant,

unless P = c = 0. If c 6= 0 this implies Eq. (37), obviously

not conformally invariant. Hence the component of the con-

nection equation that breaks conformal invariance is precisely

the same that breaks parity.

This is why Theory 2 in the absence of matter is nothing

but GR with one extra gauge degree of freedom represented

by the cosmological constant (see Table I). Discounting gauge

degrees of freedom, the theory is the same as GR. In the same

way that Minkowski and de Sitter space-times have no d.o.f.,

the theory does not have any. The apparent new degree of

freedom is pure gauge, and this is why Lambda is left unde-

termined. The same happens if the matter content is confor-

mally invariant (in which case the theory is equivalent to GR

in vacuum, with the density of the matter forced to be zero for

the equations of motion to admit consistent solutions). Ad-

dition of non-confomal matter adds a degree of freedom to

both GR and Theory 2. In contrast, Theory 1 never displays

conformal invariance at the level of the equations of motion.

It always has one fewer constraint than Theory 2, and conse-

quently one more degree of freedom than GR, with or without

matter (conformally invariant or not).

Finally we remark that by choosing

φ =
Λ

Λ0
(126)

it is possible to map theory into a constant Λ theory with a

varying gravitational constant, should the matter content be

non-conformally invariant. This is indeed what is found in the

solutions reported in [? ], for Theory 2, which does preserve

conformal invariance.

VII. PARITY VIOLATION AS THE SOURCE OF A

SECOND-CLASS CONSTRAINT

There is an alternative way to understand the double branch

structure triggered by setting the parity violating component

of the torsion c to zero, or not. Here we will illustrate this

ignoring matter (it is straightforward but tedious to include

matter).

The fact that c has a vanishing conjugate momentum (see

Eq. (70)) could have been phrased as another constraint, rather

than solving for c and eliminating it from the action, as we did

in Section V, step 2. Then, we would have to contend with 3

constraints, encoded in action:

Sg′′

=

∫

dt

(

p
da2

dt
+Π

dΛ−1

dt
+ ċΠc

+2NaH3 + V V3 + λΠc

)

(127)

where

H3 = k − c2 +
p2

4
− Λ

3
a2 (128)

V3 =
Π

6
+

p

2
k +

1

3

(

p

2

)3

− p

2
c2 (129)

Dimph F S Ndof

Theory 1 (no matter) 6 2 0 1

Theory 2 (no matter) 6 2 2 0

TABLE II. The bifurcation associated with the Πc constraint, and

how it results in the same number of degrees of freedom for theories

1 and 2 (without matter) as in Table I. The situation is similar with

the addition of matter.

or in the Hamiltonian:

H3 = −2NaH3 − V V3 − λΠc, (130)

with {c,Πc} = 1, beside the previously defined Poisson

brackets, (76) and (77). Computing the algebra of constraints

we find that, even without setting c = 0, we still have:

{V3,H3} =
Λ

6
H3, (131)

as in Theory 2 (see Eq. 81). In addition:

{H3,Πc} = −2c (132)

{V3,Πc} = −pc. (133)

There are now 2 ways to turn this system of second-class

constraints into first-class constraints, resulting in theories

with a different number of d.o.f. One is to increase the number

of constraints by imposing the further constraint:

c ≈ 0, (134)

so that now (132) and (133) vanish on-shell (or close within

the system including the new constraint). Note that {c,H3} =
{c,V3} = 0, so the whole system is now first-class if we ig-

nore c and Πc. Obviously, c = 0 and Πc = 0 do not com-

mute, since {c,Πc} = 1, but this is simply two second-class

constraints over two variables, rendering them irrelevant. This

results in Theory 2.

The other way is to decrease the number of constraints and

close (132) and (133) by forming the linear combination of

constraints H3 and V3 as they enter in the total Hamiltonian

which does commute with Πc. This amounts to requesting

that

{Πc,−2NaH3 − V V3} = 0 (135)

and from (132) and (133) this implies N = −V p/(4a) =
V b/(2a), so the linear combination sought is proportional to

H1. This is Theory 1.

We see that even though the counting leading to the number

of degrees of freedom is done differently the final result is the

same. Instead of Table I (for no matter) we now have Table II.

VIII. CONCLUSIONS

In this paper we found a new degree of freedom in homoge-

neous and isotropic, but parity violating Universes, allowing

for Weyl curvature. It is present, for example, in the theory
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proposed in [? ]. At the level of homogeneous and isotropic

space-times (for which GR has zero degrees of freedom with-

out matter and one d.o.f. with matter) this is the only new

degree of freedom of the theory proposed in [? ], but it would

be interesting to study the equivalent problem for tensor and

scalar perturbations, and see the implications for the graviton.

Within FRW models we found the new parity violating so-

lutions, with and without matter, focusing on the theory with-

out Pontryagin term (γ → ∞) but with an eye on introduc-

ing it. The vacuum solutions reported in Section IV A are the

non-SD solutions speculated to exist in [? ? ]. In the pres-

ence of matter, we presented scaling solutions in Section IV B,

with disastrous phenomenology. The parity violating term en-

ters the Hamiltonian constraint with an effective energy den-

sity equal to one half that of the matter component. In Sec-

tion IV C we found that in the presence of a mixture of mat-

ter and radiation the field starts off by tracking radiation, but

soon a cataclysm happens, with this term either behaving like

a dominating curvature term, or leading to a complex mani-

fold.

However, this depends on the initial importance of the par-

ity violating term. It turns out that this depends on the strength

of the Pontryagin term, dialled by γ. As Fig. 1 shows, the

amount of parity violating scaling term increases with γ and

this is crucial. For infinite γ it is 1/2 and this results in the dou-

ble disaster depicted in Fig. 2: either a curvature like domina-

tion or a complexification. But this can be averted with finite

γ, leading to a realistic cosmology, including the late-time ac-

celeration of the universe. A full exploration of this very rich

class of models will be presented in future work.

Having found these solutions in Sections V, VI and VII we

sought to to understand where the parity invariant solutions

reported in [? ] fit in with the parity breaking solutions re-

ported here. By finding the Hamiltonian formulation of the

theory in Section V we were able to determine that by set-

ting P = 0 or not, one is led to different theories, with dif-

ferent numbers of constraints and degrees of freedom. The

counting is displayed in Table I, where one sees that allowing

for parity violating torsion results in a less constrained theory.

In Section VI we were able to identify the gauge symmetry

associated with the extra constraint as conformal invariance.

Switching on the parity breaking term in the torsion amounts

to breaking conformal invariance at the level of the equations

of motion, since the action is a conformal density, and the tor-

sion equation involves an integration by parts, as explained in

Section VI. The solutions found in [? ], therefore, are noth-

ing but conformal gauge transformations performed upon GR,

unless non-conformal matter is added. In contrast the solu-

tions reported in this paper represent a genuinely new degree

of freedom, since conformal invariance is always broken.

In Section VII we present some final results on this bifur-

cation of a nominal single theory into two. Regardless of

whether the parity violating term P = ca is set to zero or

not, it is generally true that its conjugate momentum, Πc, is

zero. This is ultimately because there is no parity violating

degree of freedom in the tetrad that can serve as conjugate

variable to the connection component associated with torsion

P . In view of this, we can either solve for c and find the dou-

ble branch structure described in Section V; or else, instead

regard Πc = 0 as a secondary constraint. The resulting al-

gebra can then be closed in two ways. If a further constraint

is added, setting P = ca = 0, then, together with Πc = 0,

we end up with two second-class constraints (since c = 0 and

Πc = 0 do not commute) which commute with all the others.

This is the hallmark of redundant variables, and renders parity

violation irrelevant to the theory, preserving conformal invari-

ance. This is the theory of [? ]. Alternatively we may close the

algebra by linking the Hamitonian and conformal constraints,

thereby breaking conformal invariance, but allowing for the

parity violation term in the torsion. This results in the theory

studied in this paper. It would be interesting to investigate the

underlying symmetry corresponding to Πc = 0, if any, and

how it interacts with conformal invariance.

With the benefit of hindsight it is easy to understand our

results from considerations of symmetry and tensor algebra.

After splitting space-time into time and space we are left with

only two Cartesian tensors with which to build homogeneous

and isotropic spatial structures: the Kronecker delta and the

Levi-Civita tensors. In the second order formalism, with only

the metric to deal with, there is no room for parity violation.

This is because of the tensorial structure of the tetrad ea: a set

of one-forms with a single tetrad index. There is no isotropic

way to link ei and dxj beside using δij . Likewise for e0 and

dt and dxi.

The first order formalism, and the possibility of torsion,

opens up the doors to homogeneous, isotropic, but parity

violating Universes. One can see this both from the spin-

connection or the torsion viewpoints. The torsion is a set of

2-forms with a single tetrad index, T a. This results in spatial

T i which can be isotropically linked to eiej using ǫijk, beside

the usual isotropic parity-even term e0ei. Likewise, we have

this parity-odd degree of freedom for a set of one-forms with

two indices, such as the connection ωab. From the definition

of torsion we see that this degree of freedom in both quanti-

ties is the same. This degree of freedom propagates to the cur-

vature (a set of 2-forms dependent on 2 tetrad indices) in the

form of the Weyl tensor components (24) and (25). It is absent

in the metric, and also in the matter content, since the stress-

energy τa forms a set of 3-forms with a single tetrad index. An

isotropic τ0 can only be proportional to ǫijke
iejek (the pro-

portionality constant being the energy density); an isotropic

τ i can only be proportional to ǫijke
0ejek (with pressure as

the time-dependent proportionality constant).

We are therefore talking about a connection degree of free-

dom which does not have metric conjugate or a matter source.

No wonder a different Hamiltonian structure is found, depend-

ing on whether we switch it on or off. Torsion and connection

are the degrees of freedom that allow these parity violating

models, and the results here add to existing examples of tor-

sional degrees of freedom contributing towards the evolution

of the Universe [? ? ? ? ? ]. They imply homogeneous

and isotropic Weyl curvature. It would be interesting to ex-

plore, purely on the grounds of symmetry, what observables

could detect this background effect (i.e. an effect present even

before adding perturbations), for example in the CMB or in

weak lensing. The TB component of the polarization [? ? ]
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and the vector part of the weak lensing [? ] seem promising

avenues to explore.
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APPENDIX I: FRW REDUCTION OF THE ACTION AND

PARITY TRANSFORMATIONS

In this appendix we provide a separate derivation of the

field equations for spacetimes FRW symmetry. We first re-

duce the action to the form it takes in this symmetry and

only then do variations and find the EOM. Obviously these

are equivalent to those obtained from finding first the general

EOM and then specialising to FRW. However this approach

produces results more easily adapted to numerical work, as

well as revealing the peculiar Hamiltonian structure of the sys-

tem.

Let us write the FRW-reduced spin connection as

ω0i = bEi (136)

ω12 = −K(r)

r
E2 − cE3 (137)

ω13 = −K(r)

r
E3 + cE2 (138)

ω23 = −cot θ

r
E3 − cE1 (139)

and the co-tetrad e0 = NE0 and ei = aEi with the comoving

basis one-forms:

E0 = dt E1 =
dr

K(r)
E2 = rdθ E3 = r sin θdϕ.

(140)

Here N is the lapse function and we have allowed for non-

spatially flat FRW models (K(r) = 1/
√
1− kr2 with k being

the constant of spatial curvature). Then, the torsion is T a ≡
dea + ωa

be
b is given by:

T 0 = 0 (141)

T i = (ȧ−Nb)E0Ei + caǫijkE
jEk (142)

and the curvature two-form Rab ≡ dωab + ωa
cω

cb becomes:

R0i = ḃE0Ei + bcǫijkE
jEk (143)

Rij = (k − c2 + b2)EiEj − ċǫijkE
0Ek (144)

As announced in the main text (and obvious by comparing

(142) with (4) and (19)) one can bridge P and g variables

(used in previous literature) with c and b ones (more natural in

this approach) according to

P ≡ c

a
(145)

g ≡ b

a
(146)

It is now a matter of tedious calculation to prove that the grav-

itational action (7) when specialised to FRW becomes:

Sg b
=

∫

dt

((

2(k − c2 + b2)Na+ 2ḃa2
)

− 2Λ

3
Na3

− 6

Λ
(k − c2 + b2)

(

ḃ− 1

γ
ċ

)

+
12

Λ
bc

(

ċ+
1

γ
ḃ

))

(147)

where
b
= means equal to up to a boundary term and the triv-

ial integral over spatial coordinates has been omitted for no-

tational compactness. Variation of the action (147) yields the

following equations of motion, where we have additionally al-

lowed for the presence of perfect fluids in the field equations:

da

dt
= b− γc+

6(1 + γ2)bc2

6γbc+ a2(Λ + κρ)
(148)

db

dt
=

1

3
a

(

Λ− κ

2
(ρ+ 3p)

)

(149)

dΛ

dt
=

2γacΛ2

6γbc+ a2(Λ + κρ)
(150)

dc

dt
=

6abc(κρ− 2Λ + 3κp)− a3γκ(ρ(κρ− Λ) + 3p(κρ+ Λ))

6 (a2(κρ+ Λ) + 6bcγ)
(151)
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For a quantity va in the vector representation of the Lorentz

group, a parity transformation can be represented by a matrix

Λa
b = diag(1,−1,−1,−1) where v′a = Λa

bv
b. Given this,

the comoving basis one-forms will transform like E0 → E0,

Ei → −Ei and the connection ωab will transform as ω0i →
−ω0i, ωij → ωij . Hence we have a → a, b → b, c → −c.
We note from (148-(151)) that the field c and constant γ ap-

pear only via combinations c2,γ2, and cγ. Therefore the effect

of a parity transformation is equivalent to leaving (a, b, c) in-

variant and taking γ → −γ. The fact that solutions to the field

equations for finite γ don’t generally agree for γ → −γ is a

manifestion of parity violation in these models.

APPENDIX II: MODELS FOR MATTER ACTIONS

Writing the gravitational action in FRW symmetry is a use-

ful starting point for exploring the Hamiltonian formulation of

the theory in this symmetry. It is further useful to add models

of matter components in this context in order to see the effect

of matter on the Hamiltonian formulation. We will consider

two models in detail: a pressureless dust and a scalar field

model acting as a radiation fluid.

A. Pressureless dust

An action describing pressureless dust is [? ]:

Sd = −2κ

∫

ρ

(

∂µφ∂µφ+ 1

)√−gd4x. (152)

=
−2κ

4!

∫

ρ

(

∂µφ∂µφ+ 1

)

ǫabcde
aebeced (153)

where κ ≡ 8πG. The non-standard normalization of the

action is due to choosing the Palatini Lagrangian to be

ǫabcde
aeb
(

Rcd − Λ
6 e

ced
)

. In FRW symmetry we have (again

omitting the trivial spatial integration):

Sd[ρ, φ] = −
∫

dt
κρ

3

(

− 1

N2
φ̇2 + 1

)

Na3. (154)

First we introduce a new field v = (1/N)φ̇ so that the action

becomes:

Sd[ρ, φ, v,P] =

∫

dt
κρ

3

(

v2 − 1

)

Na3 +NP
(

1

N
φ̇− v

)

(155)

where P is a Lagrange multiplier enforcing the constraint be-

tween v and (1/N)φ̇. We can then eliminate v from the action

principle by using its own equations of motion to get:

Sd[ρ, φ,P] =

∫

dt

(

Pφ̇−Na3
κρ

3
−N

3P2

4a3κρ

)

(156)

We can furthermore eliminate ρ via its equation of motion

possessing the solution κρ = 3P/2a3 to yield:

Sd[φ,P] =

∫

dt

(

Pφ̇−NP
)

. (157)

Thus we see that P is the canonical momentum of the dust

field φ.

B. Radiation fluid

It is known [? ] that the following scalar field action in

FRW produces the effect of a perfect fluid with equation of

state w = 1/3:

Sr = ξ

∫

(−∂µϕ∂µϕ)
2√−gd4x (158)

where the constant ξ can be chosen so that the energy mo-

mentum due to this field is correctly normalized in Einstein’s

equations. Note that the the action (158) is manifestly invari-

ant under local transformations gµν → φ(xµ)gµν , ϕ → ϕ.

In FRW symmetry we have (again omitting the trivial spatial

integration):

Sr =
ξ

3!

∫

dt
a3

N3
ϕ̇4 (159)

As in the case of pressureless dust we may introduce a field

v ≡ ϕ̇/N so that the Lagrangian becomes:

Sr =
ξ

3!

∫

dt

(

Na3v4 +NP
(

1

N
ϕ̇− v

))

(160)

Eliminating a real solution for v using its own equation of

motion, we recover the action

Sr[ϕ,P] =

∫

dt

(

Pϕ̇− 2Na

(

χ
P4/3

a2

))

(161)

where χ ≡ (3/8)(3/2ξ)1/3. From the way P enters the

Hamiltonian constraint we see that:

κ

3
ρ = χ

P4/3

a4
. (162)
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