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The parking strategy is an iterative approach to DNA sequencing. Each iteration consists of sequencing a novel
portion of target DNA that does not overlap any previously sequenced region. Subject to the constraint of no
overlap, each new region is chosen randomly. A parking strategy is often ideal in the early stages of a project
for rapidly generating unique data. As a project progresses, parking becomes progressively more expensive and
eventually prohibitive. We present a mathematical model with a generalization to allow for overlaps. This model
predicts multiple parameters, including progress, costs, and the distribution of gap sizes left by a parking
strategy. The highly fragmented nature of the gaps left after an initial parking strategy may make it difficult to
finish a project efficiently. Therefore, in addition to our parking model, we model gap closing by walking. Our
gap-closing model is generalizable to many other strategies. Our discussion includes modified parking strategies
and hybrids with other strategies. A hybrid parking strategy has been employed for portions of the Human

Genome Project.

A large number and variety of strategies have been pro-
posed and implemented for sequencing large genomes.
Both mathematical and simulation models of these
strategies are useful in conjunction with large-scale ge-
nome projects. These models serve three purposes.
First, they allow projects to be planned efficiently, with
appropriate allocation of resources, including esti-
mates of project duration. Second, they allow the
progress of projects to be monitored. Deviation of an
observed parameter, such as target coverage, from its
predicted value indicates a technical or biological prob-
lem, such as poor-quality data generation or the pres-
ence of unclonable regions on the target genome.
Third, models allow for cost optimization. A mild in-
crease in cost efficiency can result in tremendous ab-
solute savings, given the overall high cost of large-scale
genome sequencing. Costs can be optimized by choos-
ing between alternative sequencing strategies, tuning
controllable parameters such as clone-length distribu-
tion, and combing strategies to produce hybrid strate-
gies.

In this paper, we present a mathematical model for
the parking strategy for genome sequencing. This strat-
egy, in combination with other strategies, has been
used for portions of the Human Genome Project and
may prove popular for future genome projects for or-
ganisms with large genomes (Roach et al. 1999; Batzo-
glou et al. 1999). The name of the parking strategy
derives from a mathematically equivalent scenario that
has interested mathematicians for over 50 years (Solo-
mon and Weiner 1986). The scenario consists of cars
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arriving sequentially to park along an infinite un-
marked curb. Each car selects a spot along the curb to
park with no regard for subsequent cars. As time pro-
ceeds, the curb fills. Any gap greater than a car length
will eventually be occupied by a car, but if a gap be-
tween two cars is created that is less than the length of
a car, it will remain forever empty (Fig. 1). The math-
ematical curiosity of this problem includes both the
prediction of the jamming limit, which is the fraction
of the curb occupied at infinite time, and the distribu-
tion of the length of the gaps between the cars at any
given time.

One may modify the problem in a manner that
facilitates mathematical modeling without altering
any of the results other than their relationship to the
time scale. With this modification, as each car arrives,
it picks one spot for its left edge uniformly from the
entire curb. If parking at this spot is not possible due to
the presence of already-parked cars, the arriving car
drives off without parking. Otherwise, it parks.

The parking strategy for genome sequencing is ex-
actly analogous to that of cars parking. One selects a
clone, such as a BAC (bacterial artificial chromosome),
at random from a target-genome clone library and se-
quences this BAC. Then one iterates: choosing an ad-
ditional BAC at random from the library, screening it
to see if it overlaps any previously sequenced BAC, dis-
carding it if it does, and sequencing it if it does not. As
time progresses, the known tracts of sequence on the
target genome are distributed in exactly the same way
that parked cars are distributed in the car-parking sce-
nario.

Our analysis of the parking strategy for DNA se-
quencing is also applicable to certain DNA-mapping
strategies. Palazzolo et al. (1991) described one such
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Figure 1 Cartoon of the parking strategy. Cars arrive sequentially at an infinite curb and choose parking spots uniformly from all
possible spots, subject to the constraint that they do not overlap any already-parked car. In the portion of the infinite curb illustrated here,
only one additional car will fit. The left end of this car can be sited only within the darkened interval.

methodology, a double-end, clone-limited strategy.
Zhang and Marr (1993) developed an approximate
theoretical model for a similar strategy, nonrandom
clone anchoring. These two strategies are derivatives of
the parking strategy, and our analyses hold in these
cases.

The following should be noted for this paper:

1. L is the length of each clone. The length of a typical
BAC clone is approximately 150 kb. We assume L is
constant. The complexity of calculation would in-
crease if we modeled variation in clone length.

2. G is the length of the genomic target in base pairs.
For our simulations, we set the length of the ge-
nome as 3 Gb. For our mathematical model, we as-
sume G is infinite. This is reasonable when L << G
and facilitates tractability. We also allow clone ends
to occur at noninteger positions along the target.

3. vis the number of clones screened per unit length of
target; ve[0,). Screening might be done by partial
sequencing but could conceivably utilize other
characterization techniques, such as restriction di-
gestion or mass spectrometry. As a project proceeds,
v increases. For a finite target, if clones are screened
at a constant rate, v is proportional to time. In the
analogy of the car-parking problem, the rate of
screening clones corresponds to the rate of cars ar-
riving at a curb, seeking a parking space. For seman-
tic convenience, we refer to v as a form of time
throughout this paper.

4. pisthe proportion of the target covered by clones. If
L =1, then for a strict parking protocol with no al-
lowed clone overlap, p equals the number of clones
sequenced per unit length of the target. In all cases,
p=Lv.

5. ¢ is the allowed fractional overlap of a clone with
any previously sequenced clone; ¢€[0,1]. For the
strict-parking strategy mentioned earlier, ¢ = 0.

Model

Strict Parking

Our model is derived using the approach of Krapivsky
(1992). Clones are screened sequentially. If screening
demonstrates that a clone does not overlap any previ-
ously sequenced clone, then that clone is sequenced.
We let B(xv) represent the number of gaps of length x
per unit length of the infinite target at time v. More
strictly, B(x,v)dGdx is the expected number of gaps be-
tween length x and x + dx that have their left edges

within the target interval, dG. If normalized, B(x,v) be-
comes the probability distribution function for the
length of a random gap chosen uniformly from all
gaps.

As time progresses, gaps of length x may be split
into two if a clone within that gap is sequenced. Also
gaps of length x may be created if a gap larger than x is
split. The process of creation and elimination of gaps is
described by the following equation:

d o
™ B(x,v) = szLB(”'V)d” — (x = L)B(x,v) x=L (1)

Note that gaps of length less than L cannot be
destroyed, so for x < L we have:

% B(x,v) =2 f ;LB(u,v)du x<L 2)

We can solve these equations with the aid of two
initial conditions. These are derived, first, from the ob-
servation that the number of gaps of any particular
length before a project begins is zero, and second, that
in the limit of a project just beginning, none of the
target is covered by clones so all of the target is covered
by gaps. This gives us

B(x,0)=0 3)

y_)mo fo xB(x,v)dx =1 (4)

A reasonable guess for the form of the solution to
equation (1) is

B(x,v) = Fy(v)e 72 5)

With some algebra, it follows from equations (1)-
(5) that

1-eL%

v
vze—(x—L)v—Zfo dz x=1L

B(X/v) = o " 1-¢Lz (6)
2 f N we2fo——v gy oy <L

The top half of equation (6) follows from equa-
tions (1), (3), and (4). The bottom half of equation (6)
follows from the substitution of the top half of equa-
tion (6) into equation (2). Equation (6) is graphed in
Figure 2. Bankovi (1962) provides an alternate deriva-
tion for a restricted version of equation (6). Widon
(1966), Gonazlez et al. (1974), Hemmer (1989), and
Krapivsky (1992) describe more complete derivations.

Genome Research 1021
www.genome.org



Roach et al.

Note that for any fixed finite value of v, the top half of
equation (6) is a simple exponential decay in x. Equa-
tion (6) can also be expressed in forms that are less
compact, but that facilitate numerical computations.
This is also true of all of the equations derived in this
paper from equation (6). These forms can be recovered
by applying basic techniques of integration. The result-
ing equations are too bulky to be conveniently pre-
sented in this paper.

From equation (6), we can calculate the target cov-
erage as a function of time as

o v u 1"37LZ
p(v)=1- fo XB(x,v)dx :Lf0 e2fo——w gy (7)

Equation (7) is graphed in Figure 3 (as the case of
¢ =0). Hemmer (1989) provides an alternative deriva-
tion of equation (7). An immediate result is that at
infinite time, which corresponds to characterization of
an infinitely deep clone library, we have

Gap
Density

0.

Figure 2 Gap length distribution. Gap density is the average
number of left endpoints of gaps of a particular length that will
be found in a unit interval of the infinite line at a particular time.
The upper limit of coverage is the jamming limit, Rényi’s number.
The graph is arbitrarily truncated at a gap length of 1.5. For any
fixed time, a cusp exists in the curve for gap density at a gap
length equal to unity. At the jamming limit, all gaps are less than
the length of a clone (L=1; ¢ =0).
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Figure 3 Coverage versus time. Coverage is asymptotic to the
jamming limit, which varies with the allowed overlap ¢.

lim p(v) = 0.74759792025341 8)

This jamming limit is known eponymously as Rényi’s
number (Rényi 1958). For an infinite target, the jam-
ming limit is independent of L. Since the jamming
limit is less than unity, it is clear that it is impossible to
reach complete target coverage with a strict-parking
strategy. More particularly, it is impossible to achieve
coverage > 75%. For finite targets, the jamming limit
will vary about a mean near Rényi’s number. Solomon
and Weiner (1986) reviewed results for the variance of
the jamming limit. Dvoretzky and Robbins (1964) pro-
vided the first proof of the central limit theorem for the
jamming limit.

The above equations provide the target coverage
and distribution of gap sizes as a function of the num-
ber v of clones analyzed rather than the number of
clones sequenced, Gp(v). Often one is most interested
in a project’s status as a function of p(v). In this case,
one must numerically solve equation (7) for v, given
p(v). The resulting function is the inverse of the func-
tion graphed in Figure 3 (for the case ¢ = 0). For strict
parking, target coverage equals the number of clones
sequenced multiplied by their length, L.

Parking with Overlap

A modification to the parking strategy allows a se-
quenced clone to partially overlap previously se-
quenced clones. Let ¢ be the allowed overlap as a frac-
tion of clone length ($e[0,1]). We note that there is an
exclusion zone of length L(1 — ¢) centered at the mid-
point of each sequenced clone. No portion of the ex-
clusion zone of a sequenced clone may lie within an
exclusion zone of any previously sequenced clone (Fig.
4). This sets up an analysis exactly analogous to that of
the previous section. For this, one rescales the parking
length by a factor of 1 — ¢. Define (x,v) as the distri-
bution of the distances between the edges of adjacent
exclusion zones. A modification of equation 6 gives
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Figure 4 Cartoon of overlap parking. The central exclusion zone of a clone of length (1 — ¢)L, shaded gray in the figure, may not
overlap any other exclusion zone. Clones a and b overlap to the maximum possible extent, ¢bL. The gap between clones b and c is the
smallest gap that still allows for an additional clone to fit. However, the probability of a clone randomly being placed in this gap in any
finite interval of time is zero. A single clone can fit with room to spare between clones c and d.

1 L1012

. v2€—(X—L(1—¢))v—2fOfdz X = L(l _ d))
B(x,v) = , 1oLz

zfo ue2fo———dw gy < L(1-¢)

)

The coverage of the target by exclusion zones is, analo-
gously to equation (7), thus

L(1—
1€ (1-db)z

s =L1-o) [ 2o T=*au (0

Since there is a one-to-one correspondence between
exclusion zones and clones, L(l‘“f) is the number of left
endpoints of sequenced clones per unit length of the
target.

If the distance between adjacent exclusion zones is
x, then the length of the corresponding gap between
clone ends, if it exists (i.e., if x > ¢L), is x — L. There-
fore, for ¢ = 2 one has

~ 5 1_e—L(1-d)z
B(x,v) = B(x + dL,v) = v2e L2002 [ ————az
(11a)
and for ¢ < % one has
B(x,v) = B(x + $L,v) =
. 1_o-L(1—b)z
v2€—(X—L(1—2¢))v—2fOfdz X = L(l _ 2(1))
. Wl o L-d)z
2 f N ue b2 fi———de gy < L(1-2¢)
(11b)

Equation (6) is the special case of equation (11b) when
¢ =0.

One intuits that as & — 1 the parking strategy will
bcome asymptotically identical to a random subclon-
ing strategy. This corresponds to the case where every
clone is sequenced after it is chosen from the clone
library, regardless of the results of the screening analy-
sis of that clone. Indeed, for ¢ = 1, as it would be for
random subcloning, one has

B(x,v) = vZe ¥ (12)

Equation (12) is the gap distribution for a random
subcloning project on an infinitely long target. Note
that this distribution, as well as many other properties
of random subcloning on an infinite target, can be
readily derived from the observation that the left end-
points of random subclones will have a Poisson distri-
bution (Port et al., 1995).

The number of gaps in a project is

N =G f : B(x,v)dx (13)

For strict parking, the number of gaps equals the num-
ber of sequenced clones. A tabulation of the number of
gaps in a project as a function of overlap is provided in
Table 1. At infinite time (when a project has reached its
jamming limit), the number of gaps decreases mono-
tonically to zero as the allowed overlap increases from
zero to fifty percent. If projects are stopped at time-
points corresponding to fifty-percent coverage, then
cost reaches a minimum with an allowed overlap of
eighteen percent.

Target coverage may again be computed by sub-
tracting the sum of all the gap lengths from the target
length

o) =1— f : XB(x,v)dx (14)

Equation (14) is graphed for several values of ¢ in
Figure 3. In particular, we note that if ¢ = 1 one has

p(y=1-¢e™ (15)

Equation 15 is the Clarke-Carbon equation. Roach
(1998) reviewed other derivations of the Clarke-
Carbon equation.

The limit as v = « in equation (14) is the jamming
limit. When ¢ = 0, this limit is Rényi’s number. As the
allowed overlap ¢ increases, the jamming limit in-
creases to a maximum of 1 at ¢ ='. At values of
¢ = Y3, there are no gaps too small to accommodate a
new clone; so with an infinite number of screens, even-
tually a clone will be found to fill every gap. Jamming
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limit as a function of allowed overlap ¢ is graphed in
Figure S.

The parking with overlap strategy introduces an
inefficiency not present in the strict-parking strategy.
This results from sequencing overlapping clones. This
inefficiency is counterbalanced by improved gap fill-
ing, described by equation (11,) and a resulting higher
jamming limit, described by the limit as v — « of equa-
tion (14). We define a measure of the inefficiency of
excess coverage as the number of clones sequenced
times their length divided by target coverage

p(v)
(1-)p(v)

This gives a relative measure of the amount of overlap
present in sequenced clones. This inefficiency measure
is graphed for several values of ¢ in Figure 6. Note that
this measure ignores the cost of screening, which we
will address in the next section.

The average fractional overlap f,(v) of a newly se-
quenced clone is

I(v) = (16)

dp(v)
(-4

fov)=1- O (17)
dv

The average fractional overlap will increase as a project
proceeds, until the jamming limit is reached.

Cost of Parking

We computed the cost of parking as the cost of se-
quencing each selected clone, plus the cost of screen-
ing the clones. It is also possible to incorporate other
factors into a cost analysis, such as the cost of library
construction (see, for example, Roach et al. 1999). For
computational simplicity, we ignored those factors
here.

Jamming Limit
o
©
w

Allowed Overlap (¢)

Figure 5 Jamming limit versus allowed overlap, ¢. The jam-
ming limit is unity for all allowed overlaps greater than or equal
to one-half. The gray points are the averages of ten simulations of
parking 150 kb clones on a 3Gb target.
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Overlap Inefficiency

Coverage

Figure 6 Overlap inefficiency of parking. Overlap inefficiency is
the ratio of the sum of the lengths of the clones sequenced to the
length of unique target sequence produced. There is no such
inefficiency for strict parking with no allowed overlap (¢ = 0).
Overlap inefficiency and coverage are parametrically related as
functions of time v; the resulting curves do not extend beyond
their respective jamming limits. The curve for ¢ = 1 corresponds
to the Clarke-Carbon equation.

One might screen clones in a number of manners.
These include partial sequencing, restriction mapping,
sequence-tagged-site content mapping, array hybrid-
ization, mass spectrophotometry, or fluorescence sort-
ing. Partial sequencing provides a robust screen if done
to about 0.5-fold redundancy. It suffers from the draw-
back that it might screen out clones that are highly
similar due to paralogous repeats. It has the advantage
that if a clone is selected for complete sequencing, the
sequencing from the screening effort can be utilized as
part of the complete sequencing effort. In this case, if
complete sequencing requires an effort equivalent to
7.5-fold shotgun sequencing, then the effective ratio of
sequencing effort to screening effort will be 14 (r = 7.0/
0.5 = 14). We used this ratio in our examples solely to
provide conceptual concreteness, but we developed
our equations generally for any ratio.

The actual cost of screening in the future, if a park-
ing strategy is implemented, will be extremely small
compared to the cost of sequencing a clone. Even now
clones can be fingerprinted by restriction mapping at a
much lower cost than fingerprinting by partial se-
quencing. Damping the gain of lower cost is a drop in
the precision of overlap detection (Siegel et al. 1998a).
However, Siegel et al. (1998b) analyzed approaches to
maximize this precision. Beyond restriction mapping,
numerous screening technologies are now under de-
velopment that promise both low cost and high preci-
sion. Thus, it is likely that the cost of screening clones
will eventually become nearly free compared to the
cost of sequencing clones. As shown below, this drop
in screening cost will nevertheless not have a large im-
pact on overall project cost. This has permitted us to
use a potentially outdated screening methodology
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(partial sequencing) as an example without invalidat-
ing the applicability of our results to future projects.

In the case of strict parking, cost per unit length
can be expressed in terms of the number of clones
screened per unit length, v, and the ratio, r, of the cost
of completely sequencing a single clone to the cost of
screening a single clone

v+r pw)
L
Cost = i1l (18)

Here cost is expressed in terms of units of the cost of
completely sequencing a clone (including screening).
The clone coverage function p(v) is that of equation
(7). Equation (18) assumes that a clone that has been
screened is less expensive to sequence than a clone that
has not been screened. This may not be the case for
some screening techniques, such as restriction map-
ping. Equation (18) is easily modified for these cases by
subtracting one from the denominator; qualitative
conclusions are not affected.

When clones are allowed to overlap during park-
ing, equation (18) becomes

Cost =—L(1 — ¢
r+1

19)
The exclusion-zone coverage function p(v) is that of
equation 10. Parking costs as a function of coverage are
graphed in Figure 7. Cost and coverage are related para-
metrically through the variable v. Costs parameterized
for a prototypical human genome project are tabulated
in Table 1.

Approximations

Many of the exact equations developed here to model
the parking strategy are complex. In some cases, it
might be desirable to approximate these equations. For
example, analytic solutions may be desired for param-
eter optimizations. The presence of a cusp at L (or
L(1 — ¢) when overlap is allowed) suggests that a
piecewise approximation might be appropriate. We
present the results of polynomial and exponential
curve fits to the strict-parking curve, equation (6), for a
variety of target coverages in Table 2. Curve fits may
also be made to equation (11) with similar results.

A curve of the form ae®™ precisely fits the parking
curve for gap lengths longer than L. The residual stan-
dard error for this curve in Table 2 is a limit of machine
precision. This precise fit is expected as ae® is the form
of equation (6) for gap lengths longer than L. Polyno-
mial curves provide better fit than exponential curves
for gap lengths shorter than L. If a single curve is fit to
the entire distribution, rather than two curves piece-
wise, polynomial curves do better than exponential

¢=0;7=14

o=1;r=14

$=0.2;r=14

¢=0;r=1000

Coverage

Figure 7 Parking costs as a function of coverage. For small to
moderate values of coverage, parking costs are roughly propor-
tional to coverage, demonstrating that the cost burdens of
screening and of overlap inefficiency are initially quite small. Near
the jamming limit, these costs rise sharply as the number of
screening operations to identify an appropriate clone for se-
quencing rises sharply. Dropping the cost of screening by almost
two orders of magnitude provides only a marginal benefit shortly
before the jamming limit. Allowing modest overlaps permits
progress toward higher jamming limits at little cost increase. The
curve for & =0 and r= 14 intersects the curve for ¢ =0.2 and
r=1000 at 0.4493 coverage. In practice, the curve for$ =1 and
r=14 would run at a slightly lower cost, as no screening would
actually be done (any screening results would be ignored). For
screening by partial sequencing, this cost savings would be small,
as it would apply only to clones not fully sequenced. If this factor
is taken into account, the curve for ¢ = 0 and r= 1000 also must
be slightly adjusted. We left the curves unadjusted to facilitate
comparison of the parameterization of the underlying equations.

curves. Therefore, if an approximation is desired, we
recommend a curve defined piecewise with a polyno-
mial form over [0,L] and an exponential form over
[0,¢). Laguerre polynomials also work extremely well;
we illustrate one example in Table 2. Nevertheless, as
the low standard errors in Table 2 demonstrate, almost
any reasonable approximation will serve adequately.
Rationale for using an approximation can be gen-
erated by noting the similarities of the parking strategy
to other strategies, particularly random subcloning.
However, these approximations are limited by the dif-
ferences between strategies. Random subcloning strat-
egies are distinct from parking strategies in that they
do not iterate clone characterization, in which the use
of the term characterization implies either screening or
complete sequencing. In random subcloning, the de-
cision to characterize a clone is made independently of
the results of the characterization of other clones.
Walking strategies are also distinct from parking strat-
egies. In walking strategies, additional clones are char-
acterized until a clone that overlaps an existing con-
tiguous sequence is found. The fundamental differ-
ences between parking strategies and other strategies
limit the direct application or comparison of theory
developed for other strategies to the parking problem.
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Table 1. Optimization of Parking Strategies with Overlap (G = 3 Gb; L = 150 kb)

Maximum

allowed Cost to reach Number of gaps Number of gaps
overlap (¢) 50% coverage?® at 50% coverage Jamming limit at jamming limit
0.0 10870 10000 0.7476 14950

0.1 10710 9290 0.8167 11870

0.2 10680 8742 0.8800 9620

0.3 10750 8296 0.9362 7200

0.4 10900 7921 0.9804 4170

0.5 11130 7595 1 0

0.6 11460 7335 1 0

0.7 11880 7151 1 0

0.8 12410 7027 1 0

0.9 13060 6955 1 0

1.0 13860° 6948 1 0

?One cost unit equals the cost of completely sequencing a 150 kb BAC. For example, if it cost $5000 to
sequence one BAC, then it would cost (10870)($5000) =~ $54 million to reach 50% coverage, permiting no

overlap.
PAssumes no screening.

At low coverages, the effect of the parking strat-

egy’s iterative screening will be minimal due to the low
probability that any two screened clones will overlap.
Also the more overlap is allowed in a parking strategy,
the more the strategy resembles random subcloning.
Therefore, parking-strategy and random-subcloning
theories under some circumstances may produce
nearly identical results. Poisson analysis has been suc-
cessful in predicting gap distributions for random sub-
cloning on an infinite target. Poisson analysis for this
purpose was introduced by Lander and Waterman
(1988) and refined by Arratia et al. (1991, 1996). An
excellent presentation of Poisson analysis on infinite
targets is provided in the preamble of Port et al. (1995).
Poisson analysis predicts gap distributions that are ex-

ponential in form. As seen in Table 2, these exponen-
tial forms are capable of providing adequate approxi-
mations to the parking-gap distribution. This approach
is followed by Batzoglou et al. (1999).

Gap Closing

If a project begins with a parking-strategy phase, then
at the end of this phase gaps will remain that must be
closed if the project is to reach completion. A variety of
closing strategies exist, but here we will focus on a
strategy based on walking. For unidirectional walking,
each step is of length I drawn from a distribution f{l).
For walking by sequencing BACs, this length [ repre-
sents the portion of each BAC that represents novel
sequence extending to the right. If BAC length and

Table 2. Approximation of the Strict-Parking-Strategy Gap Distribution

Coverage
Range Curve 40% 50% 60% 70% Jamming limit
[0-1] a + bx 141072 53x10°3 20x102 9.6 x 102 3.4 x 107!
a + bx + cx? 65%x 107> 38x10 % 24x103 27 x 102 2.4 x 107"
a+bx+cx?2+dx> 23 x10°¢ 22x10°° 23x10* 69 x10°3 1.8 x 107!
ae 23 x10°% 1.0x103 48x103 3.7 x 102 2.4 x 107"
e (@+bx+cx?) 80x10% 94x10 3 15x10°> 1.1 x 103 1.1 x 107!
[L-2L] a+ bx 21 X 1073 66 x10> 19x102 45x 102 NA
a + bx + cx? 13 x 10 % 64 x10* 32x103 21x107? NA
a+bx+cx?+dx® 56 x10° 47x10 3 43x10* 78x103 NA
ae™ 191077 1.6 x 10" 51 x 10" 1.0 x 10 '? NA
[0-2L] a+ bx 1.8x 1072 79%x103% 33x102 14x10" NA
a + bx + cx? 1.8x 1072 47x10"3 12x10°2 50 x 102 NA
a+bx+cx?+dx®> 1.7 x 102 45x10 32 12x102 46 x 102 NA
aed™ 60x103 14x10 2 31x102 56x10 2 NA
e @+bx+cx?) 1.6 X103 44x10 3 12x102 44x 10?2 NA

Standard error of estimate is tabulated for a curve of the form indicated, over each of the ranges specified.
Curve parameters were optimized by Mathematica 4.0 (Wolfram Research) to fit equation 6. The truncation
at 2L avoids the tail of the distribution, which is asymptotically zero.
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overlap are constant, then so is I. In such a case, f{I)
would be a Dirac-delta function. Depending on the
method of BAC library construction and technique for
overlap detection, f{I) is more typically approximated
as a square, normal, or gamma distribution, all of
which can be chosen with an arbitrary mean, p, and
standard deviation, o, to fit to the empirically observed
parameters of the BAC library. We chose the gamma
distribution for our analysis here, preferring it to the
normal distribution, as it is strictly positive. In any
case, the choice of distribution has no substantial ef-
fect on our results or conclusions. For simultaneous
bidirectional walking, f(I) would be the twofold convo-
lution of the step-length distribution for unidirectional
walking. We focused the following discussion on uni-
directional walking, noting that, with this modifica-
tion, the resulting model is directly applicable to bidi-
rectional walking.

The BAC sequenced as the last step in a unidirec-
tional left-to-right walk across a gap overlaps the right
edge of the gap. The amount of this overlap represents
redundant sequencing effort. Determining the mean
and distribution of this overlap as a function of gap
size is fundamental to predicting the cost of gap clos-
ing. We assume that all nonzero, rightmost overlaps
are detectable. This assumption is easily modified if
additional complexity is desired.

Walking across a gap is a renewal process and can
be modeled with results from renewal theory. Cox
(1962) provided an excellent monograph on renewal
theory. In this context, the amount of rightward over-
lap of the last BAC across a gap of length x is termed
the forward recurrence time, V,. The probability den-
sity function of V, is

Po)=fy+x0+ [ htx-wfy+wdu (20)

where h(p) is the renewal density, interpreted as the
probability that a walking step begins at position p in
the gap.

For very large gaps, as x —> o, noting also that hm
f) - 0 and that hmh(p) - —, we have from equa-
tion (20)

1 -F(y)

_ 1 (= 1
)1(1_1)r010 Py (y) = |L_L fo fy+u)du = E fy flwydu =
21)

where F(-) is the cumulative distribution function of

f(-). This permits us to calculate the asymptotic limit of
the average forward recurrence time:

— w 1-F
lim V, = y )

X—>0 0 V8

1 * 2
ﬂfyde(yh

Lo~ 2
dy=5 J (1= Fody
2 2

(22)

If 0 << 1, as is often the case for BAC libraries, then
I, -4

Equation (22) shows that the average overlap at
the end of long gaps is roughly half of the length of an
average BAC. However, this result is of limited value for
analyzing the redundant overlaps of walks across short
gaps (i.e., less than about ten times the average clone
length). Most of the gaps in the final stages of a ge-
nome project will be short, so one is motivated to ana-
lyze the redundancies associated with walks across
short gaps.

Now, the renewal density h(p) can be expressed as
an infinite sum

h(p)= >, ky(p) 23)
n=1

where k,(p) is the probability density that the nth step
begins at position p in the gap.

The mean forward recurrence time can be calcu-
lated as

szu—x+uth(u)du

= u(l + E f kn(u)du) (24)

n=1

Each of the three terms of equation (24) can be inter-
preted in terms of their separate contributions. First,
the mean forward recurrence time when x =0 is p, as all
walking steps are synchronized. Second, as x increases,
the mean recurrence time decreases linearly as one pro-
ceeds across steps that have previously initiated, but
third, increases by an average of p every time a new
step intiates.

For a constant clone length, then f{J) is the Dirac-
delta function 8(/ — ). Consequently, k,(p) is the Di-
rac-delta function 8(np — ). Equation (24) then sim-
plifies to the periodic sawtooth function (where frc(-)
designates the fractional part function):

Al e

This sawtooth function illustrates the oscillatory na-
ture of the expected excess overlap (Figure 8).

When f{]) is not a Dirac-delta function, then these
oscillations are damped, decaying asymptotically to
the limit of & 2”"2 established in equation (22). The
damping comes “about as the possible positions for the
end of a walk become progressively out of phase with
each other. We illustrate this by choosing f{/) to be the
gamma distribution with parameters « and , such that

=2and g = .
B B

pBDe™

A =T =15

(26)
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We compute k,,(p) as the n-fold convolution of f{I):

B(Rp)" e
k.(p) = T T (27)

Substituting equation (27) into equation (24), we
have

V= M(l + 21 leﬁ(x)> —x (28)
where Q, ,, is the cumulative distribution function of
the gamma distribution I',, ,,. Equation (28) is conve-
nient for numerical calculations with software such as
Mathematica 4.0 (Wolfram Research). Results are
graphed in Figure 92. Nzote the decaying oscillations that
tend towards the % asymptote.

Simulations

We performed simulations with results that were con-
sistent with the predictions of our analytic model of
the parking strategy. For example, the jamming limits
reached in our simulations were within = 0.12% of the
predicted jamming limits (Fig. 5). For the purpose of
simulating jamming limits, each iteration of our algo-
rithm picked one new left clone endpoint uniformly
from all possible positions that could result in clones
that would not exceed the allowed overlap. However,
this speedy algorithm does not fully reflect the time
dependency of the coverage process. Therefore, we per-
formed additional simulations with an algorithm that
picked new left clone endpoints uniformly from all
possible positions, rejecting clones that exceeded the
allowed overlap. These simulations resulted in distri-
butions of gaps that were consistent with the distribu-
tion predicted by equation (6), both with respect to the
number of observed gaps of particular size ranges and
with respect to time dependency (data not shown). We
employed MATLAB (MathWorks, Inc.) as the simula-
tion environment.

[
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Figure 8 Excess overlap versus gap length (constant clone
length).
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Figure 9 Expected excess overlap versus gap length (variable
clone length). The model from the text is implemented such that
the length for each walking step is drawn from a gamma distri-
bution with mean 100 kb and standard deviation 14.4 kb. Each
gray point represents the average of 10,000 simulations of this
process; the simulations are consistent with the model. The
damped oscillations decay towards an asymptote near 51 kb, just
over half the average length of a clone.

Our simulations were constrained to clone end-
points at integer positions and were performed for fi-
nite choices of target length, G. The consistency of our
simulations with the predictions of our analytical
model suggests minimal impact to our model from our
enabling assumptions that target length could be con-
sidered infinite and that clone endpoints could occur
at noninteger points along the target.

We performed additional simulations to support
our model for the excess overlap of gap closing (Fig. 9).
Our analytic model explains 99.9% of the variation in
the simulation data (r* coefficient of determination).
We performed additional simulations based on the as-
sumption that clone lengths were distributed as a
square wave with the same mean and standard devia-
tion as the gamma distribution previously employed. A
square-wave distribution is close to that usually ob-
tained by cutting a band of fragments from a gel. Our
analytical model implemented with the gamma distri-
bution explained 98.5% of the variation in our square-
wave simulation data (not shown). This suggests that
knowledge of the mean and standard deviation of the
lengths of clones in a library is sufficient for useful
implementation of our model.

DISCUSSION

We have described a mathematical model for parking
strategies for genome mapping and sequencing. We
anticipate that this model will be useful for comparing
the parking strategy to other strategies and for optimiz-
ing the parameters of the parking strategy. Our analysis
ignores several biological and experimental issues,
such as cloning bias. These issues are difficult to incor-
porate into a mathematical model and are best treated
with simulations adapted to a particular cloning and
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sequencing methodology. Batzoglou et al. (1999) re-
viewed several other caveats associated with modeling
genome-sequencing strategies. Our mathematical
model forms a basis for comparing the parking strategy
and its derivative hybrid strategies to other strategies.
Roach et al. (1999) provided an example of a set of such
comparisons, with attention to a hybrid strategy con-
sisting of an initial strict-parking phase followed by
walking to close the resulting gaps.

Our mathematical model is derived from models
developed primarily for packing problems related to
physical chemistry. For tractability, this model as-
sumes an infinite target. In general, the assumption of
an infinite target for modeling genome strategies can
lead to difficulties in predicting certain parameters of
finite targets (Roach 1998). For example, the expected
amount of sequencing needed to close all the gaps in a
finite target is not possible to determine under this
assumption. This is related to the persistence of gaps in
an infinite target even as time tends toward infinity,
although at an increasingly vanishing density. In prac-
tice, genome parking strategies will never be continued
to coverages that are close to a jamming limit. There-
fore, in practice, it is unlikely that our assumption of
an infinite target will significantly impact our predic-
tions.

The parking strategy is marked by highly efficient
generation of sequence during the early stages of a
project with faster-than-exponential (i.e., asymptotic
to a vertical line) increases in cost in the late stages.
Thus, the parking strategy may be particularly useful
for projects in which the complete sequence of the
target is not sought. For projects in which complete
sequence is sought, the parking strategy can only be
used for a first stage and another strategy must be used
to close the gaps left by the parking strategy.

One approach for combining strategies is to use
the parking strategy to determine approximately 50%
of the target sequence and then to switch to a gap-
closing strategy. If this is done, one may wish to pursue
a modified parking strategy that allows each sequen-
tially chosen clone to be sequenced even if it overlaps
a prior clone up to a maximum allowed overlap. Al-
lowing such overlaps decreases the number of wasted
screens, screens that result in a clone being rejected for
sequencing. Allowing overlaps also reduces the num-
ber of gaps by allowing gaps smaller than the length of
a clone to be filled. However, this comes at an increase
in inefficiency due to redundant sequencing. A major
utility of the model presented in this paper is for opti-
mizing the choice of maximum allowed overlap during
a parking strategy. For example, if the sole goal is to
minimize the cost of reaching 50% coverage, then the
maximum allowed overlap should be 18%. Even fewer
gaps would be expected if the allowed overlap was set
at > 18%, but this would result in a cost increase. How-

ever, this cost might be recovered with compensatory
savings during gap closing. Therefore, this trade-off
presents an additional opportunity for optimization,
in conjunction with a model for the cost of gap clos-
ing.

Sequence walking is a common strategy for gap
closing. The sequence-tagged-connector approach is a
suitable walking strategy for large genomes (Venter et
al. 1996). PCR is an alternative for short gaps. The ma-
jor inefficiency of sequence walking results from re-
dundant sequencing of the target due to imprecise
overlap of the last walking clone sequenced. As a rough
approximation, this inefficiency per gap is constant. As
we show here, the more variability in the clone library
for a given average lzen th, the greater this constant
(i.e., asymptotically %). In practice, inefficiency will
tend to be slightly greater than this asymptotic con-
stant, as all random sequencing strategies create gaps
that are distributed with a monotonically decreasing
density. Therefore, the actual average inefficiency of
gap closure will tend to be slightly greater than the
asymptotic inefficiency, since there will be more than
an even chance that the length of a gap modulo the
average step length is less than half that average step
length.

It is difficult to model the costs of gap closing,
particularly as there are a large number of gap-closing
techniques, making it difficult for one model to cover
all situations. Additionally, any given gap-closing tech-
nique may vary highly and unpredictably in cost from
gap to gap. Nevertheless, predictions of gap-closing
costs are necessary for a complete cost analysis of an
entire genome project. In this paper, we specifically
modeled the costs for one particular gap-closing strat-
egy. Although the cost inefficiency per gap for this
strategy depends on the length of the gap, it does so in
oscillatory manner. The period of the oscillations is
generally shorter than either the resolution of a gen-
omicist’s ability to measure a gap or the standard de-
viation of gap sizes generated by a particular strategy.
Therefore, models for hybrid strategies should prima-
rily treat cost inefficiency as a constant per gap rather
than as a function of the total sum of gap lengths. This
will hold true for most gap-closing strategies but per-
haps for slightly different reasons than the walking
strategy modeled in this paper. For example, there are
fixed costs in designing PCR primers and amplifying
products. These costs are largely independent of prod-
uct length.

Our model for gap closing assumes a rather simple-
minded procedure for closing gaps, but we anticipate
that our basic approach can be extended to more so-
phisticated closing procedures. For example, we as-
sume that all gaps are closed by walking, even if they
are short enough to be spanned by PCR. Also if the
library used for walking contains clones of variable
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length that have been characterized at both ends, vast
improvements in efficiency can be made. Batzoglou et
al. (1999) demonstrated this point for several particular
cases and provided a convincing argument that this is
true generally.

Pairwise end sequencing is an inexpensive alterna-
tive for generating incomplete sequence from a target
(Roach et al. 1995). This strategy has been employed
for the first stage of generating the sequence of many
bacterial genomes, as well as that of Drosophila mela-
nogaster, and currently is being employed by Celera
Genomics to sequence the human genome (Venter et
al. 1998). Pairwise end sequencing and parking are
similar in that they both generate a lot of sequence
quickly and inexpensively but result in projects that
have a large number of short gaps. Thus, for either of
these strategies to be used for generating complete tar-
get sequence, efficient gap-closing strategies must be
employed.

The two strategies differ in that pairwise end se-
quencing results in ordered and oriented contiguous
sequences. This is a major advantage over parking. Fur-
thermore, pairwise end sequencing is extremely pow-
erful for resolving assembly ambiguities, such as those
due to repeats. However, there are several advantages
to parking. In particular, parking strategies produce
higher-quality sequence in longer contiguous tracts. A
potential disadvantage of the parking strategy is that it
may underrepresent target sequences that are members
of long genomic repeat families. This will occur to the
extent that a screen rejects a clone for sequencing be-
cause it is very similar to a previously sequenced clone,
even if it does not overlap that clone.

We anticipate that the parking strategy may form
an important component of hybrid strategies for the
future sequencing of large genomes. In particular,
parking may be useful for sequence sampling large ge-
nomes for which there might be no plans to produce a
finished sequence. Sampling by parking would give
longer and higher-quality tracts of sequence than
other sampling strategies, such as pairwise end se-
quencing. These long tracts might be particularly use-
ful for gene and regulatory element identification,
comparative genomics, and polymorphism studies.
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