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Abstract

Genetic studies of Parkinson’s disease over the last decade or more have revolutionized our 

understanding of this condition. α-Synuclein was the first gene to be linked to Parkinson’s disease, 

and is arguably the most important: the protein is the principal constituent of Lewy bodies, and 

variation at its locus is the major genetic risk factor for sporadic disease. Intriguingly, duplications 

and triplications of the locus, as well as point mutations, cause familial disease. Therefore, subtle 

alterations of α-synuclein expression can manifest with a dramatic phenotype. We outline the 

clinical impact of α-synuclein locus multiplications, and the implications that this has for 

Parkinson’s disease pathogenesis. Finally, we discuss potential strategies for disease-modifying 

therapies for this currently incurable disorder.
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The study of familial forms of Parkinson’s disease (PD) has led to the discovery of over a 

dozen loci linked to the disease and many of these genes have now been cloned.1 The first 

was described in 1997: a missense mutation in SNCA, encoding α-synuclein, in affected 

members of a large Italian kindred, and 3 unrelated Greek families, with familial PD.2 The 

following year, α-synuclein was found to be the major constituent of Lewy bodies—protein 

deposits that are the defining neuropathological feature of the disease.3

Subsequently, triplication of the SNCA locus was reported in a separate kindred with 

familial PD; branches of this family had been previously reported, but found via 

genealogical methods to be the same (Iowa, Spellman-Muenter, Waters-Miller kindred).4–7 

This demonstrates that SNCA multiplication, as well as point mutations, can lead to PD.8 

The affected individuals from this family, with 4 copies of SNCA rather than the normal 2, 

were found to have a corresponding doubling of SNCA messenger RNA and α-synuclein 
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protein in postmortem brain tissue.9 This mechanism parallels that seen in Alzheimer’s 

disease pathogenesis in which either increased dosage or missense mutations of the amyloid 

precursor protein (APP) gene lead to early onset disease.10

Two large genomewide association studies have established SNCA variation as the most 

important genetic risk factor for sporadic PD.11,12 Understanding α-synuclein biology is 

clearly pivotal to our understanding of PD, and much of the basic research into this disease 

over the last decade has centered on this protein. Here, we review the phenotypic range of 

SNCA gene dosage alterations, and discuss how this informs our understanding of PD 

pathogenesis, and therefore how we might be able to treat it.

SNCA Triplication Kindreds

Iowa Kindred

The Iowa kindred is striking because of the spectrum of disease seen in family members, 

probably the consequence of the large size of the kindred, described since the early 1900s4–7 

(video documentation available in Gwinn et al.13). Muenter et al.6 gave a detailed account of 

13 affected individuals from this family over 4 generations with “hereditary parkinsonism 

with dementia.” Clinical and pathological features of most of the affected members were 

typical for PD except for earlier age of onset (mean age 33 years) and more fulminant course 

(mean life expectancy 8.1 years after disease onset, in contrast to 18.4 years in sporadic PD 

with onset before age 50 years14).

Many affected individuals in the family have carried the diagnosis of PD, and met published 

clinical criteria (except for a positive family history).15 Positron emission tomography 

scanning with 6-[18F]fluorodopa has revealed severe depletion of striatal dopamine in those 

family members with typical PD clinically,6 and the presence of Lewy bodies and neuronal 

loss in the substantia nigra has been well described.6,16 However, others have more 

prominent and early dementia, with parkinsonism, hallucinations, and fluctuations in 

cognition, consistent with dementia with Lewy bodies (DLB), which has been correlated 

pathologically with cortical Lewy bodies and Lewy neurites.17 Another individual in this 

family had clinical features of parkinsonism, dementia, and dysautonomia, and dramatic α-

synuclein immunoreactive glial inclusions were seen at autopsy, neuropathologically 

consistent with multiple system atrophy (MSA).16

PD, DLB, and MSA are collectively known as synucleinopathies, because they feature 

intracellular α-synuclein deposition neuropathologically, and α-synuclein is believed to be 

integral to their pathogenesis.18 Therefore, the clinical phenomenology within this 1 kindred 

demonstrates that increased dosage of α-synuclein can generate the full spectrum of 

synucleinopathies.

Additional SNCA Triplication Kindreds

Farrer et al.19 documented the Swedish-American kindred with SNCA triplication after 

screening 42 probands with early-onset autosomal dominant PD. The proband had a similar 

phenotype to some Iowa kindred affecteds, with a rapidly progressive dopa-responsive 

parkinsonism starting age 31 years; postural hypotension, visual and auditory hallucinations 
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arose 14 years later with worsening dementia, severe generalized rigidity, and death at age 

52 years. Elevated SNCA messenger RNA (mRNA) was found in postmortem brain tissue of 

affecteds, with doubling of α-synuclein protein, corroborating equivalent findings in the 

Iowa kindred.9 Severe neuronal degeneration in the substantia nigra and locus ceruleus, with 

widespread Lewy body pathology, was seen at autopsy. There was also severe neuronal loss 

in the CA2/3 area of the hypothalamus—unusual for PD or DLB but similar to that seen in 6 

of 7 autopsied cases from the Iowa kindred.5,6,16

Ibanez et al.20 described a kindred with SNCA triplication after screening 22 families with 

atypical autosomal dominant parkinsonism. The 3 affecteds had rapidly evolving symptoms 

with severe cognitive impairment and short disease duration until death (mean 7 years).

The fourth triplication kindred described is a Japanese family with 3 individuals of 

consecutive generations who had early-onset parkinsonism with dementia and orthostatic 

hypotension.21 Triplication was confirmed in the grandson, with disease onset at 31 years; 

his father had disease onset aged 31 years (and died at age 40 years). The proband’s 

grandfather’s age of onset was 49 years (death at age 57 years).

SNCA Duplication Kindreds

α-synuclein duplication is now recognized as a rare cause of familial parkinsonism, 

including cases which are phenotypically similar to idiopathic PD, with no atypical 

features.22,23 Duplication has also been documented in sporadic PD—these cases are 

clinically indistinguishable from idiopathic PD.20,24

However, more recent reports have described atypical features in duplication cases, with 

variability within the same family.24,25 In 4 duplication kindreds, 11 members presented 

with parkinsonism, 6 of whom developed hallucinations or delusions and 3 developed 

dementia.26 All kindreds had asymptomatic carriers, the oldest aged 79 years; the lifetime 

penetrance was estimated at 43.8%. A recent screen found 2 patients with α-synuclein 

duplication, parkinsonism developing around the fifth decade, followed by rapid cognitive 

decline, hallucinations, and orthostatic hypotension.27 Neither had any family history. The 

authors retrospectively reviewed 32 duplication patients and found cognitive dysfunction in 

one-third. Autonomic involvement was seen in one-half, a similar prevalence to that seen in 

triplication cases. The time course of disease progression was also comparable to triplication 

cases, but with an onset over 2 decades later. The Swedish-American kindred includes an 

individual with α-synuclein duplication,28 presenting with orthostatic hypotension aged 71 

years, parkinsonism a year later, with frequent falls and urinary incontinence, although 

tremor was very mild. Imaging revealed significant reduction of dopamine transporter 

(DAT) in both striata. The clinical diagnosis was MSA.

Four members of a Japanese duplication kindred developed dopa-responsive parkinsonism, 

accompanied by dementia and visual hallucinations during the late stages of the disease.29 A 

further member developed parkinsonism aged 28 years, dementia aged 35 years, and died 

aged 48 years: a disease trajectory similar to many triplication cases. He was found to have 

homozygous duplication of SNCA, due to consanguinuity in the family, and therefore had 4 

copies of the gene.
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Overall, the data from these families demonstrate that gene dosage of α-synuclein, rather 

than extent of the replicated region, determines initiation of disease and the severity of 

progression.20,30

Sporadic PD

How might increased α-synuclein dosage be relevant to sporadic disease? Postmortem 

sporadic PD brain tissue has a higher expression of α-synuclein mRNA compared to 

controls,31 suggesting that a similar pathogenetic mechanism might be responsible.

Genomewide association studies reveal that variation at the SNCA locus is associated with 

sporadic PD11,12 and variation at this locus has also been demonstrated in MSA.32 

Polymorphisms in a complex repeat site called Rep1, located ~10 kb upstream of the 

translational start of SNCA, have been linked to sporadic PD and might account for these 

associations.33–36 A luciferase-based assay found a surprisingly large 3-fold difference in α-

synuclein expression with different Rep1 alleles in SH-SY5Y cells.37 Moreover, 

associations have been found between Rep1 and levels of α-synuclein protein in blood 

samples from PD patients38 and SNCA mRNA in control brain.39 Furthermore, α-synuclein 

mRNA varied 1.7-fold in transgenic mice carrying the different Rep1 alleles.40 It is not yet 

known whether the higher expressing mice also have a higher incidence of PD-type 

pathology but nevertheless, these data point to the possibility that sporadic disease is also 

caused by higher expression of α-synuclein.

Implications for α-synuclein Pathogenesis

These clinical studies point to a clear dosage relationship between α-synuclein and disease. 

Genetic variation in SNCA might increase risk of sporadic PD through increasing 

expression, whereas 3 copies of the locus rather than the normal 2 can, in around one-half of 

individuals, lead to parkinsonism identical to idiopathic PD (albeit with atypical features 

being more common). However, 1 additional copy confers full penetrance of what is in 

many cases an early-onset condition, with clinical features that can encompass PD, DLB, 

and MSA. Therefore, subtle alterations in expression level are sufficient to cause a wide 

spectrum of disease. Degeneration may be confined to the nigrostriatal pathway, but as α-

synuclein dosage increases, the likelihood of more widespread pathology (eg, cortical 

involvement in DLB or glial and cerebellar involvement in MSA) increases in tandem. 

Table 1 summarizes the clinical features seen in the multiplication kindreds.

Increased accumulation of α-synuclein is also seen with dysfunction of several other PD 

genes, including LRRK2 and GBA, mutations in which comprise the 2 most common 

genetic causes of PD.41,42 Overexpression of mutant LRRK2 increased α-synuclein 

deposition and neurodegeneration in A53T transgenic mice, possibly explained by the 

observed impaired microtubule dynamics and Golgi fragmentation that increase local 

concentrations of α-synuclein in the soma, whereas knockout of LRRK2 was protective.43 

Glucocerebrosidase (GBA) deficiency leads to accumulation of its substrate 

glucocerebroside, which has recently been shown to stabilize oligomeric α-synuclein 

intermediates, permitting their conversion into fibrils, meanwhile α-synuclein itself inhibits 

the normal lysosomal activity of glucocerebrosidase, leading to further accumulation of 
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glucocerebroside thus forming a pathogenic positive feedback loop.44 Recessive mutations 

in Parkin cause young-onset disease.45 Parkin encodes an E3 ubiquitin ligase that provides 

specificity for the process of tagging proteins for degradation in the proteasome46 and PD-

associated mutations disrupt this ligase activity.47 A glycosylated form of α-synuclein has 

been shown to be a potential target of this ligase activity48 although it remains unclear 

whether this form is pathologically relevant. Nevertheless, Parkin mutations may also 

augment accumulation of α-synuclein via impairing its degradation in the proteasome. 

Taking this clinical and genetic evidence together (summarized in Fig. 1), what can we infer 

about the possible mechanisms of α-synuclein-mediated pathogenesis?

Disruption of the Normal Role of α-synuclein

Synucleins are abundant neuronal proteins, enriched in presynaptic termini,49 but their 

physiological role is unknown. α-synuclein knockout mice are normal, apart from increased 

release of dopamine from nigrostriatal neurons under certain conditions, implying that the 

protein can negatively regulate dopaminergic neurotransmission.50 Given potential 

redundancy between synucleins, this work was extended in triple knockout mice lacking α-, 

β-, and γ-synuclein; here, a clear phenotype emerges of an age-dependent alteration in 

axonal morphology, neuronal dysfunction, and decreased survival.51

Maintenance of protein complexes involved in synaptic release requires chaperone activity 

mediated by synucleins; these protein complexes are decreased in the αβγ-synuclein 

knockout mouse.52 Subtle overexpression of α-synuclein in mice, in a range similar to that 

seen clinically, impaired neurotransmitter release via defective synaptic vesicle recycling, in 

the absence of overt toxicity.53 It remains to be seen whether this functional perturbation can 

lead to neuronal loss over the time course anticipated in PD.

α-synuclein has been shown to bind to mitochondria, more so when overexpressed, 

impairing complex I function, decreasing respiration and increasing free radical 

production.54,55 In cultured cells and C. elegans, α-synuclein can also cause fragmentation 

and dysfunction of mitochondria,56 which is relevant given the importance of mitochondria 

in maintaining neuronal viability in PD.57,58 Mice overexpressing the disease-associated 

A53T α-synuclein mutation develop mitochondrial DNA damage and degeneration,59 and 

α-synuclein pathology in this model is exacerbated by exposure to paraquat.60 In contrast, 

dopaminergic neurons in α-synuclein knockout mice are resistant to the neurotoxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).61

Overexpression of α-synuclein has also been shown to impair macroautophagy, a major 

route for clearance of aggregate-prone intracytoplasmic proteins, whereas α-synuclein 

depletion enhances this pathway.62 Overexpressing cells would also clear dysfunctional 

mitochondria less efficiently, increasing susceptibility to apoptotic stimuli. The combination 

of these perturbations, persisting over many decades, might be sufficient to cause neuronal 

death.

Toxicity of α-synuclein

Fibrillogenic monomers of α-synuclein form oligomeric intermediates that assemble into 

fibrils, and finally deposit in Lewy bodies.63 α-synuclein has a strong tendency to self-
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aggregate in vitro, so increasing its expression would be expected to generate more of these 

aggregates.64 However, a pivotal question is which of these species, if any, are toxic to 

neurons. For example, there is a dissociation between presence of Lewy bodies and cellular 

loss: Lewy bodies are present in 10% to 15% of individuals over the age of 65 years who die 

without clinical evidence of neurological illness, despite having an identical pattern of 

deposition to that seen in PD or DLB.65 Cytotoxicity in model systems can occur without 

aggregated α-synuclein.66 Lentiviral expression of α-synuclein in rat nigrostriatal neurons 

results in selective dopaminergic toxicity, but without fibrillar inclusions, whereas missense 

mutations in SNCA (for example, A30P) increases oligomerization of α-synuclein, but not 

fibril formation.67,68 The hypothetical mechanism of toxicity is not clear but may be through 

disruption of membranes through the formation of pores.69 Lewy body formation might, in 

fact, be an adaptive cellular response, protecting neurons from the damaging effects of 

oligomeric intermediates.

Permissive Templating of α-synuclein

Transplantation of fetal dopamine neurons began over 20 years ago as a potentially curative 

treatment for PD.70 Recently, individuals with these transplants have come to autopsy, with 

surprising results. Lewy body pathology is observed in surviving neurons of the patient, as 

expected. But in 8 patients who have received this treatment, Lewy bodies were observed in 

the transplanted dopaminergic neurons as well.71–73 These transplants have all been less 

than 14 years old, which is thought to be too young for Lewy bodies to arise de novo. An 

alternative explanation is that disease spreads from the host to the grafted cells, reminiscent 

of a prion-like process. Prion diseases are characterized by spread of prion protein (PrP) 

from 1 organism to another. Healthy cellular PrP (designated PrPc) is ubiquitously expressed 

and has the same amino acid sequence as the disease-causing scrapie isoform (PrPSc) but a 

different secondary structure, being composed largely of α-helices whereas PrPSc is 

predominantly β-sheets. Disease is caused by a change in conformation of PrPc to PrPSc, 

which can act as a template for recruitment of PrPc, converting them into PrPSc. Aggregates 

of the disease isoform build up, and propagate between cells leading to disease progression. 

Like PrP, α-synuclein is unstructured in aqueous buffers, while adopting a predominantly α-

helical structure when membrane bound, which can become β-sheet when present at high 

concentration or in mutant form.74

α-synuclein is present in cerebrospinal fluid and plasma of healthy subjects and patients 

with neurodegenerative diseases,75,76 and can be detected in media of neuronal culture 

models,77 suggesting that it can be exocytosed. Recent studies have provided direct evidence 

of cell-to-cell spread: neurons overexpressing α-synuclein can transmit the protein to 

neighboring neurons in culture, and to neural precursor cells in a transgenic model of PD-

like pathology,78 and also to postmitotic nigrostriatal neurons, in a direct model of the fetal 

transplantation clinical studies.79 Oligomers of α-synuclein can recruit, and aggregate, α-

synuclein endogenously expressed by primary cortical neurons, and this effect increases 

with time and also with concentration of the applied oligomers.80 In other words, misfolded 

α-synuclein can operate as a template catalyzing further misfolding events.81
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Transmission of misfolded α-synuclein between cells provides a mechanistic basis for the 

findings of Braak et al.82 where α-synuclein pathology extends sequentially from the dorsal 

motor nucleus in the lower brainstem, to upper brainstem areas and from there to the 

cerebral hemispheres. They speculate that PD pathology may arise first in the nose and 

foregut, which act as portals for entry of an unknown neurotropic pathogen, via inhalation or 

ingestion, and suggest that this pathogen may trigger misfolding of α-synuclein.83 An 

alternative possibility is that an environmental toxin, rather than a pathogen, is responsible. 

Many potential neurotoxins, including metals, solvents, pesticides, and herbicides have been 

linked to PD (reviewed in Uversky64). Paraquat and rotenone enhance production of α-

synuclein in vivo, whereas in vitro, fibrillation of α-synuclein is dramatically accelerated by 

these and other substances, including heavy metal cations and organic solvents. These can 

all induce structural perturbations in α-synuclein and stabilize partially folded structures, 

which are prone to form fibrils.

Increased SNCA expression could cause PD by augmenting the likelihood of α-synuclein 

misfolding, the quantity of exocytosed misfolded proteins, and the speed of nucleation in 

recipient cells. Age is the major risk factor for sporadic PD, and concentration of α-

synuclein increases with age in neuronal cell bodies.84 Therefore, in both SNCA 

multiplication and sporadic PD, initiation of disease relates to and appears to be dependent 

on the concentration of the pathogenic protein, perhaps through increasing the chances of a 

misfolding species to emerge, which could form a scaffold for further proteins to misfold 

and aggregate.

α-synuclein fibrillization starts in vitro with a lagphase while soluble oligomers form a 

nucleus, but once the nucleus forms, aggregates grow rapidly.85 Therefore, the prediction 

would be that permissive templating is efficient and less dependent on the concentration of 

the protein than the initial misfolding event, such that the process becomes self-propagating. 

This would explain the variable age of onset of disease, even in triplication cases, given the 

stochastic nature of protein misfolding. Recent data suggests that prion propagation in vivo 

proceeds in 2 phases: an initial exponential phase not dependent upon levels of PrPC, 

followed by a plateau phase prior to clinical onset, the duration of which is shortened as 

endogenous PrPC levels are increased.86 The authors suggest that toxicity is exerted by 

neither PrPC nor PrPSc but via a toxic intermediate, generation of which requires conversion 

to take place and is therefore dependent on local availability of PrPC. If a similar mechanism 

is at work in the synucleinopathies, the implication of increasing SNCA expression becomes 

clear: time to onset of disease is shorter.

Disease-Modifying Therapies for PD

Neither the physiological nor the pathogenic roles of α-synuclein are understood. 

Nevertheless, the clinical, genetic, and toxin studies described speak to the importance of α-

synuclein concentration, and cell-to-cell spread, in driving disease onset and progression. 

Therefore, strategies that seek to either deplete or prevent the spread of α-synuclein ought to 

be clinically beneficial.
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A recent report of an inducible α-synuclein transgenic mouse model of DLB showed that 

reducing α-synuclein expression triggered a reversal in pathological changes and improved 

behavior and memory.87 This provides proof of concept data that α-synuclein depletion 

might not just slow disease progression, but in fact reverse it. However, it is not yet clear 

how this depletion should be achieved. Several studies have employed RNA interference to 

successfully reduce α-synuclein expression in cells,88 rodents,89,90 and primates,91 although 

reversal of pathological changes has not been demonstrated with this approach so far. 

Moreover, nigral degeneration caused by α-synuclein silencing has been described in rat,92 

precisely the opposite effect of that desired. The reasons for this are not certain but, given 

that in vivo levels of α-synuclein are likely to be tightly regulated, perhaps the goal should 

be normalization of α-synuclein levels rather than full suppression. There is also the wider 

problem of turning such antisense strategies into viable drugs. Problems with degradation of 

the oligonucleotides, and off-target effects are commonly seen,93 notwithstanding the 

considerable difficulties of delivering such an agent into the brain.

Enhancing degradation of α-synuclein protein might be a viable possibility. 

Pharmacological upregulation of autophagy has been shown to help clear the protein, for 

example.94 Antibody-based strategies also look promising. Vaccination of human α-

synuclein-expressing mice with human α-synuclein protein led to degradation of aggregates 

of human α-synuclein, a reduction in formation of new aggregates, and diminished 

neurodegeneration.95 Indeed, the presence of autoantibodies directed against α-synuclein 

has recently been reported in PD patients, and antibody titers reduce with progression of 

disease, implying that immune-mediated clearance of α-synuclein may be a factor in 

determining disease onset.96

Much current work focuses on α-synuclein depletion as a possible therapeutic strategy. 

However, when we consider the ascending pathology noted by Braak et al.,82 the spectrum 

of pathology seen in the multiplication kindreds, and the presence of Lewy bodies in grafted 

fetal dopaminergic neurons, then cell-to-cell protein propagation begins to take on a central 

role in the disease process. The mechanistic basis for this propagation has not yet been fully 

defined. Nor is it known whether it serves a physiological role. Nevertheless, blocking it is 

an attractive potential therapeutic target. This strategy may help preserve brain areas not yet 

affected by the pathological process, if potentially toxic forms of α-synuclein are prevented 

from reaching them. It might also avoid possible side effects of excessive α-synuclein 

depletion. However, it remains possible that cellular release of α-synuclein might be a 

mechanism by which cells can lower concentrations of this protein before they become 

dangerously high. Therefore, it is conceivable that the combination of α-synuclein depletion 

with blockade of its propagation will be required to make a clinically measurable impact on 

disease progression.

Research priorities are now clear. We need strategies that normalize α-synuclein levels 

rather than fully deplete it, and are deliverable intrathecally. In addition, we need to 

understand precisely how, and importantly why, α-synuclein propagates from cell to cell, in 

order to appropriately target this critical pathogenic mechanism.
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FIG. 1. 
Multiple pathways promote accumulation and aggregation of α-synuclein. Gene 

multiplications and certain Rep1 polymorphisms can increase expression of α-synuclein 

directly. On the other hand, degradation of α-synuclein in the proteasome may be impaired 

by Parkin mutations. LRRK2 mutations can fragment Golgi, disrupting vesicular trafficking 

and thereby increasing α-synuclein in the soma. Mutations in glucocerebrosidase cause 

accumulation of glucocerebroside, which stabilizes oligomeric α-synuclein, enhancing fibril 

formation. In turn, α-synuclein impairs physiological glucocerebrosidase function. Multiple 

environmental toxins, including heavy metal cations, organic solvents and pesticides, can 

enhance misfolding and aggregation of α-synuclein. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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