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École Normale Supérieure, 45, rue d’Ulm 75005 Paris, FRANCE
Philippe.Biane@ens.fr

Submitted: May 6, 2001; Accepted: September 30, 2001
MR Subject Classifications: 06A07, 05E25

Abstract

The lattice of noncrossing partitions can be embedded into the Cayley graph of
the symmetric group. This allows us to rederive connections between noncrossing
partitions and parking functions. We use an analogous embedding for type B non-
crossing partitions in order to answer a question raised by R. Stanley on the edge
labeling of the type B non-crossing partitions lattice.

1 Introduction

A (type A) parking function is a sequence of positive integers (a1, . . . , an) such that its
increasing rearrangement (b1, . . . , bn) satisfies bi ≤ i, while a noncrossing partition of
[1, n] is a partition such that there are no a, b, c, d with a < b < c < d, a and c belong to
some block of the partition and c, d belong to some other block. The set of noncrossing
partitions of [1, n] is denoted by NCn, it is a lattice for the refinement order. In [S], R.
Stanley gives a labeling of edges in NCn+1, and proves that, through this labeling, parking
functions are in one-to-one correspondance with maximal chains in the lattice NCn+1.

A type B parking function is a sequence (a1, . . . , an) of positive integers satisfying
ai ≤ n. A noncrossing partition of type B, as defined by Reiner [R], is a noncrossing
partition of {−1,−2, . . . ,−n, 1, 2, . . . , n} which is invariant under sign change.

In this paper we shall use a natural embedding of NCn+1 in the Cayley graph of the
symmetric group Sn+1 to recover Stanley’s result. An analogous embedding of NCB

n into
Wn, the hyperoctahedral group, then leads to a parallel treatment of the type B case.
In particular we give an edge labeling of NCB

n which gives a bijection between maximal
chains and type B parking functions, thus answering R. Stanley’s question in [S], page
12. The embeddings allow us to use the symmetries of these structures in a very efficient
way.

This paper is organized as follows. In the section 2 we describe the embeddings of the
non crossing partitions lattices in the corresponding Weyl groups. In section 3 we define
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the edge labelings and show that they yield bijections with the corresponding parking
functions.

2 The embeddings

Let G be a connected non-oriented graph, with its natural distance. For any pair of
vertices (v1, v2), we call [v1, v2] the set of all vertices in G which lie on a geodesic (i.e. a
path of minimal length) from v1 to v2. This is an ordered set, in which v1 is the smallest
element and v2 the largest element, while one has w1 ≤ w2 if there exists a geodesic from
w1 to v2 which passes through w2, or equivalently there exists a geodesic from v1 to w2

which passes through w1. This ordered set is ranked by the distance from v1.
Consider now the Cayley graph built from a Weyl group W , taking as generators all

the reflexions, and let w be the Coxeter element. We call NCW the ranked ordered set
[e, w].

If W = Sn is the group of permutations of [1, n], then the reflections are the transposi-
tions, and w is the cycle (1 2 . . . n). To any permutation σ ∈ Sn we associate the partition
of [1, n] given by its cycle structure. This defines a bijection from NCSn to NCn, which
preserves the order (see e.g. [B1]). In particular an edge [τ, σ] in NCn, with τ ≤ σ,
corresponds to a pair of permutations such that τ−1σ is a transposition.

Consider now the case W = Wn, the hyperoctahedral group. Recall that Wn can be
identified with the subgroup of S2n, acting on {−n,−n + 1, . . . ,−1, 1, 2, . . . , n}, which
commutes with the sign change i 7→ −i. The reflections are the transpositions (i − i)
and the permutations (i j)(−i − j), with i 6= j, which are the even reflexions. The
Coxeter element is the cycle (−1 − 2 . . . − n 1 2 . . . n). The map from S2n to partitions
of {−n,−n + 1, . . . ,−1, 1, 2, . . . , n} defined above restricts to a bijection from NCWn to
NCB

n , see [G], where this is used to recover the type B analogue of the main result in
[B2]. Note that the rank function on NCB

n does not coincide with the restriction of the
rank function on NC2n.

Although we have not looked at this, it would be interesting to investigate the case of
other Weyl groups.

3 Labeling of edges

3.1 Type A

As we have seen in the previous section, using the embedding of NCn+1 into Sn+1 every
edge [τ, σ] corresponds to a pair of permutations such that τ−1σ is a transposition (i j)
where i < j. We label such an edge by i. This corresponds to the labeling defined by
Stanley in [S]. A maximal chain in NCn+1 is a sequence of permutations which differ by
a transposition, therefore it corresponds to a factorization of (12 . . . n + 1) into a product
of n transpositions.
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Theorem 3.1 The map which associates to any factorization

(1 2 . . . n n + 1) = (i1j1) . . . (injn)

into a product of n transpositions, with ik < jk, the sequence (i1, . . . , in), is a bijection
from the set of all such factorizations to the set of parking functions.

The above considerations show that this is just a rephrasing of Stanley’s Theorem
3.1. We shall give a direct proof of this result, since the type B case will be very sim-
ilar. The map from factorizations to parking functions is straightforward, but given a
parking function, finding the associate factorization is not obvious. The proof below
gives an algorithm for associating a factorization to any parking function. In particular
we do not use the fact that these two sets have the same number of elements. First
we remark that there is a natural action of Sn on the set of parking functions, which
permutes the aj . There is also an action of Sn on the set of factorizations, which goes
as follows. We define an action of the transposition (k k + 1) on the set of factoriza-
tions. Suppose (1 2 . . . n n + 1) = (i1j1) . . . (injn) is such a factorization, and look at the
product (ik jk)(ik+1 jk+1). There is a unique pair (u, v) with ik < v; ik+1 < u such that
(ik jk)(ik+1 jk+1) = (ik+1 u)(ik v). We insert this product in the factorization to get a new
factorization. One checks that this extends to an action of Sn on the set of factorizations.
This corresponds to the local action of Sn on VNCn+1 in [S], Proposition 4.1. Thus we have
two actions of Sn, one on factorizations and one on parking functions, and the map we are
looking at is obviously covariant with respect to these actions, therefore in order to prove
the theorem it is enough to prove that the restriction of the map to factorizations with
nondecreasing i1, i2, . . . , in is a bijection with the set of nondecreasing parking functions.
We prove this by induction on n. We shall make use of the fact

(F) if σ = σ1 . . . σk is a factorization in Sn such that |σ| =
∑ |σi| (where |σ| = d(e, σ)

is the length in the Cayley graph) then for each i each cycle of σi is contained in some
cycle of σ (see e.g. [B1, B2]).

Let (i1 j1) . . . (in jn) be a factorization with i1 ≤ . . . ≤ in, we claim that jn = in + 1.
Indeed one has

(1 2 . . . n + 1)(in jn) = (1 2 . . . in jn + 1 . . . n + 1)(in + 1 . . . jn) = (i1 j1) . . . (in−1 jn−1)

where i1 ≤ i2 ≤ . . . ≤ in−1 ≤ in therefore by (F) all transpositions (ik jk) for k ≤ n − 1
have their support in the set {1, 2, . . . , in, jn + 1, . . . , n + 1}, and the cycle (in + 1 . . . jn)
is the identical permutation. Thus we have

(1 2 . . . in in + 2 . . . n + 1) = (i1 j1) . . . (in−1 jn−1).

Relabeling in + 2, . . . , n + 1 as in + 1, . . . , n, we get a factorization of (1 2 . . . n), and since
i1 ≤ . . . ≤ in−1 ≤ in, we see by the induction hypothesis that (i1, . . . , in−1) is a parking
function of length n − 1. Since in ≤ n, we see that (i1, . . . , in) is a parking function of
length n.
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Conversely, consider (a1, . . . , an) a nondecreasing parking function. If it comes from
some factorization (a1 b1) . . . (an bn), then bn = an + 1 as we just saw. But (a1, . . . , an−1)
is a non-decreasing parking function of length n − 1. Since a1, . . . , an−1 ≤ an, relabeling
an + 2, . . . , n + 1 as an + 1, . . . , n, we see by induction hypothesis that there is a unique
factorization

(1 2 . . . an an + 2 . . . n + 1) = (a1 b1)(a2 b2) . . . (an−1 bn−1)

therefore
(1 2 . . . n + 1) = (a1 b1) . . . (an an + 1)

is the unique factorization corresponding to (a1, . . . , an).

3.2 Type B

In NCWn the edges are labelled by reflections in Wn, and the maximal chains thus corre-
spond to factorizations

(−1 − 2 . . . − n 1 2 . . . n) = r1 r2 . . . rn

where rj are reflections.
We shall distinguish three kinds of reflections. For odd reflections i.e. of the kind

(−i i) with i ≥ 1, we label the edge by i. For an even reflection of the kind (i j)(−i − j)
with 1 ≤ i < j we label it by i, and for an even reflection of the kind (−i j)(i − j) with
1 ≤ i < j, we label it by j.

Note that the labels l(r) have the following covariance property with respect to con-
jugation by the Coxeter element

l(wrw−1) = c(l(r)) (1)

where c is the cyclic permutation (1 2 . . . n) acting on {1, . . . , n}.
Theorem 3.2 The map which associates, to any factorization

(−1 − 2 . . . − n 1 2 . . . n) = r1 r2 . . . rn

into reflections of Wn, its sequence of labels (l(r1), . . . , l(rn)), is a bijection from the set
of all factorizations to the set of type B parking functions.

For example the label of the factorization

(−1 − 2 − 3 1 2 3) = [(1 2)(−1 − 2)] [(3 − 3)] [(−2 3)(2 − 3)]

is 1 3 3.
There is again an action of Sn on factorizations, similar to the one we had in the type

A case, it relies on the fact that any product r1 r2 of reflections with labels i1, i2 can be
written uniquely as a product of two reflections s1 s2 with labels i2, i1, as we leave the
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reader to check case by case. Actually we can also make use of the further symmetry
(1) which was absent in the type A case. Let (a1, . . . , an) be a type B parking function.
Consider all the increasing rearrangements of (ck(a1), . . . , c

k(an)) for k = 0, . . . , n−1, then
either these are all equal to (1, 2 . . . , n), or there exists among them some (b1, . . . , bn) such
that b1 = 1 and (b2, . . . , bn) is a nondecreasing parking function. To see this, arrange the ai

in increasing order, and consider m = max{ai−i | 1 ≤ i ≤ n} and j = max{i | ai−i = m}.
If the ai are not all distinct, then (c−j+1(ac−j+1(1)), . . . , c

−j+1(ac−j+1(n))) works.
Making use of the actions of Sn and of the symmetry (1), it is thus enough to prove

the existence of a unique factorization with label (1, 2 . . . , n) or (b1, . . . , bn) as above.
The existence is easy. For the first case take

[(1 n)(−1 − n)][(2 n)(−2 − n)] . . . [(n − 1 n)(−n + 1 − n)][(n − n)]

For the second, take r1 = (1 −1) then take the factorization of (1 2 . . . n) in Sn correspond-
ing to the type A parking function (b2, . . . , bn) and symmetrize it to obtain a factorization
r2 . . . rn of (1 2 . . . n)(−1 − 2 . . . − n) with label (b2, . . . , bn).

It remains to prove uniqueness of this factorization. We do it in the second case, the
first being easy. Let s1 . . . sn be another factorization with the same label. If s1 = (−1, 1),
then by the type A case we are done. If not then s1 = (1 k)(−1 − k) for some k and

r2r3 . . . rn = (1 2 . . . k − 1)(−1 − 2 . . . − k + 1)(k k + 1 . . . n − k . . . − n)

Since the labels satisfy b2 ≤ b3 ≤ . . . ≤ bk ≤ k − 1 it follows from (F) that r2, . . . , rk

have their support in {−1, . . . ,−k, 1, . . . , k} but this is impossible since, the factorization
being minimal, (1 2 . . . k−1)(−1 −2 . . .−k+1) is the product of at most k−2 reflections.
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