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    Introduction 

 Parkinson ’ s disease is the most common neurodegenerative 

movement disorder. Although most cases are sporadic, sev-

eral genes have been recently linked to familial Parkinson ’ s 

disease, and loss-of-function mutations in Park2, the gene 

coding for the ubiquitin ligase Parkin, represent the most 

common recessive cause ( Kitada et al., 1998 ). Although Par-

kin function has been implicated in several cellular functions, 

study of Parkin loss in model organisms suggests that Parkin 

may have a conserved role in maintaining mitochondrial func-

tion and integrity ( Abou-Sleiman et al., 2006 ;  Hardy et al., 

2006 ). Parkin-null  Drosophila melanogaster  exhibit a severe 

phenotype, with the loss of dopaminergic neurons, disrupted 

spermatogenesis, and swollen and disordered mitochondria 

appearing before degeneration of their indirect � ight muscles 

( Greene et al., 2003 ;  Whitworth et al., 2005 ). How Parkin 

may in� uence mitochondria function and integrity, however, 

remains unclear. Here, we demonstrate that Parkin is selec-

tively recruited to dysfunctional mitochondria in mammalian 

cells, and that after recruitment, Parkin mediates the engulf-

ment of mitochondria by autophagosomes and their subse-

quent degradation. 

 Results and discussion 

 Previous studies yield con� icting conclusions on Parkin subcel-

lular localization, � nding the protein in the cytosol or associated 

with ER or mitochondria ( Shimura et al., 1999 ;  Darios et al., 

2003 ;  Kuroda et al., 2006 ). We examined the subcellular localiza-

tion of endogenous Parkin in HEK293 cells, a cell line that 

expresses relatively high levels of Parkin, using the PRK8 

monoclonal antibody ( Pawlyk et al., 2003 ). Consistent with most 

studies, we found that endogenous Parkin was predominately lo-

cated in the cytosol ( Fig. 1, a and c ). However, in some of the 

cells, colocalization was observed between Parkin and a subset of 

the mitochondria, which were small and fragmented ( Fig. 1 a ). 

 Mitochondrial � ssion has been recently linked to the func-

tion of Parkin ( Deng et al., 2008 ;  Poole et al., 2008 ;  Yang et al., 

2008 ) and to the autophagy of small defective mitochondria that 

lack membrane potential ( Elmore et al., 2001 ;  Tolkovsky et al., 

2002 ;  Twig et al., 2008 ). To test whether mitochondrial depolar-

ization causes Parkin accumulation on mitochondria, we treated 

HEK293 cells with the mitochondrial uncoupler carbonyl cya-

nide m-chlorophenylhydrazone (CCCP). Within 1 h of adding 

CCCP, endogenous Parkin was recruited to mitochondria in the 

majority of cells ( Fig. 1 b ) and increased appearance in the heavy 

membrane pellet on Western blots ( Fig. 1 c ). Although rat cortical 

neuron cultures displayed more Parkin in the membrane pellet 
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decreases ATP consumption by mitochondrial uncouplers; 

78.49  ±  2.61% [mean  ±  SD] with CCCP alone vs. 77.35  ±  7.64% 

with CCCP + oligomycin;  Fig. 1, e and f ). Western blots also 

show that YFP-Parkin redistributes from the cytosol to the heavy 

membrane pellet upon CCCP treatment ( Fig. 1 g ). Additionally, 

YFP-Parkin was recruited to depolarized mitochondria dam-

aged by the pesticide paraquat, which is thought to increase com-

plex I – dependent reactive oxygen species and has been linked 

to Parkinsonism ( Figs. 1 h , S1, and S2, available at http://www

.jcb.org/cgi/content/full/jcb.200809125/DC1;  Brooks et al., 1999 ; 

 Cocheme and Murphy, 2008 ). CCCP-induced recruitment was 

than did HEK293 cells, uncoupling of mitochondria with CCCP 

increased levels in the membrane pellet ( Fig. 1 d ). YFP-Parkin 

expressed in HeLa cells, which have little or no endogenous 

Parkin expression ( Denison et al., 2003 ;  Pawlyk et al., 2003 ), 

displayed a cytosolic distribution in  > 99% of cells. As with en-

dogenous Parkin in HEK293 cells, CCCP exposure induced the 

redistribution of YFP-Parkin from the cytosol to the mitochon-

dria ( Fig. 1, e and f ; and Video 1, available at http://www.jcb

.org/cgi/content/full/jcb.200809125/DC1). This CCCP-induced 

accumulation of Parkin on mitochondria was not inhibited by 

the addition of the ATP synthase inhibitor oligomycin (which 

 Figure 1.    Parkin accumulates on impaired mitochondria.  (a and b)   HEK293 cells treated with DMSO control (a) or 10  μ M CCCP (b) for 1 h immunostained 
for endogenous Parkin (green) and a mitochondrial marker, Tom20 (red). The bottom panels show enlarged views of the boxed areas. Arrows indicate 
mitochondria that colocalize with endogenous Parkin. (c and d) HEK293 cells (c) and rat cortical neurons (d) depolarized with CCCP for 1 and 5 h, respec-
tively. Cells were immunoblotted for endogenous Parkin. PNS, HM, and PHM indicate postnuclear supernatant, mitochondrial-rich heavy membrane pellet, 
and post – heavy membrane supernatant, respectively. VDAC is a mitochondrial marker. (e) HeLa cells expressing YFP-Parkin (green) treated with DMSO, 
10  μ M CCCP, or 10  μ M CCCP + 10  μ M oligomycin for 1 h. Cells were stained for the mitochondrial marker cytochrome  c  (red). Line scans below the 
images indicate colocalization between Parkin (green) and mitochondria (red) and correlate to the lines drawn in the images. (f) YFP-Parkin colocalization 
with mitochondria scored for  ≥ 300 cells per condition in at least two experiments. (g) YFP-Parkin accumulation in mitochondrial fraction assessed as in 
panel c. Numbers to the right of the gel blots indicate molecular weight standards in kD. (h) HeLa cells treated with 2 mM paraquat or paraquat + 10 mM 
 N -acetyl-cysteine (NAC) for 24 h scored for colocalization, as in panel f. Error bars indicate standard deviation of at least three replicates. Bars, 10  μ m.   
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 Figure 2.    FLIP analysis of Parkin diffusibility and selectivity of Parkin accumulation . (a – c) FLIP analysis with quantifi cation after treatment with DMSO 
(a, top, and b) or CCCP (a, bottom, and c;  n   ≥  3 in each treatment). Rectangles in panel a indicate the bleach ROI. Outlines demarcate the edges of cells 
expressing YFP-Parkin. (d) YFP localization in WT and Mfn1 � / � ,Mfn2 � / �  double knockout MEF cells expressing YFP-Parkin. (e) YFP-Parkin scored for co-
localization as in  Fig. 1 f . Error bars indicate standard deviation of at least three replicates. (f) Mfn1 � / � ,Mfn2 � / �  double knockout MEF cells transfected 
with YFP-Parkin (green) and pulsed with the potentiometric dye MitoTracker (blue in merge) 15 min before fi xation. Cells were immunostained for cyto-
chrome  c  (red). A line scan of fl uorescence through two Parkin-positive mitochondria depicts colocalization between Parkin, MitoTracker, and cytochrome  c . 
The right four panels show an enlarged view of the boxed area. Arrows indicate mitochondria (identifi ed by anti – cytochrome  c ) that were depolarized 
(as assessed by their failure to take up the dye MitoTracker; arrowheads represent mitochondria (identifi ed by anti – cytochrome  c ) that were electrochemically 
active (as assessed by their ability to take up the dye MitoTracker). YFP-Parkin colocalizes with depolarized mitochondria (arrows) but not with electrochemi-
cally active mitochondria. (g) The mitochondrial volume for each Mfn1 � / � ,Mfn2 � / �  MEF cell was segregated into Parkin-positive and Parkin-negative 
subsets. Mean MitoTracker fl uorescence intensity was measured for each subset ( n  = 9). Bars: (a, d, and f, left) 5  μ m; (f, right four panels) 1  μ m.   
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not blocked by the antioxidant  N -acetyl-cysteine, which sug-

gests that reactive oxygen species production is not necessary 

for Parkin translocation (Fig. S1). The mitochondrial transloca-

tion of Parkin caused by mitochondrial depolarization was 

also assayed by � uorescence loss in photobleaching (FLIP). 

Mitochondrial-localized YFP-Parkin in CCCP-treated cells was 

depleted more slowly by photobleaching than the entire pool of 

YFP-Parkin in HeLa cells not exposed to CCCP, which suggests 

that YFP-Parkin ’ s af� nity for mitochondria is increased upon 

depolarization ( Fig. 2, a – c ). 

 Chronic inhibition of mitochondrial fusion caused by 

double knockout of the genes expressing the partially redundant 

mitofusin (Mfn) proteins, Mfn1 and Mfn2, generates a heterog-

enous population of fragmented mitochondria, some of which 

are relatively respiratory de� cient and display a lower mem-

brane potential ( Chen et al., 2005 ). If Parkin recruitment occurs 

as a consequence of membrane depolarization, exogenous Par-

kin in Mfn1 � / � ,Mfn2 � / �  double knockout mouse embryonic 

� broblasts (MEFs) would be predicted to accumulate selectively 

on mitochondria with lower membrane potentials. YFP-Parkin 

 Figure 3.    Mitochondrial fragmentation does not induce Parkin accumulation independently of mitochondrial membrane potential.  (a – d) HeLa cells cotrans-
fected with YFP-Parkin (green) and with empty vector (a), vMIA (b), or Drp1 K38A (c). Cells were treated with 10  μ M CCCP (a, right, and c) or DMSO (a, left, 
and b) for 1 h. Mitochondria were immunostained for cytochrome  c  (red). The bottom two panels in each column show an enlarged view of the boxed regions. 
(d) YFP-Parkin colocalization with mitochondria were scored as in  Fig. 1 f . Error bars indicate standard deviation of at least three replicates. Bars, 5  μ m.   
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 Figure 4.    Selective mitochondrial elimination by 
Parkin under depolarizing conditions.  (a and b) 
HeLa cells expressing YFP-Parkin (green) incu-
bated for 12 h (a) or 48 h (b, left) with 10  μ M 
CCCP. Cells were immunostained for Tom20 
(red). Parkin-expressing HeLa cells display less 
mitochondrial mass compared with surrounding 
cells at 12 h and complete loss of mitochondria 
by 48 h. (b) Similar loss of mitochondria ob-
served with anti – cytochrome  c  (red, middle) and 
anti-TRAP1 (red, right) antibodies. (c) No loss of 
peroxisomes immunostained for PMP70 (red) in 
YFP-Parkin – transfected cells relative to surround-
ing untransfected cells. Outlines demarcate the 
edges of cells expressing YFP-Parkin. Bars, 10 
 μ m. (d – f) Electron microscopy of untransfected 
HeLa cells (d) or HeLa cells expressing YFP-Par-
kin (e) and treated with 10  μ M CCCP for 48 h. 

Many mitochondria and few lysosomes were observed in control cells, and no mitochondria and many lysosomes were observed in YFP-Parkin – transfected 
cells. Bars, 500 nm. (f) The number of mitochondria and late lysosomes/ μ m 2  of cytoplasm in 22 randomly selected cells per condition. (g) The number of 
PMP70-stained peroxisomes per cell in YFP-Parkin – transfected and untransfected cells ( n  = 5). Error bars indicate standard deviation of at least three replicates. 
(h) Control HeLa cells or HeLa cells transfected with YFP-Parkin treated with 10  μ M CCCP for 72 h (day 0) and cultured in glucose or galactose media for 1 – 4 d. 
Cells were fi xed and stained for Tom20 and Hoechst33342 (nuclei). Cells with nonapoptotic nuclei in a representative area of the slide on days 0 – 4 were 
counted and represented in the graph as a percentage of nonapoptotic cells on day 0 ( ≥ 160 cells per condition on day 0 in at least two experiments).   
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 Figure 5.    Mitophagy induced by Parkin.  (a) HeLa cells stably expressing GFP-LC3 (green) transfected with mCherry-Parkin (not depicted) and treated 
with 10  μ M CCCP for 1 h. Parkin-negative cells (left) display less overlap between autophagosomes and mitochondria (red) than Parkin-positive cells 
(right), as assessed by (b) counting the number of mitochondria encapsulated by LC3-positive autophagosomes in  > 30 cells per condition in at least three 
independent experiments. (c) HeLa cells stably expressing GFP-LC3 (green) and transiently transfected with mCherry-Parkin (white) were immunostained for 
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colocalized with mitochondria in 1.33  ±  1.15% of Mfn1 � / �  

cells and 3.33  ±  1.15% of Mfn2 � / �  cells, in the range of the 

1.99  ±  2% of cells displaying Parkin-positive mitochondria seen 

with wild-type (WT) MEFs. However, in Mfn1 � / � ,Mfn2 � / �  

double knockout MEFs, YFP-Parkin colocalized with mito-

chondria in 86.20  ±  3.95% of cells ( Fig. 2, d and e ; and Fig. S2; 

P  <  0.001 for Mfn1 � / � ,Mfn2 � / �  vs. WT [two-tailed  t  test]). 

Interestingly, in Mfn1 � / � ,Mfn2 � / �  cells, Parkin was re-

cruited to a discreet subset of mitochondria within individual 

cells ( Fig. 2, d and f ). To test whether mitochondria labeled by 

Parkin display decreased membrane potential, we pulsed the 

cells with MitoTracker red, a potentiometric mitochondrial dye, 

before � xation. YFP-Parkin selectively accumulated on those 

mitochondria with lower MitoTracker staining ( Fig. 2 f ). To quan-

tify this relationship, we digitally segregated the mitochondrial 

volume of these cells into Parkin-positive and Parkin-negative 

sets, and measured the mean MitoTracker intensity of these vol-

umes for each cell. The mitochondrial volume labeled with YFP-

Parkin displayed a 47% lower mean MitoTracker intensity relative 

to the mitochondrial volume with undetectable YFP-Parkin ac-

cumulation ( Fig. 2 g ; 487.00  ±  81.5 arbitrary units [au] vs. 258.3  ±  

61.7 au; P  <  0.001 [two-tailed, paired  t  test],  n  = 9 cells). These 

results show that Parkin can be recruited to individual mito-

chondria within cells and that compromised mitochondria dis-

play greater Parkin accumulation than electrochemically active 

mitochondria, which is consistent with the hypothesis that 

impaired mitochondria are selectively targeted by Parkin. 

 Depolarization of mitochondria is known to induce their 

fragmentation into multiple smaller organelles ( Legros et al., 2002 ) 

by inhibiting organelle fusion ( Meeusen et al., 2004 ). Recent ge-

netic studies have linked Parkin activity to gene products control-

ling mitochondrial � ssion and fusion ( Deng et al., 2008 ;  Poole 

et al., 2008 ;  Yang et al., 2008 ), which suggests that Parkin recruit-

ment to mitochondria may be a consequence of depolarization-

induced fragmentation. To test this hypothesis, fragmentation of 

mitochondria induced by CCCP ( Fig. 3 a ) was inhibited by over-

expressing Drp1K38A, a dominant-negative mutant of the mito-

chondrial � ssion protein dynamin-related protein 1 (Drp1;  Fig. 3 c ; 

 Smirnova et al., 2001 ). Although mitochondria in CCCP-treated 

cells expressing Drp1K38A fail to fragment, they still display Par-

kin accumulation along the elongated mitochondria ( Fig. 3, c and d ), 

which indicates that mitochondrial fragmentation is not neces-

sary for Parkin translocation. Expression of viral mitochondrial-

associated inhibitor of apoptosis (vMIA) in HeLa cells, which causes 

fragmentation of mitochondria with minimal perturbation of mem-

brane potential ( McCormick et al., 2003 ), did not cause accumula-

tion of Parkin on mitochondria ( Fig. 3, b and d ), also indicating that 

excessive fragmentation of mitochondria by itself is insuf� cient to 

cause Parkin recruitment. 

 To further assess the effect of Parkin on depolarized mito-

chondria, we followed changes in mitochondrial morphology and 

mass over time. In HeLa cells lacking Parkin, the mitochondria 

appeared fragmented within 60 min after adding CCCP but un-

derwent little other morphological change over the following 48 h 

( Fig. 4, a and b ). In Parkin-expressing cells, in contrast, the mito-

chondrial mass appeared to be grossly reduced by 12 h ( Fig. 4 a ). 

Interestingly, by 48 h, no mitochondria remained detectable in 

Parkin-expressing cells assessed by immunocytochemistry using 

three independent mitochondria markers: Tom20, cytochrome  c , 

and TRAP1 ( Fig. 4 b ). In contrast to the mitochondrial elimina-

tion, no signi� cant decrease in the number of peroxisomes was 

observed ( Fig. 4, c and g ), which suggests that Parkin selec-

tively induces mitophagy that is consistent with the mitochon-

dria-speci� c localization upon CCCP treatment. 

 We also examined HeLa cell mitochondria by transmission 

electron microscopy after 48 h of CCCP treatment in the presence 

and absence of Parkin expression. Mitochondria were abundant 

in the control HeLa cells after CCCP treatment, although they 

appeared fragmented and had sparse cristae ( Fig. 4 d ). However, 

90% of HeLa cells expressing YFP-Parkin had either few or no 

detectable mitochondrial structures ( Fig. 4, e and f ; 0.074  ±  0.21 

mitochondria/ µ m 2  of cytoplasm with Parkin vs. 0.62  ±  0.06 

mitochondria/ µ m 2  of cytoplasm without Parkin; P  <  0.001,  n  = 22 

cells per condition). Furthermore, Parkin-expressing HeLa cells 

lacking mitochondria displayed a large increase in electron dense 

lysosomal structures ( Fig. 4, e and f ; 0.38  ±  0.23 lysosomes/ µ m 2  

cell area with Parkin vs. 0.06  ±  0.08 lysosomes/ µ m 2  of cytoplasm 

without Parkin; P  <  0.001,  n  = 22 cells per condition). 

 To further con� rm that cells had lost their mitochondria, we 

examined their growth in glucose media or galactose media, which 

lacked glucose. 72.8% of cells without detectable mitochondria 

were able to survive for 4 d in glucose media, whereas 0% were 

able to survive 4 d when cultured in galactose media ( Fig. 4 h ). 

In contrast, the majority of control cells, which had been treated 

with CCCP but lacked Parkin, retained their mitochondria and 

could survive in both glucose and galactose media for at least 4 d 

( Fig. 4 h ). These results provide biochemical evidence that cells 

expressing Parkin lack mitochondrial function after depolarization, 

which is consistent with their having been eliminated. 

 Previous studies in mammalian cells ( Elmore et al., 2001 ; 

 Schweers et al., 2007 ;  Sandoval et al., 2008 ;  Twig et al., 2008 ) have 

concluded that depolarized mitochondria are degraded by autoph-

agy. To test whether Parkin may be regulating this process, we as-

sessed colocalization between a marker of autophagosomes, LC3, 

and mitochondria after mitochondrial depolarization using HeLa 

cells stably transfected with GFP-LC3 ( Bampton et al., 2005 ). 

Little colocalization between mitochondria and autophagosomes 

was seen after 1 h of CCCP exposure in untransfected HeLa cells 

( Fig. 5 a , left). However, LC3-labeled structures surrounded frag-

mented mitochondria in cells transfected with mCherry-Parkin spe-

ci� cally after CCCP treatment ( Fig. 5 a , right) to a signi� cantly 

greater extent than in the Parkin-de� cient HeLa cells (10.55  ±  6.06 

cytochrome  c  (red) to reveal colocalization of LC3, Parkin, and mitochondria after 1 h exposure to CCCP. Arrows indicate mitochondria that colocalize 
with both mCherry-Parkin and GFP-LC3. Insets show an enlarged view of the boxed areas. (d) YFP-Parkin (green)-induced mitochondrial removal after 24 h 
of CCCP (10  μ M) exposure observed in WT MEFs (left) failed to occur in ATG5 � / �  MEFs (right) quantifi ed (e) in  ≥ 150 cells in at least three experiments. 
Cells were stained for Tom20 (red). Outlines demarcate the edges of cells expressing YFP-Parkin. (f) 3-methyladenine (3MA) and bafi lomycin blocked 
Parkin-induced mitophagy in HeLa cells quantifi ed as in panel e. Error bars indicate standard deviation of at least three replicates. Bars: (c and d) 10  μ m; 
(a and c, insets) 1  μ m.   
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could maintain � delity of mitochondria by activating the au-

tophagy of dysfunctional mitochondria resulting from Pink1 loss. 

 Most importantly, our results suggest that loss of Parkin 

activity may allow the accumulation of dysfunctional mitochon-

dria, leading to neuron loss in Parkinson ’ s disease, and that 

 Parkin normally functions to survey mitochondrial activity and 

maintain mitochondrial � delity by activating the autophagy of 

damaged organelles. 

 Materials and methods 

 Cell culture 
 HeLa cells stably expressing YFP-Parkin using the Flp-In system (Invitrogen) 
were creating according to the manufacturer ’ s instructions and maintained 
in 300  μ g/ml hygromycin (Sigma-Aldrich). Rat cortical neurons were iso-
lated on embryonic day 18 and grown in neurobasal media supplemented 
with B-27,  L- glutamine, and penicillin/streptomycin. All cell culture materi-
als were obtained from Invitrogen and all chemicals were obtained from 
Sigma-Aldrich. Chemicals were prepared from DMSO stock solutions, ex-
cept paraquat,  N -acetyl-cysteine, and 3-methyladenine, which were added 
fresh to media. Mfn1 � / � ,Mfn2 � / �  and Mfn1 � / � ,Mfn2 � / �  double 
knockout MEFs were generously donated by D.C. Chan (California Insti-
tute of Technology, Pasadena, CA), ATG5 � / �  MEFs were donated by 
N. Mizushima (Tokyo Medical and Dental University, Tokyo, Japan), Flp-In 
HeLa cells were donated by V.V. Lobanenkov (National Institutes of Health, 
Rockville, MD), and HeLa cells stably expressing GFP-LC3 were donated 
by A. Tolkovsky (Cambridge University, Cambridge, UK). 

 Transfection/immunocytochemistry 
 Cultured cells seeded in borosilicate chamber slides (Thermo Fisher Scientifi c) 
were transfected or cotransfected with YFP-Parkin, ECFP-Parkin, mCherry-
Parkin, DsRed-Mito (Clontech Laboratories, Inc.), pcDNA3.1 (Invitrogen), 
vMIA, and/or Drp1K38A constructs using Fugene 6 (Roche). Parkin-myc 
was a gift from M. Cookson (National Institutes of Health, Bethesda, MD). 
Cells were fi xed 12 – 24 h after transfection with 4% paraformaldehyde in 
PBS. Cells were stained with following primary antibodies: mouse mono-
clonal cytochrome  c  (BD), rabbit polyclonal Tom20 (Santa Cruz Biotechnol-
ogy, Inc.), mouse monoclonal Parkin PRK8 (Santa Cruz Biotechnology, 
Inc.), rabbit polyclonal PMP70 (Invitrogen), and/or mouse monoclonal 
TRAP1 (Abcam); and with the following secondary antibodies: mouse 
and/or rabbit Alexa 488, 594, and 633 (Invitrogen). For assessment of 
mitochondrial membrane potential, cells were pulsed with 50 nM Mito-
Tracker red (Invitrogen) for 15 min, washed, and incubated for an addi-
tional 10 min before fi xation or imaging. For assessment of cell metabolic 
potential, cell nuclei were stained with Hoechst 33342 (Invitrogen). 

 Confocal microscopy 
 Fixed cells and live cells in the FLIP assay were imaged using an inverted mi-
croscope (LSM510 Meta; Carl Zeiss, Inc.) with a 63 × /1.4 oil DIC Plan Apo 
objective at 25 ° C and 37 ° C, respectively. For the FLIP assay, a bleach region 
of interest (ROI) occupying approximately one eighth of the cell was positioned 
over a relatively mitochondria-free portion of the cytosol. Cells were alternately 
bleached (488 nm using a 30-mW argon laser at 75% power and 100% 
transmission for 150 iterations) and imaged (488 nm at 75% power and 2% 
transmission) for 10 min ( � 60 cycles over the length of the experiment). Two-
channel prebleach and postbleach images were obtained with 488 and 594 
lasers to assess the position of mitochondria before and after bleaching. Circu-
lar ROIs with diameters of  � 1 and 5  μ m, respectively, were placed over the 
mitochondria and cytosol of the target cell, and an ROI of 10  μ m was placed 
over the control cell. Imaging of YFP-Parkin translocation in live HeLa cells was 
performed on a live cell imager system (UltraView LCI; PerkinElmer) at 35 ° C 
with a 100 × /1.45  � -Plan-Fluor objective. 

 Image analysis 
 Image contrast and brightness were adjusted in Photoshop (Adobe). Colocal-
ization was assessed with line scans using MetaMorph (MDS Analytical 
Technologies). For analysis of mitochondrial membrane potential in cells, mi-
tochondrial voxels in each image (the cytochrome  c  channel threshold was 
 ≥ 400 au) were segregated into Parkin-positive (the YFP-Parkin channel 
threshold was  ≥ 1,100 au) or Parkin-negative subsets, and MitoTracker inten-
sity for each voxel was measured using Volocity software (Improvision). For 
each cell, the mean MitoTracker intensity per voxel was calculated for the 

vs. 0.09  ±  0.36 LC3 encompassed mitochondria per cell; two-sided 

 t  test, P  <  0.001;  Fig. 5 b ). Consistent with the conclusion that Par-

kin accumulates on mitochondria destined for autophagy, Parkin 

colocalizes with LC3 after CCCP treatment ( Fig. 5 c ) but not before 

(not depicted). 

 To experimentally test if Parkin mediates mitochondrial elim-

ination by autophagy, we examined Parkin activity in ATG5 � / �  

MEFs that lack a key component of the autophagy pathway ( Hara 

et al., 2006 ). Supporting the hypothesis that Parkin promotes 

autophagic degradation of impaired mitochondria, cells lacking 

ATG5 retain Parkin-targeted mitochondria after CCCP treatment 

( Fig. 5, d and e ). Likewise, ba� lomycin, a lysosomal inhibitor, 

and 3-methyl adenine, an inhibitor of autophagy, blocked Parkin-

induced mitophagy in HeLa cells ( Figs. 5 f  and S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200809125/DC1). 

 We have shown that Parkin is recruited to depolarized mi-

tochondria and that Parkin promotes their autophagic degradation. 

Spontaneous mitochondrial depolarization and depolarization 

after phototoxicity have been associated with mitophagy in mam-

malian cells ( Kim et al., 2007 ;  Twig et al., 2008 ). Although little 

is known about the proteins regulating this process in mamma-

lian cells, recently, BNIP3L/NIX was found to promote degra-

dation of mitochondria in reticulocytes by triggering the loss 

of mitochondrial membrane potential ( Schweers et al., 2007 ; 

 Sandoval et al., 2008 ). Our � ndings provide a new molecular 

link between mitochondrial membrane depolarization and au-

tophagy by identifying Parkin as a mediator of mitophagy down-

stream of mitochondrial depolarization. 

 We do not know the extent to which Parkin mediates mi-

tochondrial � delity in vivo. Long-lived cells may require greater 

mitochondrial quality control than dividing cell populations 

that can discard damaged mitochondria wholesale by eliminat-

ing defective cells. Thus, certain cell types, such as neurons and 

myocytes, may require more robust intracellular mitochondrial 

surveillance than proliferating cell populations. Furthermore, it 

remains unknown to what extent alternative factors may pro-

mote mitophagy downstream of mitochondrial depolarization 

in different cell types or concurrently in the same cell. 

 In  D. melanogaster , knockout of mitochondrial fusion 

genes can partially compensate for loss of Parkin phenotypes, 

which suggests that Parkin may normally facilitate mitochondrial 

� ssion ( Deng et al., 2008 ;  Poole et al., 2008 ;  Yang et al., 2008 ). 

Our data support the view that Parkin has a less direct mode of 

compensating for defects in mitochondrial fusion and � ssion. 

Mitochondrial fragmentation does not itself signal Parkin recruit-

ment, but a severe defect in mitochondrial fusion does trigger re-

cruitment of Parkin to mitochondria if they lose membrane 

potential. Additionally, mitochondrial � ssion appears to be a pre-

requisite for mitophagy ( Twig et al., 2008 ). Thus, excess � ssion 

may compensate for Parkin loss in the � y by promoting mitoph-

agy ( Deng et al., 2008 ;  Poole et al., 2008 ). 

 Parkin overexpression also has been shown to compensate 

for loss of Pink1 in  D. melanogaster  ( Clark et al., 2006 ;  Park 

et al., 2006 ). Our results suggest that Parkin may compensate by 

targeting impaired Pink1-de� cient mitochondria for degradation. 

Knockdown of Pink1 leads to reduced HeLa cell mitochondrial 

membrane potential ( Exner et al., 2007 ), which suggests that Parkin 
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Parkin-positive and Parkin-negative subsets. The difference in mean Mito-
Tracker intensity between the Parkin-positive and Parkin-negative subsets was 
calculated using a paired  t  test. 

 Western blotting 
 HeLa cells stably expressing YFP-Parkin, HEK293 cells, and rat cortical neurons 
2 d in vitro were harvested and fractionated as described previously ( Karbowski 
et al., 2007 ). Samples were run on SDS-PAGE and immunoblotted with the fol-
lowing antibodies: polyclonal rabbit anti-GFP (Invitrogen), mouse monoclonal 
anti-Parkin (PRK8), and mouse monoclonal anti-Porin 31HL (EMD). 

 Electron microscopy 
 HeLa cells transfected with YFP-Parkin for 18 h were sorted for YFP using 
FACS. After sorting, 99.7% of cells contained a detectable YFP signal. After 
overnight culture, cells were treated with 10  μ M CCCP for 48 h, fi xed with 
4% glutaraldehyde in 0.1 N sodium-cacodylate at room temperature for 
1 h, and processed for electron microscopy using a standard protocol. 
22 cells expressing Parkin and 22 untransfected cells were randomly se-
lected and imaged at 8,000 ×  magnifi cation by transmission electron mi-
croscope (200CX; JEOL Ltd.) and a digital camera system (XR-100; Advanced 
Microscopy Techniques, Corp.). The area of cytoplasm in each cell was 
calculated using National Institutes of Health ImageJ. 

 Online supplemental material 
 Fig. S1 shows YFP-Parkin recruitment to mitochondria after paraquat 
and CCCP +  N -acetyl-cysteine. Fig. S2 shows ECFP-Parkin recruitment 
to Mfn1 � / �  and Mfn2 � / �  cells and selective recruitment of YFP-Parkin 
to depolarized mitochondrial in HeLa cells after paraquat. Fig. S3 shows a 
block of mitophagy by 3-methyladenine and bafi lomycin. Video 1 depicts 
YFP-Parkin recruitment to mitochondria after depolarization with CCCP in 
HeLa cells. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200809125/DC1. 
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