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It is widely accepted that dark matter contributes about a quarter of the critical mass-energy density in

our Universe. The nature of dark matter is currently unknown, with the mass of possible constituents

spanning nearly one hundred orders of magnitude. The ultralight scalar field dark matter, consisting of

extremely light bosons with m ∼ 10−22 eV and often called “fuzzy” dark matter, provides intriguing

solutions to some challenges at sub-Galactic scales for the standard cold dark matter model. As shown by

Khmelnitsky and Rubakov, such a scalar field in the Galaxy would produce an oscillating gravitational

potential with nanohertz frequencies, resulting in periodic variations in the times of arrival of radio pulses

from pulsars. The Parkes Pulsar Timing Array (PPTA) has been monitoring 20 millisecond pulsars at two-

to three-week intervals for more than a decade. In addition to the detection of nanohertz gravitational
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waves, PPTA offers the opportunity for direct searches for fuzzy dark matter in an astrophysically feasible

range of masses. We analyze the latest PPTA data set which includes timing observations for 26 pulsars

made between 2004 and 2016. We perform a search in this data set for evidence of ultralight dark matter in

the Galaxy using Bayesian and Frequentist methods. No statistically significant detection has been made.

We, therefore, place upper limits on the local dark matter density. Our limits, improving on previous

searches by a factor of 2 to 5, constrain the dark matter density of ultralight bosons with m ≤ 10−23 eV to

be below 6 GeV cm−3 with 95% confidence in the Earth neighborhood. Finally, we discuss the prospect of

probing the astrophysically favored mass rangem ≳ 10−22 eVwith next-generation pulsar timing facilities.

DOI: 10.1103/PhysRevD.98.102002

I. INTRODUCTION

Dark matter, a concept established in the early 1930s for

the purpose of explaining the observed enigmatic dynamics

of disk galaxies and motion of galaxies in clusters [1–3], is

nowadays considered to be an essential ingredient of the

Universe. It is instrumental in explaining a wide range of

astrophysical phenomena, such as strong gravitational

lensing of elliptical galaxies [4], the dynamics of interact-

ing clusters [5] and the large-scale structure of the Universe

[6]. The latest analysis of temperature and polarization

anisotropies of the cosmic microwave background [7]

suggested that the Universe contains 26% dark matter,

which is five times more than ordinary baryonic matter

such as stars and galaxies.

The most popular dark matter candidates are weakly

interacting massive particles (WIMPs) and QCD (quantum

chromodynamics) axions. We refer to both as standard cold

dark matter, or simply CDM. The CDM paradigm has met

with impressive success in matching observational data on

large cosmological scales (see [8,9], for reviews). Recently,

there has been an increased number of ideas about dark

matter that go beyond the standard paradigm, building on

old ideas in some cases (see e.g., [10] for an overview).

One such idea — an ultralight axion or axionlike

particle — can be thought of as a generalization of the

QCD axion. An axion is an angular field; i.e., the field range

is finite and periodic with a periodicity 2πFaxion with Faxion

often referred to as the axion decay constant. A simple

axion Lagrangian has a standard kinetic term, and a self-

interaction potential V generated by nonperturbative effects

(that can be approximated by instanton potential),

VðϕÞ ¼ m2F2

axion½1 − cosðϕ=FaxionÞ�; ð1Þ

where m is the mass of the axion ϕ. The nonperturbative

effects are typically highly suppressed (e.g., exponentially

suppressed by an instanton action), leading to a fairly low

energy scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mFaxion

p
. In the earlyUniverse, the scalar field

is frozen at its primordial value, generically expected to be

order of Faxion. When the Hubble expansion rate drops

below the mass scale m, the scalar field oscillates with an

amplitude that redshifts with the expansion of the Universe.

Averaging over oscillation cycles,ϕ behaves like CDMwith

a relic density of (see e.g., [11,12])
1

Ωaxion ∼ 0.1

�

m

10−22 eV

�

1=2
�

Faxion

1017 GeV

�

2

: ð2Þ

String theory contains many axion candidates with Faxion

somewhere in the range 1016–1018 GeV [16]. Equation (2)

tells us that a very low m is preferred if the axion were to

account for darkmatter. It should be emphasized though that

there is a fairly large possible range for m; in fact, the relic

abundance is more sensitive to Faxion than to m. A lighter

mass, e.g.,m ∼ 10−23 eV, can be easily accommodated by a

slightly higher Faxion, though it is disfavored by astrophysi-

cal observations such as the existence and structure of dwarf

galaxies.
2

Such an ultralight axion has a macroscopic de Broglie

wavelength λdB, given by

λdB

2π
¼ ℏ

mv
≈ 60 pc

�

10−22 eV

m

��

10−3c

v

�

; ð3Þ

where v is the velocity, implying wavelike phenomena on

astronomically accessible scales, unlike standard CDM. In

linear perturbation theory, the wavelike property leads to a

suppression of power on small scales (small compared to

the Jeans scale, which is a geometric mean of the Compton

and Hubble scale). It is this property that motivated Hu,

Barkana and Gruzinov [17] to propose an ultralight boson

as an alternative to standard CDM, and to coin the term

“fuzzy dark matter” (FDM). The term FDM refers gen-

erally to a scalar dark matter particle with a very small

mass, such that its de Broglie wavelength is macroscopic.

An ultralight axion is a particularly compelling realization.

Our constraints derived in this paper apply to the ultralight

axion, as well as the broader class of FDM.

The thinking was that the suppression of power on small

scales would help resolve certain small scale problems of

1
The relic density computation follows the classic argu-

ments of [13–15], which were developed for the QCD axion.
2
Note that the requisite

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mFaxion

p
is much less than the QCD

scale; hence this is not the QCD axion.
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CDM, which generally have to do with CDM predicting too

much small-scale structure compared to that observed.

There is a vast literature on this subject, but it remains a

matter of debate as to whether the perceived small-scale

structure problems of CDM are in fact amenable to

astrophysical solutions (such as feedback processes modi-

fying the mass distribution within Galactic halos); see [18]

for a review.

There exist several different bounds on the FDM model.

One class of bounds comes from measurements of the

linear power spectrum at high redshifts, such as from the

microwave background (e.g., [19]), and from the Lyman-

alpha forest [20,21]. In particular, the Lyman-alpha forest

data appear to disfavor a FDM mass lighter than about

10−21 eV. Another example of a bound of this kind come

from 21-cm observations— the recent detection of a global

21-cm absorption signal at redshift around 18 [22] puts a

lower limit on the FDM mass similar to the Lyman-alpha

forest bound [23–25]. Yet another class of bounds comes

from dynamical data on the density profiles of galaxies e.g.,

[26–28]. Many of these bounds are subject to their own

astrophysical uncertainties. For instance, the Lyman-alpha

forest bound is predicated upon the correct modeling of

fluctuations from such as the ionizing background, the

temperature and feedback processes. The 21-cm bound

relies on assumptions about star formation (that it tracks the

halo formation and that the fraction of baryons that form

stars is less than about 5%), and of course assumes the

validity of the detection. Constraints from rotation curve

measurements generally make assumptions about how

feedback processes, such as from stellar explosions, affect

(or do not affect) density profiles.

Recently, a number of authors, based on numerical

simulations and analytical arguments, pointed out addi-

tional testable astrophysical implications of FDM, espe-

cially in the nonlinear regime [12,29–33]. A particularly

interesting probe of ultralight dark matter using pulsar

timing arrays (PTAs) was pointed out by Khmelnitsky and

Rubakov [34]. Through purely gravitational coupling,

scalar field dark matter induces periodic oscillations in

gravitational potentials with frequency twice the field mass

f ∼ 2m ∼ 5 × 10−8 Hzðm=10−22 eVÞ. The oscillating

gravitational potentials along the line of sight of pulsars

cause sinusoidal variations in the times of arrival (ToAs) of

radio pulses. The frequency of such variations lies right in

the sensitivity band of PTAs. This way of detecting or

constraining FDM is completely independent of other

methods (and their assumptions), and provides a useful

check. As shown in [34–37] and later in this paper, the

current PTA data can only be sensitive to very low-mass

FDM (m < 10−23 eV). We will discuss what would be

required to probe the higher and cosmologically more

favorable masses.

The concept of a PTA is to regularly monitor ToAs of

pulses from an array of the most rotationally stable

millisecond pulsars [38–41]. Measured ToAs are fitted

with a deterministic timing model that accounts for the

pulsar spin behavior and for the geometrical effects due to

the motion of the pulsar and the Earth. The difference

between the observed ToAs and those predicted by the best-

fit timing model are called “timing residuals.” By analyzing

the pulsar timing residuals, we can obtain the information

about other physical processes that affect the propagation

of radio pulses through the Galaxy, for instance, the

presence of ultralight scalar field dark matter in the Galaxy.

The Parkes Pulsar Timing Array (PPTA) [42] uses the

64-m Parkes radio telescope in Australia. Building on

earlier pulsar timing observations at Parkes, it started in

2005 to time 20 millisecond pulsars at a regular interval of

two to three weeks. PPTA and its counterparts in North

America (NANOGrav) [43] and Europe (EPTA) [44] have

joined together to form the International Pulsar Timing

Array (IPTA) [45,46], aiming for a more sensitive data set.

The IPTA currently observes around 70 pulsars using the

world’s most powerful radio telescopes.

The first PPTA data release was published in 2013 [42].

It included six years of observations for 20 pulsars. This

data set was used to search for a stochastic gravitational

wave (GW) background [47], continuous GWs [48] and

GW bursts with memory [49]. The second data release is

still being actively developed, but for this paper, we have

made use of a data set that contains observations made

between 2004 and 2016 with five new pulsars added since

2010. An early subset of this data was used to place the

most constraining limit to date on the amplitude of a

stochastic GW background in the nHz regime [50].

In this work we search for evidence of ultralight scalar

field darkmatter in theGalaxyusing thePPTAdata.A similar

studywas carried out, throughBayesian analysis, byPorayko

and Postnov [35], using the NANOGrav 5-yr 17-pulsar data

set published in [51]. Our work improves on that of [35] in

several ways. First, we make use of an independent data set

with much longer data span and smaller errors in the

timing residuals. Second, we use an up-to-date Bayesian

inference packages for PTA data analysis— PAL2 [52] and

NX01 [53] — and include proper treatment of the noise

processes. Reanalyzing the NANOGrav data with the

improved analysis, we find that the sensitivity was overesti-

mated by a factor of 10 in [35]. Third, we also adopt a

standard Frequentist searching method and obtain consistent

results with Bayesian analysis.

Our paper is organized as follows. In Sec. II, we describe

pulsar timing residuals expected in the presence of ultra-

light scalar field dark matter in the Galaxy. In Sec. III, we

introduce our data set, the likelihood function and our

Bayesian and Frequentist methods to model the noise

properties of PPTA data. We also present results of our

noise analysis. In Sec. IV, we describe our search tech-

niques and apply them to the PPTA data set. As we find no

significant signals, we set upper limits on the local density
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of FDM in the Galaxy. In Sec. V, we discuss how the

sensitivity will be improved in the future. Finally, we

provide concluding remarks in Sec. VI.

II. THE PULSAR TIMING RESIDUALS

FROM FUZZY DARK MATTER

In this section we briefly describe the magnitude and

time dependence of timing residuals induced by the scalar

field dark matter in the Galaxy. A detailed derivation can be

found in [34].

Because of the huge occupation number, the collection

of ultralight dark matter particles behaves like a classical

scalar field ϕ. To a very good approximation, here we

ignore quartic self-interaction and coupling of ultralight

dark matter particles to other fields
3
[54]. The scalar action

in this case can be written as

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi

−g
p �

1

2
gμνDνϕDμϕ −

1

2
m2ϕ2

�

; ð4Þ

to which the standard Einstein-Hilbert action for the metric

should be added. The ϕ equation of motion is the Klein-

Grodon-Fock Equation: ð□g þm2ÞϕðxÞ ¼ 0. We are inter-

ested in a computation of ϕ and the metric gμν inside the

Galaxy. The metric is approximately Minkowski plus

corrections at the level of 10−6. To good approximation,

ϕ everywhere in the Galaxy oscillates at an angular

frequency mc2=ℏ (corrections due to the momentum of

the particles and the gravitational potential are small). The

energy-momentum tensor to the leading-order is diagonal

and its spatial components (pressure) oscillate at twice the

field particle mass. This produces time-dependent gravita-

tional potentials g00 ¼ 1þ 2ΦðtÞ and gij ¼ −1 − 2ΨðtÞδij
in the metric tensor (in the Newtonian covariant form) with

leading oscillating contributions at a frequency

f ¼ 2mc2

h
≈ 4.8 × 10−8

�

m

10−22 eV

�

Hz: ð5Þ

The amplitude of oscillating parts of the potentialsΨ andΦ

are a factor of ðv=cÞ2 smaller than the time-independent

parts Φ0 ¼ −Ψ0 ∼GρSFλ
2

dB, where ρSF is the local scalar

field dark matter density. For cosmologically favored boson

masses ∼10−22 eV, the frequency is fortuitously located in

the sensitivity range of PTAs.

As in the case of GWs [39], pulsar photons propagating

in a time-dependent metric undergo a frequency shift δν,

which is related to timing residuals [34]

sðtÞ ¼
Z

t

0

δν

ν
dt ¼ ΨcðxeÞ

2πf
sin½2πftþ 2αðxeÞ�

−
ΨcðxpÞ
2πf

sin

�

2πf

�

t −
dp

c

�

þ 2αðxpÞ
�

þ
�

ΨþΦ

2πf

�

O

�

v

c

�

; ð6Þ

where dp is the distance to the pulsar and Ψc is the

amplitude of cosine component of the oscillating part of the

energy-momentum tensor. The subsequent terms in Eq. (6)

are suppressed with respect to Ψc by a factor v=c ≃ 10−3,

and to the leading order, the signal sðtÞ does not depend on
the oscillating part of the potential Φ.

As one can see in Eq. (6), the dark matter signal also has

“Earth” and “pulsar” terms. Oscillation frequencies at the

Earth and at the pulsar are identical, which makes it

analogous to the case of nonevolving continuous GWs

[55]. The scalar-field oscillation phases on the Earth αðxeÞ
and pulsar αðxpÞ generally take different values; but they

become correlated when the Earth and a pulsar are located

within the coherence de Broglie wavelength λdB.

The amplitude Ψc, which can be effectively probed in

pulsar timing experiments, depends on the local density of

dark matter ρSF,

Ψc ¼
GρSF

πf2
≈ 6.1 × 10−18

�

m

10−22 eV

�

−2
�

ρSF

ρ0

�

; ð7Þ

where ρ0 ¼ 0.4 GeV cm−3 is the measured local dark

matter density [56–58]. The root-mean-square (rms) ampli-

tude of induced pulsar-timing residuals is

δt ≈ 0.02 ns

�

m

10−22 eV

�

−3
�

ρSF

0.4 GeVcm−3

�

: ð8Þ

The expected signal amplitude scales strongly with the

boson mass. At 10−22 eV and above, the signal is negli-

gibly small. For mass below 10−23 eV, the induced rms

residuals (≳20 ns) are comparable to current timing pre-

cision for the best pulsars, as we discuss in Sec. III A.

In this work, we assume the Earth term and pulsar terms

have the same amplitude Ψc. This is a reasonable approxi-

mation since most PPTA pulsars are relatively close

(≲1 kpc) to the Earth (see Table I). We discuss effects

of the dark matter density variability in Sec. V. Under this

assumption, Eq. (6) can be written into a more compact

form,

sðtÞ ¼ Ψc

πf
sinðαe − θpÞ cosð2πftþ αe þ θpÞ; ð9Þ

where we have defined αe ¼ αðxeÞ and θp ¼ αp − πfdp=c

with αp ¼ αðxpÞ. Defining θp this way allows us searching

for a single phase parameter per pulsar. One should note,

3
In the axion context, the oscillation amplitude of ϕ gradually

diminishes due to the expansion of the universe, making the
quadratic m2ϕ2=2 an excellent approximation to the potential in
Eq. (1).
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however, that the parameter pair ðαe; θpÞ is indistinguish-
able from ðαe � π; θp � πÞ.

III. PPTA DATA AND NOISE PROPERTIES

A. Observations and timing analysis

Here we provide a brief overview of the data set used in

this work. The data set is available from the CSIRO pulsar

data archive.
4
The observing systems and data processing

techniques are similar to the first data release (DR1) as

described in Ref. [42]. Table I summarizes key character-

istics of the PPTA data set, including the median ToA

uncertainties, weighted rms values of timing residuals, data

spans and the number of observations.

Our data set consists of observations for 26 pulsars

collected between February 5, 2004, and January 31, 2016,

using the Parkes telescope. It includes DR1 data that were

acquired between March 2005 and March 2011 for 20

pulsars, along with some earlier data for some pulsars that

were observed in the 20-cm observing band prior to the

official start of the PPTA project. Currently, the PPTA

observes 25 pulsars, with PSR J1732−5049 having been

removed from the pulsar sample in 2011 because we were

unable to obtain high quality data sets for this pulsar. The

observing cadence is normally once every two to three

weeks. In each session, every pulsar was observed in three

radio bands (10, 20 and 50 cm) with a typical integration

time of one hour. Twenty of these pulsars were monitored

for more than ten years up to twelve years; only five pulsars

have data spans less than five years. For this data set, the

median ToA uncertainties vary from 149 ns (PSR

J0437−4715) to 4.67 μs (PSR J2124−3358); the weighted

rms residuals in this data set vary from 152 ns (PSR

J0437−4715) to 16.53 μs (PSR J1824−2452A). PSRs

J1939þ2134 and J1824−2452A were excluded from

the search analysis, as they show strong evidence for a

large unmodeled red-noise component.
5
For our purpose,

we find these two pulsars make little contribution to the

sensitivity.

TABLE I. Key characteristics of the PPTA data set: σ — median ToA uncertainty, rms — weighted root-mean-square of timing

residuals, Tobs — data span and its start and end months (Range), Nobs — number of observations, dp — pulsar distance taken from the

ATNF Pulsar Catalogue [59].

σ rms Tobs dp
Pulsar name (μs) (μs) (yr) Range Nobs (kpc)

J0437−4715 0.15 0.15 11.98 2004.02−2016.01 3820 0.16

J0613−0200 1.20 1.38 11.98 2004.02−2016.01 969 0.78

J0711−6830 3.29 1.58 11.98 2004.02−2016.01 1017 0.11

J1017−7156 0.97 0.76 5.54 2010.07−2016.01 524 0.26

J1022þ1001 2.23 2.11 11.98 2004.02−2016.01 1008 1.13

J1024−0719 3.39 3.61 11.87 2004.02−2015.12 679 1.22

J1045−4509 3.82 3.35 11.98 2004.02−2016.01 854 0.34

J1125−6014 1.59 1.29 10.12 2005.12−2016.01 203 0.99

J1446−4701 1.81 1.47 5.19 2010.11−2016.01 161 1.57

J1545−4550 1.08 1.01 4.74 2011.05−2016.01 215 2.25

J1600−3053 0.91 0.71 11.98 2004.02−2016.01 969 1.80

J1603−7202 2.13 1.43 11.98 2004.02−2016.01 747 0.53

J1643−1224 1.75 2.96 11.98 2004.02−2016.01 713 0.74

J1713þ0747 0.38 0.24 11.98 2004.02−2016.01 880 1.18

J1730−2304 2.01 1.48 11.98 2004.02−2016.02 655 0.62

J1732−5049 2.55 2.75 7.23 2004.03−2011.12 144 1.87

J1744−1134 0.68 0.61 11.98 2004.02−2016.01 855 0.40

J1824−2452A 2.67 16.5 10.36 2005.05−2015.10 339 5.50

J1832−0836 0.53 0.25 2.86 2012.11−2015.10 68 0.81

J1857þ0943 2.00 1.93 11.98 2004.02−2016.01 580 1.20

J1909−3744 0.25 0.16 11.98 2004.02−2016.01 1670 1.14

J1939þ2134 0.36 1.43 11.87 2004.03−2016.01 591 3.50

J2124−3358 4.67 2.52 11.98 2004.02−2016.01 889 0.41

J2129−5721 1.82 1.19 11.65 2004.06−2016.01 540 3.20

J2145−0750 1.71 1.16 11.86 2004.03−2016.01 881 0.53

J2241−5236 0.44 0.28 5.98 2010.02−2016.01 615 0.96

4
https://doi.org/10.4225/08/5afff8174e9b3.

5
This is evident as their rms residuals are much larger than the

median ToA uncertainties given in Table I. This may be
accounted for using system- and band-specific noise terms [60].
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During pulsar timing observations, ToAs are first

referred to a local hydrogen maser frequency standard at

the observatory. These ToAs are further transformed to

coordinated universal time (UTC) and then to a terrestrial

time (TT) as published by the Bureau International des

Poids et Mesures. For the current data set, we used TT

(BIPM2015) and adopted the JPL DE418 [61] solar system

ephemeris (SSE) model to project ToAs to the solar-system

barycenter. Potential errors in SSE models are accounted

for in our Bayesian analysis (Sec. IVA).

Before performing the search for dark matter signals,

we fit pulsar ToAs with a timing model using the

standard TEMPO2 software package [62,63]. Typical

parameters included in this fit are the pulsar sky location

(RAJ and DecJ), spin frequency and spin-down rate,

dispersion measure, proper motion, parallax and (when

applicable) binary orbital parameters. Additionally, con-

stant offsets or jumps were fitted among ToAs collected

with different receiver/backend systems. Below we

describe our methods to estimate the noise properties

of the PPTA data.

B. The likelihood function

The likelihood function for pulsar timing residuals,

marginalized over the m timing model parameters, can

be written as [64,65]

Lðϑ;ψjδtÞ ¼ ðMTC−1MÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞn−m detC
p

× exp

�

−
1

2
ðδt − s0ÞTC0ðδt − s0Þ

�

; ð10Þ

where δt is a vector of timing residuals with length n, s0 is
the deterministic signal vector, including the dark matter

signal as described in Sec. II and deterministic system-

atics, M is the (n ×m) design matrix or regression matrix

of the linear model [66] that describes how ToAs depend

on timing model parameters.
6

The noise covariance

matrix C ¼ CWN þ CSN þ CDM includes contributions

from uncorrelated white noise (CWN), time-correlated

spin noise (CSN) and dispersion measure variations

(CDM). In Eq. (10), we have defined C0 ¼
C−1 − C−1MðMTC−1MÞ−1MTC−1. The covariance matrix

C depends on the set of noise parameters ϑ, and ψ

denotes deterministic signal parameters so that s0 ¼ s0ðψÞ.
As a result, this form of the likelihood, which was first

implemented in [64], depends both on ϑ and ψ, and

provides the possibility of proper treatment of the signal

in the presence of correlated noise and systematics. The

likelihood in Eq. (10) can be further reduced to a more

compact form (see Ref. [65] for details),

Lðϑ;ψjδtÞ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞn−mdetðGTCGÞ
p

×exp

�

−
1

2
ðδt− s0ÞTGðGTCGÞ−1GTðδt− s0Þ

�

;

ð11Þ

where the n × ðn −mÞ dimension matrix G is obtained

through the singular-value decomposition of the design

matrix M. Specifically, M ¼ USV� where U and V are

unitary matrices with n × n and m ×m dimension respec-

tively, and S is an n ×m diagonal matrix containing

singular values of M. The G matrix is obtained such that

U ¼ ðU1GÞ with U1 and G consisting of the first m and

the remaining n −m columns of U, respectively.

In this work, we assume that only the dark matter signal,

noise processes (that will be described in the next sub-

section) and deterministic systematics, associated with SSE

errors, contribute to the data. We neglect errors in terrestrial

time standards and other common noise processes (such as

a stochastic GW background). Therefore, the likelihood

function for the full PTA can be expressed as a product:

Lðϑ;ψjδtÞ ¼
Y

Np

i¼1

Lðϑi;ψ ijδtiÞ; ð12Þ

where Np is the number of pulsars in the timing array.

C. Noise modeling

For each pulsar in the PPTA data set, we estimate its

noise properties using both Bayesian and Frequentist

approaches. We present a general description of possible

noise sources here.

Stochastic noise processes can be divided into the

time-correlated and uncorrelated components. The uncor-

related (white) noise is represented by the uncertainties of

the measured ToAs derived through cross-correlation of

the pulsar template and the integrated profile. However, it

is common that ToA uncertainties underestimate the

white noise present in pulsar timing data. This might

be caused by, e.g., radio frequency interference, pulse

profile changes or instrumental artifacts. Two parameters,

namely, EFAC (Error FACtor) and EQUAD (Error added

in QUADrature), are included to account for excess white

noise. They are introduced for each observing system

used in the data set. Following standard conventions,

different parameterizations are used for EFAC and

EQUAD. In TEMPO2 and for our Frequentist analysis,

the re-scaled ToA uncertainties (σs) are related to their

original values (σ) by

σ2s ¼ T2EFAC2ðσ2 þ T2EQUAD2Þ: ð13Þ
In Bayesian analysis, we use the following relation

σ2s ¼ ðEFACσÞ2 þ EQUAD2: ð14Þ6
It can be obtained with the TEMPO2 designmatrix plugin.
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Numerous studies [67–69] have found evidence for

additional low-frequency noise in pulsar timing data.

This time-correlated stochastic process is dominated by

two components: achromatic (i.e., independent of radio

frequency) spin noise and chromatic (i.e., dependent on

radio frequency) such as dispersion measure (DM) varia-

tions. The former is intrinsic to the pulsar and might be

related to pulsar rotational instabilities. The latter is

associated with the interstellar medium which introduces

time delays in pulsar ToAs. As pulsar travels in the tangent

plane, the line of sight intersects spatially variable inter-

stellar medium characterized by different column electron

densities. For current receivers, the bandpass is generally

not broad enough to resolve these kind of variations in each

individual observation. Therefore, a typical strategy is to

observe pulsars at widely separated radio bands, allowing

the correction of DM variations.

Below we discuss details of noise modeling in the

Bayesian and Frequentist frameworks.

1. Bayesian framework

The Bayesian framework provides a consistent

approach to the estimation of a set of parameters Θ

by updating the initial distribution of those parameters

PprðΘÞ as more information becomes available. Bayes’

theorem states:

PpstðΘjDÞ ¼
LðΘjDÞPprðΘÞ

Z
; ð15Þ

where PpstðΘjDÞ stands for the posterior (or updated)

distribution of the parameters Θ, given the data (or external

information) D, LðΘjDÞ is the likelihood function, and Z is

known as Bayesian evidence and defined as:

Z ¼
Z

LðΘjDÞPprðΘÞdnðΘÞ ð16Þ

The Bayesian evidence is a normalizing factor for param-

eter estimation problem and is a key criterion for model

selection and decision making. Here Z does not depend on

Θ and it holds that PpstðΘjDÞ ∝ LðΘjDÞPprðΘÞ. When

applied for the case of PTAs, data D includes an array of

pulsar timing ToAs δt, Θ includes ½ϑ;ψ� and the likelihood
LðΘjDÞ is given by Eq. (10). The set of parameters, used

for the Bayesian analysis, and the corresponding priors are

described in Table II.

For computational purposes, the noise covariance matrix

C from Eq. (10) can be split as a sum of a diagonal matrix

CWN and a large dense matrix K ¼ CSN þ CDM ¼ FΦFT ,

where Φ ¼ ΦSN þΦDM is the diagonal matrix (2k × 2k),
k ≪ n, where k is the number of terms in the approximation

sum. By using the Woodbury matrix lemma
7
[70], the

TABLE II. List of parameters and prior distributions used for the Bayesian analysis. U and log-U stand for uniform and log-uniform

priors, respectively.

Parameter Description Prior Comments

Noise parameters (ϑ)

EFAC White-noise modifier per backend U [0, 10] Fixed for setting limits

EQUAD Additive white noise per backend log-U [−10, −4] Fixed for setting limits

ASN Spin-noise amplitude log-U [−20, −11] (search) One parameter per pulsar

U [10−20, 10−11] (limit)

γSN Spin-noise spectral index U [0, 7] One parameter per pulsar

ADM DM-noise amplitude log-U [−20, −6.5] (search) One parameter per pulsar

U [10−20, 10−6.5] (limit)

γDM DM-noise spectral index U [0, 7] One parameter per pulsar

Signal parameters (ψ)

Ψc Oscillation amplitude log-U [−20, −12] (search) One parameter per PTA

U [10−20, 10−12] (limit)

αe Oscillation phase on Earth U [0, 2π] One parameter per PTA

θp θp ¼ αp − πfdp=c U [0, 2π] One parameter per pulsar

f (Hz) Oscillation frequency log-U [−9, −7] Delta function for setting limits

BayesEphem parameters (ψsys)

zdrift Drift-rate of Earth’s orbit about ecliptic z-axis U½−10−9; 10−9� rad yr−1 One parameter per PTA

ΔMjupiter Perturbation of Jupiter’s mass N ð0; 1.5 × 10−11ÞM⊙
One parameter per PTA

ΔMsaturn Perturbation of Saturn’s mass N ð0; 8.2 × 10−12ÞM⊙
One parameter per PTA

ΔMuranus Perturbation of Uranus’ mass N ð0; 5.7 × 10−11ÞM⊙
One parameter per PTA

ΔMneptune Perturbation of Neptune’s mass N ð0; 7.9 × 10−11ÞM⊙
One parameter per PTA

PCAi Principal components of Jupiter’s orbit U [−0.05, 0.05] Six parameters per PTA

7ðN þ FΦFTÞ−1 ¼ N−1 − N−1FðΦ−1 þ FTN−1FÞ−1FTN−1.
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computationally heavy inversion of covariance matrix C,

involving Oðn3Þ operations, is reduced to lower rank

diagonal matrix inversion Φ
−1. More details on this

technique can be found in [71,72].

In this work we have used the so-called “Fourier-sum”

prescription (or “time-frequency” method), introduced in

[73]. In this case, the Fourier transform matrix F for

achromatic processes can be written as:

F¼ðFsFcÞ; Fs
ji¼ sinð2πνitjÞ; Fc

ji¼ cosð2πνitjÞ;
ð17Þ

where νi ¼ i=T, where T is the whole timespan of the

PPTA data set, 11.98 years. The dimensionality of the

Fourier matrix F is (n × 2k), where k is number of

frequency components, which in our case is 30. The noise

vector for a specific noise process can be expressed as

τj¼
P

iFjiai¼
P

ia
s
i sin2πνitjþaci cos2πνitj, where a ¼

ðas; acÞ is the vector of Fourier coefficients.

The covariance matrix of Fourier coefficients Φ can be

derived from the covariance matrix of the theoretical power

spectrum of a specific type of noise. Within Bayesian

framework, we use the following parametrization for

power-law noise:

PðfÞ ¼ A2

12π2
yr3

�

f

yr−1

�

−γ

: ð18Þ

Therefore, the elements of the matrixΦ, which are identical

for both spin and DM noises, are expressed as:

Φij ¼
A2

12π2
ν
−γ
i

T
yr3δij; ð19Þ

where i, j iterates over different Fourier frequencies and δij
is a Kronecker delta. If multiband observations are avail-

able, the degeneracy between the spin noise and DM

contributions can be broken, because of the dependency

of the amplitude of the DM variations on the observational

frequency fo. This dependency enters in the Fourier

transform matrix as:

FDM ¼ ðFs
DMF

c
DMÞ;

Fs
DM;ji ¼

sinð2πνitjÞ
Kf2o;j

; Fc
DM;ji ¼

cosð2πνitjÞ
Kf2o;j

; ð20Þ

where K ¼ 2.41 × 10−16 Hz−2 cm−3 pc s−1 and fo;j is the

radio observing frequency at time tj. Using this terminol-

ogy, the time delay δt between signal received at radio

frequency f0 and one received at f → ∞ is given by

δt ¼ K−1f−2
0
DM ¼ 4.15 × 106f−2

0
DMms. Note that the

linear and quadratic trends in DM variations get absorbed

by timing model parameters DM1 and DM2, which are

included in the Bayesian timing model. The inclusion of the

DM derivatives in our analysis absolves us from the

spectral leakage problem [74].

The formalism, described in this subsection, was imple-

mented in a range of publicly available codes. For the single

pulsar analysis we have used PAL2 Software — a package

for the Bayesian processing of the pulsar timing data.

Efficient sampling from the posteriors is performed by the

Bayesian inference tool MULTINEST [75], running in

constant efficiency mode — a computational technique

that allows one to maintain the user-defined sampling

efficiency for high-dimensional problems (see Ref. [76]

for more details). For each PPTA pulsar we perform

separately a full noise modeling analysis, simultaneously

including all stochastic components discussed above. The

noise parameters ϑ, estimated within single pulsar analysis,

are given in Table III. The marginalized posterior proba-

bilities for the six most sensitive pulsars in PPTA (see

Sec. IVA) are presented in Appendix B.

As was shown in [77,78], and later confirmed in [60],

data for PSR J1603− 7202 and PSR J1713þ 0747 show

significant evidence for nonstationary extreme scattering

events (ESEs), which are usually associated with the

passage of high density plasma “blobs” along the line of

sight of a pulsar. ESEs are modeled as deterministic signals

tESE;i [60]:

tESE;i ¼
Sðti;AESE;WÞ

Kf2o;i
; ð21Þ

by making use of shapelet basis function expansion:

Sðt;AESE;WÞ ¼
X

jmax

j¼0

AESE;jBjðt;WÞ;

Bjðt;WÞ ¼ ½2jj!W
ffiffiffi

π
p

�−1=2Hj

�

t − t0

W

�

× exp

�

−
ðt − t0Þ2
2W2

�

; ð22Þ

where t0 is the epoch of ESE, W stands for the character-

istic length scale of ESE, Hj is the j-th Hermitian

polynomial, jmax is the number of terms used in the

expansion, which is 3 in our case, AESE is a vector of

shapelet amplitudes. The inclusion of nonstationary ESEs

in the noise model (see Table III) leads to smaller DM

spectral amplitudes ADM and slightly steeper slopes,

characterised by γDM, which is consistent with results

presented in [60].

2. Frequentist methods

In the Frequentist framework, we use the method that

was originally introduced in [79] and further improved in

[77] for correcting DM variations. The basic idea works as
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follows. Timing residuals are separated into two compo-

nents, one dependent on the radio wavelength, namely,

dispersion measure variations — DM(t), and the other

independent of the radio wavelength. The latter could

contain red noise, GWs or dark matter signals. Since pulsar

timing data are irregularly sampled, we use a linear inter-

polation scheme to estimate DM(t) at regular intervals. For the

PPTA data, we estimate one DM(t) every 60-180 days using

TABLE III. Noise properties of PPTA pulsars, determined through Bayesian and Frequentist analyses. The comparison of the results

for intrinsic spin noise determined via two methods, can be performed when fcT ≪ 1, such as P0 → A2

SN=ð12π2f2cÞ. Dashed lines

indicate either that noise parameters are not constrained, i.e., flat posterior probabilities (Bayesian) or that no spin noise is detected

(Frequentist). In the two “note” columns, C is for “constrained” distributions, whereas SC stands for “semiconstrained” distributions

which exhibit long tails and significant deviation from Gaussianity (possibly due to correlation with other parameters); See Fig. 7 in

Appendix B for illustrations. The last two rows list results when parameters for nonstationary ESEs are included. Only pulsars with a †

symbol next to their names are used for setting Bayesian upper limits.

Bayesian Frequentist

Pulsar name log 10ðASNÞ γSN Note log 10ðADMÞ γDM Note α fc (yr−1) P0 (yr3)

J0437−4715† −13.96þ0.05
−0.05 2.0þ0.2

−0.2
C −10.90þ0.04

−0.04 3.2þ0.2
−0.2

C 3.5 0.08 2.37 × 10−27

J0613−0200 −16.89þ1.9
−1.9 3.4þ2.0

−2.0
SC −10.62þ0.05

−0.05 2.1þ0.3
−0.3

C 2.5 0.08 1.30 × 10−26

J0711−6830 −14.1þ0.5
−0.4 4.2þ1.2

−1.1
C −12.1þ0.8

−1.7 3.9þ1.6
−1.7

SC 4.0 0.08 3.98 × 10−26

J1017−7156 −13.5þ0.3
−0.6 3.6þ1.9

−1.5
C −10.12þ0.06

−0.06 3.2þ0.4
−0.4

C 6.0 1.0 9.54 × 10−28

J1022þ1001 −16.9þ2.4
−1.7 2.9þ2.1

−2.0
SC −11.3þ0.3

−0.4 3.2þ1.2
−0.8

C 2.0 0.08 3.04 × 10−26

J1024−0719 −14.6þ0.4
−0.5 6.1þ0.6

−0.9
SC −11.6þ0.4

−0.6 4.2þ1.3
−1.2

C 3.0 0.08 4.30 × 10−25

J1045−4509 −12.85þ0.2
−0.5 2.0þ1.1

−0.6
C −9.73þ0.04

−0.04 2.8þ0.3
−0.3

C 3.0 0.3 7.44 × 10−27

J1125−6014 −14.5þ0.4
−0.4 6.0þ0.7

−0.7
C −11.6þ0.5

−0.5 4.3þ1.1
−1.2

C 3.0 0.2 5.79 × 10−27

J1446−4701 � � � � � � � � � � � � � � � � � � � � �
J1545−4550 � � � � � � −10.8þ0.3

−0.4 4.6þ1.3
−1.3

C 3.0 0.1 1.66 × 10−26

J1600−3053† −16.8þ1.7
−1.9 3.3þ2.1

−1.9
SC −10.6þ0.08

−0.09 2.7þ0.3
−0.3

C 2.0 0.08 1.05 × 10−27

J1603−7202 −13.3þ0.2
−0.5 2.4þ1.2

−0.7
C −10.20þ0.05

−0.05 2.5þ0.3
−0.3

C 3.0 0.08 8.39 × 10−26

J1643−1224 −12.40þ0.05
−0.05 1.5þ0.4

−0.3
C −9.81þ0.04

−0.04 1.6þ0.3
−0.3

C 1.5 0.08 3.43 × 10−26

J1713þ0747 −13.5þ0.1
−0.1 2.4þ0.3

−0.3
C −10.79þ0.07

−0.06 1.7þ0.3
−0.3

C � � � � � � � � �
J1730−2304 −17.2þ1.7

−1.7 3.2þ2.0
−2.0

C −11.2þ0.3
−0.4 3.6þ0.9

−0.7
C 2.0 0.08 2.17 × 10−26

J1732−5049 −16.1þ2.3
−2.3 3.3þ2.1

−1.9
SC −10.6þ0.6

−5.7 3.2þ1.7
−1.3

SC � � � � � � � � �
J1744−1134† −13.33þ0.06

−0.06 1.2þ0.3
−0.3

SC −11.5þ0.3
−0.5 3.3þ1.2

−0.7
SC 6.0 1.0 2.55 × 10−28

J1824−2452A −12.60þ0.07
−0.12 3.7þ1.4

−0.4
SC −9.74þ0.07

−0.06 2.5þ0.4
−0.4

C 4.0 0.1 1.22 × 10−23

J1832−0836 � � � � � � � � � � � � � � � � � � � � �
J1857þ0943 −15.1þ1.1

−2.4 4.0þ1.7
−2.0

SC −10:6þ0.1
−0.2 2.3þ0.5

−0.5
C � � � � � � � � �

J1909−3744† −14.5þ0.5
−0.7 2.4þ1.1

−0.8
C −11.09þ0.04

−0.04 1.6þ0.3
−0.2

C 2.5 0.07 7.54 × 10−28

J1939þ2134 −13.34þ0.1
−0.2 3.2þ0.6

−0.4
C −10.25þ0.04

−0.04 3.1þ1.8
−1.5

C 4.0 0.08 2.50 × 10−25

J2124−3358 � � � � � � −11.9þ0.9
−4.5 2.8þ0.9

−0.9
SC 5.0 1.0 5.64 × 10−27

J2129−5721 −16.9þ1.8
−1.8 3.2þ2.0

−2.0
SC −10.9þ0.1

−0.1 2.3þ0.5
−0.5

C 2 0.08 1.37 × 10−26

J2145−0750 −13.04þ0.06
−0.06 1.4þ0.2

−0.2
C −11.1þ0.2

−0.2 2.9þ0.6
−0.6

C 1.0 0.08 5.13 × 10−27

J2241−5236† −13.48þ0.08
−0.1 1.4þ0.6

−0.5
C −12.8þ1.0

−4.8 3.9þ2.1
−2.4

SC � � � � � � � � �

Including extreme scattering events

J1603−7202 −13.3þ0.2
−0.2 2.3þ0.5

−0.6
C −10.55þ0.08

−0.08 2.6þ0.3
−0.3

C

J1713þ0747† −13.50þ0.08
−0.08 2.3þ0.3

−0.3
C −11.2þ0.1

−0.1 2.5þ0.4
−0.4

C
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observations taken at three bands (10, 20, 50 cm). The time

epochs and the estimated DM offsets are stored as DMOFF

parameters in the TEMPO2 .par files.Wemodel the red spin

noise on data that have been corrected for DM variations, in

which case, the noise covariance matrix contains only the

white noise and spin noise terms.

Following the TEMPO2 convention, for our Frequentist

analysis the intrinsic spin noise is parameterized using the

following power-law spectrum

PðfÞ ¼ P0

½1þ ð f
fc
Þ2�α=2

; ð23Þ

where P0 is an overall amplitude (normally expressed in

yr3), fc is the so-called corner frequency, α is the power-

law exponent. The covariance matrix for such a red noise

process is given by

CðτÞ ¼
Z

∞

0

PðfÞ cos τfdf

¼ 2ð1−αÞ=2

f
−ð1þαÞ=2
c

P0

ffiffiffi

π
p

τðα−1Þ=2J1−α
2

ðfcτÞ
Γðα

2
Þ ; ð24Þ

where τ ¼ 2πjti − tjj with ti and tj being the ToA at the ith

and jth observation, respectively, J is the modified Bessel

function of second kind and Γ is the Gamma function.

We follow the method described in [80] to estimate red

noise properties iteratively. We fit a power-law model of the

form given by Eq. (23) to the power spectrum of timing

residuals, leading to an initial estimate of the noise

covariance matrix. We then use the Cholesky decomposi-

tion of this matrix to transform the data. The power

spectrum of the transformed residuals should be white.

We repeat the above procedure to obtain improved esti-

mates of the spectrum. The iteration is considered con-

verged if the whitened data show a sufficiently flat

spectrum for which the spectral leakage is not dominant.

The results are usually validated with simulations. We list

our best estimates of red noise parameters in Table III.

IV. SEARCH TECHNIQUES AND RESULTS

A. Bayesian analysis

Within a Bayesian framework, the signal detection

problem is addressed through model selection. Given the

observational data, we wish to choose between two

mutually exclusive hypotheses: the null hypothesis H0

that the signal is absent and the alternative hypothesis H1

that the signal is present. We compute the evidences Z,

defined in Eq. (16), of the two hypotheses, H0 and H1.

Assuming a priori equal probability for both hypotheses,

the following evidence ratio (commonly called Bayes

factor) quantifies the support of H1 against H0,

B ¼ Z1

Z0

¼
R

Lðϑ;ψ;ψsysjδtÞPprðϑ;ψ;ψsysÞdϑdψsysdψ
R

Lðϑ;ψsysjδtÞPprðϑ;ψsysÞdϑdψsys
;

ð25Þ

where ψsys are the parameters of the deterministic system-

atics, SSE errors in our case, which should be distinguished

from dark matter signal parameters ψ. In order to obtain

accurate evidence estimates, we carry out numerical inte-

gration via MULTINEST with enabled importance nested

sampling in constant efficiency mode. With the current

PPTA data, we find a log Bayes factor lnB of 2.1 in the

frequency range ½10−9; 8 × 10−8� Hz, implying that our

data are consistent with containing only noise. When we

extend the search frequency to 10−7 Hz, the signal hypoth-

esis is favored against the null hypothesis with lnB ¼ 70.

We suspect this is caused by the unmodeled perturbations

of the mass and orbital elements of Mercury, for which the

synodic period is ∼116 days, corresponding to a frequency

of 10−7 Hz. We defer the investigation of this feature to a

future work.

In order to set an upper limit on the signal amplitude

within the Bayesian framework, we perform the parameter

estimation routine. By sampling from the posterior prob-

abilities of model parameters, we can numerically margin-

alize over nuisance parameters, and get the posterior

distribution for the amplitude Ψc. We define the 95%

Bayesian upper limit Ψ̄c, such that 95% of the samples

from the posterior probability lie within the range

½0; Ψ̄c�:

0.95 ¼
Z

Ψ̄c

0

dΨc

Z

dψ 0dϑLðΨc;ψ
0;ϑjδtÞPprðΨcÞ

× Pprðψ 0ÞPprðϑÞ: ð26Þ

We split the frequency range between 10−9 and 10−7 Hz

into a number of small bins and find Ψ̄c for each bin

separately.

To reduce the computational costs of numerical margin-

alization, a common practice is to fix the noise model

parameters to their maximum likelihood values [72,81],

determined from single pulsar analysis. However, such a

procedure can possibly lead to upper limits biased by a

factor of ≲2 [72]. In this work we allow both signal and

correlated noise parameters to vary simultaneously. The

white noise EFACs and EQUADs, which should have little

or no correlation with dark matter parameters, are fixed to

the maximum-likelihood values obtained from single

pulsar analysis.

Recently, it was shown that the search for a stochastic

GW background can be seriously affected by the uncer-

tainties in the SSE [82,83]. We employ a physical model

BayesEphem to account for the SSE uncertainties that are

most relevant for pulsar timing. The BayesEphem model

has 11 parameters, including 4 parameters which describe
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the perturbations in the masses of outer planets, 1 parameter

which is associated with the uncertainty in the semi-major

axis of Earth-Moon barycenter orbit, and 6 parameters that

characterize the perturbation of the Earth’s orbit due to

errors in the Jovian average orbital elements. The

BayesEphem modeling technique is described in [82]

in detail, and implemented in publicly available software

packages, such as enterprise and NX01. The latter was

used to put robust constrains on the amplitude of the FDM

in this work.

The number of free parameters for the PPTA data set is

5 × Np þ 3þ 11 ¼ 144 (see Table II), where Np is the

number of pulsars in PTA. In order to further reduce the

computational costs, we have formed the “restricted data

set” by choosing the five best pulsars. As shown in Fig. 1,

they contribute to more than 95% sensitivity of the full

PPTA. Here pulsars are ranked according to their contri-

bution to the squared signal-to-noise ratio ðS=NÞ2; see

Eq. (29) in the next section. We carry out the calculations

by adding detectable signals to 1000 noise realizations,

sampled from individual pulsar noise posterior distribution

obtained in Sec. III C 1.

1. Validation of the search results

In order to validate our upper limits and test the

robustness of our algorithms, we have injected a signal

with f ¼ 2 × 10−9 Hz and amplitude Ψc ¼ 10−14 into our

restricted data set. At this frequency, the amplitude of the

injected signal is comparable to the Bayesian upper limit. In

order to recover this signal, we run the full Bayesian

analysis, simultaneously accounting for both dark matter

signal and noise. The posterior probabilities are demon-

strated in Fig. 2, indicating successful recovery of the

injected signal.

B. Frequentist analysis

In a Frequentist framework, signal detection is essen-

tially a statistical hypothesis testing problem; we wish to

choose between the null hypothesis H0 and the signal

hypothesisH1 based on the observations. The task is to find

an optimal statistic that maximizes the signal detection

probability at a fixed false alarm probability. Following the

Neyman-Pearson criterion, the log-likelihood ratio is an

optimal statistic,

lnΛ≡ ln
LðH1jδtÞ
LðH0jδtÞ

¼
X

Np

i¼1

�

ðδtijsiÞ −
1

2
ðsijsiÞ

�

; ð27Þ

where we have used Eqs. (11) and (12) to derive the second

equality above, and the inner product between two time

series x and y is defined as

ðxjyÞ ¼ xTGðGTCGÞ−1GTy: ð28Þ

It is useful to define the signal-to-noise ratio in the

following form,

S=N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hlnΛi
p

¼
�

X

Np

i¼1

ðsijsiÞ
�1=2

; ð29Þ

where h� � �i stands for the expectation value over a large

number of noise realizations. In this work, we adopt 2 lnΛ

as our detection statistic. For our Frequentist analysis, noise

model parameters are fixed at their maximum likelihood

values. The signal parameters in question are: the amplitude

of dark matter induced gravitational-potential oscillations

FIG. 1. Cumulative normalized ðS=NÞ2. The pulsars are ranked
according to their contribution to the PPTA sensitivity between

5 × 10−9 − 2 × 10−8 Hz (see text for details). FIG. 2. The marginalized posterior distributions for the ampli-

tude Ψc and frequency f for a signal injection in the actual PPTA

data. The thick black lines mark the injected values and the

contours are 1- and 2-σ credible regions.
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Ψc, oscillation frequency f, phase parameters αe and θp;

see Eq. (9). It turns out that the statistic can be analytically

maximized overΨc and thus the parameter space that needs

to be numerically searched over isNp þ 2 dimensional. For

our data, this corresponds to 28 dimensions, making a grid-

based search unfeasible. We employ the particle swarm

optimization technique [84], which has been demonstrated

to be very effective for searches for continuous GWs with

PTAs [55,85]. The detection statistic follows a χ2 distri-

bution with one degree of freedom for noise-only data.

Since we find no evidence for statistically significant

signals in the data, which is consistent with results from the

Bayesian analysis as described in the previous subsection,

we set upper limits on the dimensionless amplitude Ψc. We

compute the 95% confidence upper limits for a number of

frequency bins between 10−9 and 10−7 Hz. At each

frequency, we compute the S=N for 103 simulated signals

with random phase parameters and a fixed Ψc. The

95% confidence upper limit on Ψ̄c corresponds to the

amplitude at which 95% of signals result in S=N ≥ 2.4.

Here the S=N threshold is chosen such that the expectation

value for our detection statistic in the presence of signals,

given by 1þ ðS=NÞ2, is greater than the detection threshold
that corresponds to 1% false alarm probability. It implies

that: if there was a signal with an amplitude higher than Ψ̄c

present in the data, it would have been detectable with more

than 95% probability.

C. Upper limits

Figure 3 shows the 95% upper limits on the amplitude

Ψc, calculated within Bayesian (black solid line) and

frequentist frameworks (purple solid line). As one can

see, Bayesian upper limits are a factor of 2–3 worse than

frequentist upper limits in the low-frequency regime,

while in the mid-to-high frequency range, both methods

produce comparable results. The difference might be

predominantly attributed to the covariance between signal

and noise (especially the red spin noise). Frequentist

upper limits were calculated by fixing noise parameters at

their maximum likelihood values, whereas we search

simultaneously over signal and noise parameters in the

Bayesian analysis.

The Bayesian upper limits, obtained with 5-year

NANOGrav data set [51], are also plotted as the thin

dash-dotted (taken from [35]) and dashed (recalculated in

this paper) lines. We note that upper limits presented in

Ref. [35] were underestimated by a factor of 10 due to the

less conservative
8
choice of prior (log-uniform) proba-

bility of the amplitude Ψc, as well as the noninclusion of

DM variations and additional white noise terms (EFAC

and EQUAD). From Fig. 3, one can see that our data set is

a factor of 5 more sensitive to the dark matter signal than

NANOGrav 5-year data at low frequencies, corresponding

to boson masses m≲ 10−23 eV. In the intermediate

regime, the improvement is about a factor of 2. This is

expected because of our much longer data span and

higher observing cadence. It is interesting to note that the

upper limit curves in Fig. 3 exhibit similar frequency

dependencies to the sky-averaged upper limits for con-

tinuous GWs (see, e.g., [48]). In Appendix A, we present

Frequentist upper limits obtained by including in the

analysis only Earth terms. We also show how Bayesian

upper limits are modified if different fixed SSE models

are used.

V. FUTURE PROSPECTS

In this section, we discuss the future improvement in

sensitivity of PTAs to the dark matter signal. In par-

ticular, the five-hundred-meter aperture spherical tele-

scope (FAST [86]) in China, MeerKAT [87] — a

precursor for the planned Square Kilometre Array

(SKA [88]) — and ultimately the SKA, are expected

to significantly increase the sensitivities of PTAs. With

broad frequency bands and massive collecting areas, the

radiometer noise for some of the brightest pulsars can be

reduced from current 100 ns level down to below 10 ns

[89]. However, it might be too optimistic to assume a

white noise level of 10 ns because of the so-called jitter

FIG. 3. Upper limits on the signal amplitudeΨc, generated by the

scalar field dark matter in the Galaxy, as a function of frequency

(boson mass). The purple solid line shows results from Frequentist

analysis of the full data set of 24 pulsars, while the black solid line

demonstrates the upper limits derivedwithin aBayesian framework

(only the five best pulsars were used). These are compared with

previous studies using the NANOGrav 5-yr data set: dash-dotted

orange — upper limits set in [35], dashed red — upper limits

recalculated in this work. The thick black dashed line shows

the model amplitude Ψc, assuming ρSF ¼ 0.4 GeVcm−3, given

by Eq. (7).

8
We note that uniform priors result in upper limits that are a

factor of ∼5 higher than log-uniform priors.
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noise, which is thought to be associated with the

intrinsic and stochastic variability in the shape of

individual pulses [90]. Such a limitation implies that

the timing precision stops improving for the brightest

pulsars even when better instruments are used. The level

of jitter noise can be approximately estimated with the

following relation [91]

σJ ≈ 0.2W

ffiffiffiffiffiffiffi

P

T int

s

; ð30Þ

where T int is the time of integration, W and P are the

pulse width and pulse period, respectively. Note that the

only way to reduce jitter noise is to increase T int. In

comparison, the radiometer noise is given by [89]

σr ≈
W

S=N
≈

WSsys

Smean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΔfT int

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

W

P −W

r

; ð31Þ

where S=N is the pulse profile signal-to-noise ratio,

Ssys is the system-equivalent flux density, Smean is the

pulsar mean flux density and Δf is the observing

bandwidth. We adopt nominal SKA parameters,
9
Ssys ¼

1.8 Jy, Δf ¼ 770 MHz and set a fiducial T int ¼ 30

minutes.

Table IV lists white noise budgets (σr, σJ and the total

white noise σ) expected in the FAST/SKA era for ten PPTA

pulsars that have the lowest value of σ. As one can see,

for the SKA, jitter noise will dominate over the radiometer

noise for the majority of bright pulsars. In order to realis-

tically estimate the PTA sensitivity in the FAST/SKA era, we

use the total white noise given in Table IV plus the intrinsic

spin noise (where appropriate) with parameters determined

from the Bayesian analysis.

Figure 4 shows forecasted upper limits on the density of

FDM in the Galaxy for three cases, all assuming a data span

of ten years. Case a) is a conservative PTA that includes

only ten pulsars as listed in Table IV and an observing

cadence of once every 14 days. Upper limits in this case are

obtained by running full Bayesian analysis of simulated

data. We analytically scale this limit curve to two more

ambitious cases.
10

We increase the number of pulsars to

100 in case (b), leading to a factor of
ffiffiffiffiffi

10
p

improvement.

For case (c), we further increase the cadence to once every

day and adopt an integration time of two hours, providing

another factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 × 14
p

improvement. Case c) might be

an interesting option in the SKA era since small radio

telescopes (compared to SKA/FAST), such as Parkes, can

be dedicated for high-cadence and long integration obser-

vations of the brighter pulsars.

As one can see from Fig. 4, we will be able to constrain

the contribution of FDM to the local dark matter density

below 10% for m≲ 10−23 eV in ten years under the

TABLE IV. White noise for 10 PPTA pulsars in the FAST/SKA

era.

Pulsar name σr (ns) σJ (ns) σ (ns)

J0437−4715 0.06 50.4 50.4

J1017−7156 4.6 13.7 14.5

J1446−4701 26.0 22.1 34.1

J1545−4550 15.6 36.1 39.3

J1600−3053 2.9 26.6 26.8

J1713þ0747 0.8 35.1 35.1

J1744−1134 3.9 41.2 41.4

J1832−0836 3.7 14.2 14.8

J1909−3744 1.2 11.2 11.3

J2241−5236 1.5 15.4 15.5

FIG. 4. Upper limits on the dark matter density ρ in the Galaxy.

The current PPTA upper limits (black solid line) are shown along

with projected limits in the FAST/SKA era (purple lines, all

assuming 10-yr data span): (a) 10 pulsars, 14-day cadence,

30-min integration, (b) 100 pulsars, 14-day cadence, 30-min

integration, and (c) 100 pulsars, 1-day cadence, 2-hours integra-

tion (turbo). The black dashed lines show the dark matter

density in the Halo at 8 kpc (ρSF ¼ 0.4 GeV cm−3) and 2 kpc

(ρSF ¼ 3.4 GeV cm−3) from the Galactic Center, assuming NFW

profile. The 8 kpc line demonstrates the predicted dark matter

density, applicable to current PPTA pulsars and the Earth, while

the 2 kpc line applies to pulsars located at 2 kpc distance from the

Galactic center. For boson masses m ≲ 4 × 10−23 eV the size of

the solitonic core becomes larger than 2 kpc [29], and the dark

matter density will deviate from the NFW prediction towards

higher values (see text for details).

9
SKA1 system baseline V2 description https://www

.skatelescope.org/.

10
Note that the scaling factor should be a good approximation

at high frequencies where red noise plays a less important role.
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conservative assumption for SKA sensitivity. However, it is

more challenging for boson masses above 10−22 eV; we

estimate that decade-long observations of hundreds of

pulsars timed at nearly daily cadence with precision

≲20 ns are necessary to place interesting limits.

There are a couple of ways to improve our analysis. First,

the coherence between pulsar terms and Earth terms can be

used to enhance the sensitivity. When a pulsar and the Earth

are located within a de Broglie wavelength λdB, the

oscillation phases, which have been assumed to be inde-

pendent in the current analysis, are correlated. However, for

m≳ 10−22 eV, this effect will have no impact on the

current results, since λdB ¼ 60 pcð10−22 eV=mÞ and no

pulsars have been found within 60 pc to the Earth. Another

interesting point is that pulsars that are close to each other

within λdB also experience phase-coherent oscillations [36].

We plan to explore these features in a future work.

Second, the oscillation amplitude Ψc is proportional to

the local dark matter density. Thus, in contrast to the

amplitude of the Earth term, the amplitude of the pulsar

term varies from pulsar to pulsar; see Eq. (7). In Λ-FDM

cosmological simulations [29,36], it was shown that due

to wave interference the dark matter forms gritty pattern

with typical granule size of around λdB. When averaged

over ≫ λdB scales, the periphery (> 1 kpc) density profile

is similar to the classical Navarro-Frenk-White (NFW)

profile, whereas a distinct density peak is seen in the

central regions (usually called solitonic core, see [29] for

details).

Figure 5 shows the expected signal amplitude for PPTA

pulsars assuming the NFW dark matter density profile [92]

with parameters from [93]. As one can see, pulsars closer to

the Galactic center provide better sensitivity to the dark

matter signal. The amplitude of the dark matter signal

becomes even larger than NFW prediction within the

central solitonic core (≲1 kpc) [36]. For the current

PPTA sample, PSR J1824−2452A is expected to have

the largest signal amplitude, a factor of ∼5 larger than other

pulsars.
11
However, this pulsar is nearly the worst timer in

PPTA (see Table I and Fig. 1). Existing and future pulsar

surveys might help find high quality millisecond pulsars

close to the Galactic Center and thus provide better

sensitivity to the dark matter searches [94].

VI. CONCLUSIONS

Pulsar timing is a powerful tool to study a wide variety of

astrophysical phenomena. By exploiting precision timing

observations from an array of the most stable millisecond

pulsars, PTAs allow us to measure minute correlations in

the ToAs of different pulsars. Like continuous GWs from

individual supermassive binary black holes, FDM in the

Galaxy produces periodic variations in pulsar ToAs. We

perform a search for evidence of ultralight dark matter in

the latest PPTA data set. Finding no statistically significant

signals, we place upper limits on the dark matter density:

for boson mass m≲ 10−23 eV, our analysis constrains the

density below 6 GeV cm−3 with 95% confidence; at

m ≈ 10−22 eV, our upper limits remain 3 orders of magni-

tude above the local dark matter density 0.4 GeV cm−3

inferred from kinematics measurements of stars in the

Galaxy [58].

We derived the noise properties of PPTA data and

obtain dark matter constraints using both Bayesian and

Frequentist methods. Our upper limits from the two

methods are broadly consistent. We reanalyzed the

NANOGrav 5-yr data set and found that the PPTA data

result in a factor of 2 to 5 improvement in dark matter

constraints. We studied potential systematics due to SSE

errors in our analysis and found that the search for ultralight

dark matter is insensitive to such errors. We have ignored

effects from instabilities in terrestrial time standards; such

clock errors produce a monopolar broad-band noise [95].

Whereas this effect should be distinguishable from the

sinusoidal ToA variations due to ultralight dark matter, one

needs to include it in a future study to quantitatively assess

the impact.

We forecasted the PTA sensitivity in the FAST/SKA era

while accounting for realistic noise levels. We found that

observing the ten best PPTA pulsars for ten years would

constrain the density of FDM below 0.05 GeVcm−3 for

m≲ 10−23 eV, about 10% of measured total dark matter

density. Atm ≈ 2 × 10−23 eV, our projected limit is around
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FIG. 5. The amplitude of the expected dark matter signal for

different pulsars, assuming NFW dark matter density profile. The

mass of the scalar dark matter particles is assumed to be

2 × 10−23 eV.

11
The density of the scalar field dark matter in globular clusters

is not expected to deviate significantly from the general trend as
λdB is larger than typical sizes of globular clusters. Thus, the
amplitude of the oscillation at J1824−2452A, located in a
globular cluster, is expected to follow the NFW prediction.
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0.4 GeVcm−3; for higher boson masses, the upper limits

increase as ∼m3. Above m ≈ 10−22 eV, the projected limits

are more than 1 order of magnitude above the local dark

matter density. To place interesting limits in this mass

range, an ambitious timing program in which hundreds of

pulsars timed with daily cadence and high precision

(≲20 ns) for more than a decade is required. Finally, we

point out that high-quality pulsars in the vicinity of the

Galactic Center will be ideal tools to test the fuzzy dark

matter hypothesis.
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APPENDIX A: EARTH-TERM LIMITS AND

EFFECTS OF SSE

When searching for continuous GWs in PTA data, it is

common to use only the Earth terms. Similarly, for the case

of scalar field dark matter, we can include in the analysis
only Earth terms in Eq. (6). Although pulsar and Earth terms

lie in the same frequency bin,we expect that for a sufficiently

large set of pulsars, pulsar termswill be averaged out, as they

all have different phases. In the left panel of Fig. 6, we

compare the Frequentist upper limits on the density of scalar

field dark matter ρSF when only Earth terms are considered
(black dashed) and when the full signal is used (purple

solid).We find that both limits are comparable to each other.

The noisy features in the (purple) solid curve are due to the

amplitude modulation of pulsar terms; see Eq. (9).
We also demonstrate the effects of SSE errors. In the

right panel of Fig. 6, we show the upper limits obtained

when DE418 and DE435 planetary ephemeris are used.
The results with fixed ephemeris are overplotted with

upper limits obtained with BayesEphem model, which

accounts for uncertainties in the SSE. We see that the

results are comparable, indicating the search for FDM

signal, or continuous waves in general, is insensitive to
SSE errors.

FIG. 6. Upper limits on the density of fuzzy dark matter ρSF in the Galaxy, as a function of frequency (boson mass). Left: results from

Frequentist analysis when only the Earth term is included (Freq E) or both terms are used (Freq Eþ P). Right: Bayesian upper limits

when SSE parameters are included in the search (BayesEphem), or using fixed DE418 and DE435 planet ephemerids. The horizontal

black dashed line marks the measured local dark matter density 0.4 GeVcm−3 [58].
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APPENDIX B: NOISE PROPERTIES FOR SIX PPTA PULSARS

Figure 7 shows results of the Bayesian noise parameter estimation, described in Sec. III C 1, for the six most sensitive

pulsars in the current PPTA data set.

FIG. 7. The one- and two-dimensional marginalized posterior distributions for the log-amplitude and slope of the DM and spin noises

for the six best pulsars in the current PPTA data set.
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