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Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder that affects

an estimated 10 million sufferers worldwide. The two forms of PD include familial

and sporadic, and while the etiology of PD is still largely unknown, the condition is

likely to be multifactorial with genetic and environmental factors contributing to disease

genesis. Diagnosis of the condition is attained through the observation of cardinal clinical

manifestations including resting tremor, muscle rigidity, slowness or loss of movement,

and postural instability. Unfortunately, by the time these features become apparent

extensive neurological damage has already occurred. A cure for PD has not been

identified and the current therapy options are pharmaceutical- and/or surgical-based

interventions to treat condition symptoms. There is no specific test for PD and most

diagnoses are confirmed by a combination of clinical symptoms and positive responses

to dopaminergic drug therapies. The prevalence and incidence of PD vary worldwide

influenced by several factors such as age, gender, ethnicity, genetic susceptibilities,

and environmental exposures. Here, we will present environmental factors implicated

in sporadic PD onset. By understanding the mechanisms in which environmental

factors interact with, and affect the brain we can stride toward finding the underlying

cause(s) of PD.
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INTRODUCTION

Parkinson’s disease (PD) is characterized as a progressive neurodegenerative disorder that results
in death (1) and affects ∼1–3% of the global population aged over 60 years (2, 3). There are
two forms of PD, familial; genetically inherited in either an autosomal dominant or recessive
manner (4), and sporadic (idiopathic); believed to develop from gene-environment interactions
(5). Genetically linked PD accounts for ∼10–15% of all PD cases (6) with the remainder
classed as sporadic. Seven causal genes have been identified for familial PD; alpha-synuclein
(SNCA), glucocerebrosidase (GBA), leucine-rich repeat Kinase 2 (LRRK2), vacuolar protein
sorting-associated protein 35 (VPS35) parkin RBR E3 ubiquitin protein ligase (PARK2),
phosphatase and tensing homolog-induced Kinase 1 (PINK1), and Parkinson protein 7 (PARK7)
(6, 7). These genes, along with specific metabolites (8) and PD-associated biomarkers (9–11) have
been used to research possible early detectionmethods for PD. Due to an estimated 70% of neuronal
death before the onset of clinical symptoms (12) early diagnosis of PD is essential.
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Gene-environment interactions are understood to be the
underlying cause of idiopathic PD. Human genotypes are
independently unique and individuals exposed to the same
environmental factor are affected differently, resulting in
diverse disease phenotypes (13). The combined effect of
genetic and environmental factors may influence the onset of
human disease (14) by structurally altering deoxyribonucleic
acid (DNA) (15). For example, caffeine is an adenosine
A2A (ADORA2A gene) receptor antagonist which increases
dopamine neurotransmission (16) and polymorphisms of
ADORA2A have been found to reduce the risk of PD (16, 17). In
contrast, pesticides and heavy metals display a negative effect and
increase PD by causing gene variations linked to familial PD (e.g.,
PARK1, LRRK2, PINK1) resulting in PD-associated mechanisms
such as mitochondrial dysfunction, oxidative stress and protein
degradation impairment (18, 19).

Demographic factors including age, gender and ethnicity may
also impact PD susceptibility. Age is a major risk factor for
PD (20). Not only has the prevalence of PD been observed
with increasing age (21), but so too the severity of disease
symptoms (22). Most cases develop between the ages of 60–65
years however, young on-set (<50 years) and juvenile cases (<21
years) have also been identified (23). Gender may also predispose
an individual to PD. The incidence of PD amongst men is higher
than women (14). Estrogen may act as a neuro-protective agent
(24), and women who have had a high lifetime exposure from
such things as lengthy fertility windows and multiple births show
a reduced risk of developing PD (25, 26).

The prevalence of PD due to ethnicity is sparse. Recent
research has highlighted predominantly white Western
populations in having higher PD prevalence than Asian
nations (27). Older studies have shown a correlation between
Caucasians and Hispanic races having an increased risk of
developing PD when compared to Asian and Black cultures
(28, 29). One reason for this could be, commonly, individuals
with darker skin tones produce more melanin than fair skinned
people (30), which may suggest increased levels of neuromelanin
in the substantia nigra may have a neuro-protective effect.
Another explanation lies in the socioeconomic state of a nation.
Industrialized countries have higher urbanization leading to
environmental degradation and exposure to environmental
toxins (31). Research has shown areas in which socioeconomic
status is higher equates to an increased incidence of PD (32).

Due to the diverse nature of the disease, its symptomology
differs from one individual to the next. Some cases may be
influenced by demographical factors such as age, gender, and
ethnicity while others may be attributed to environmental,
occupational, or residential exposure to neurotoxins which may
selectively target substantia nigra neurons (33) including, heavy
metals, pesticides and illicit drugs. This mini-review will focus on
environmental factors which have been implicated in PD.

ENVIRONMENTAL CONTRIBUTORS

Numerous environmental toxins have been implicated in the
onset of PD, however, data has been inconsistent. Some studies

suggest PD incidence may be linked to occupational exposure
to chemicals (34–36). Several occupations, some with increased
risk have been investigated, for example, agriculture, and working
with pesticides (37) and heavy metals (38). Others having a null
effect, such as electrical vocations, and working with extremely
low frequency-magnetic fields (39), diesel motor emissions, or
solvents (40) have also been examined. Rural residency as a
causative factor for idiopathic PD has been a long-disputed topic
amongst PD research. Some studies have found no link between
rural living and PD, citing the opposite that urban living may
lead to an increased risk (28, 41). Studies conducted on highly
populated urban areas have also found significant correlations
between industrial airborne heavy metal pollution (42, 43) and
ambient air pollution from traffic (44, 45), and an augmented
chance of PD onset. Other studies have found no difference
between geographical location and the inflation of PD incidence
(46, 47). Still, other investigations have associated rural exposure
as a heightened risk (34, 48, 49). Elevated incidences of PD in
rural locations may be attributed to these locations having a
proportionately higher number of aged population (50).

Heavy Metals
Neurotoxins in the brain can lead to oxidative stress and
neurotransmission disruption with detrimental effects in the
basal ganglia (51). The generation of reactive oxygen species
occurs when hydroxyl radicals are produced from hydrogen
peroxide under the Fenton-Haber-Weiss reaction (52). This
reaction may lead to oxidative stress (53) and neurotoxicity
(54) thus, causing damage to numerous aspects of the cell with
preferential damage to the mitochondria (55). Hydroxyl radicals
react to deoxyribonucleic acid (DNA), membrane lipids, and
proteins of the cell leading to their eventual dysfunction (51).
Within the neuron, the reduction and metabolism of dopamine
results in the generation of hydroxyl radicals as by-products,
thus resulting in a ready supply of hydroxyl radicals within the
substantia nigra pars compacta (51).

Numerous studies deny any relationship between PD etiology
and heavy metals (56–60), while others have claimed an
association (61–63). Iron is one heavymetal implicated due to the
role it plays in the generation of oxidative stress (via the Fenton-
Haber-Weiss reaction, Figure 1) leading to neuronal death (52),
as well as its involvement in alpha-synuclein toxicity (51). A
meta-analysis of five studies including 126, 507 PD individuals
found no significant link between dietary iron and an increased
risk of PD [moderate iron intake; relative risk [RR] 1.08, 95% CI
0.16–1.93, p = 0.787 and high iron intake; RR 1.03. 95% CI 0.83
– 1.80, p = 0.766] (56). This research indicates dietary intake of
iron does not proliferate PD risk (56) giving more credibility to
environmental pathways as vectors of susceptibility. The meta-
analysis was robust in its design with stringent selection criteria.
A limitation was differingmethodology between the studies. Four
studies used recent recall techniques whereas, the fifth used a
past-history approach which may have resulted in recall bias.

Similar to iron, copper contributes to oxidative stress
however copper has two modes of action; the Fenton-Haber-
Weiss reaction (55) and 6-OHDA (6-hydroxydopamine) redox
cycle (62). Accumulation of copper in the brain has seen
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FIGURE 1 | Fenton-Haber-Weiss reaction in the presence of Fe in the brain

generating reactive oxygen species leading to neuronal damage (O•−

2 =

superoxide anion radical).

the reduction of dopamine (64), alpha-synuclein aggregation
(61) and the reduction of the protective factor for neuronal
survival; superoxide dismutase 1 (64). Research shows that

occupations which expose an individual to copper intensifies
a PD risk (65). Gorell et al. conducted a 20-year investigation
into the link between occupational heavy metal exposure and
PD and found an individual with chronic copper exposure
had a two-and-a-half-fold increased risk of PD [Odds Ratio
[OR] 2.49, 95% CI 1.06–5.89] (65). To measure occupational
exposure this study used an extensive “risk factor questionnaire.”
Self-reporting questionnaires run the risk of recall bias. To
minimize this, the investigators employed an experienced
industrial hygienist blinded to a participant’s status to assess job
description concentrations. One flaw in the study design is, the
researchers did not measure heavy metals concentrations within
participating individuals which could have further supported
their claims.

Manganese may amplify PD risk through manganese
toxicity resulting in impaired motor function and damage
to the substantia nigra and other basal ganglia nuclei
(66). Exposure can occur through diet, occupation and
environmental pathways (51, 67). Chronic manganese
intoxication can clinically resemble idiopathic PD (68).
Manganese-induced Parkinsonism may be identified due to
its predilection to accumulate in and damage the palladium
and striatum as opposed to the substantia nigra pars compacta
in PD (69).

Lead exposure may see a two-to-three-fold increased risk
of PD. Coon et al. (70) and Weisskopf et al. (71) used K-X-
ray fluorescence on tibia bone (PD patients vs. controls) and
both found an increased risk of PD in individuals with chronic
lifetime exposure to lead; OR 2.27, 95% CI 1.13–4.55, p =

0.021 and OR 3.21, 95% CI 1.11–5.93, p = 0.03, respectively
(70, 71). Bone measurement of Pb is a reliable tool as it is able
to account for more than 90% of cumulative Pb burden in adults
(72) when compared to blood measurement which can only
give a result for recent exposure (4–6 weeks) (73). Additionally,
the Coon et al. study strengthened their data by combining
occupational exposure (assessed by an industrial hygienist) and
blood Pb levels with their Pb bone results. Lead is able to
enter the brain by mimicking calcium via calcium channels (70).
Monnet-Tschudi et al. (74) exposure to lead can cause several
neurological deficits including severe swelling and loss of
neurons in the central nervous system (CNS) and peripheral
nervous system, manifesting as motor-based dysfunction in the
form of loss of voluntary muscle movement (51). Occupational
exposure to lead, especially in the long-term, may increase
concentration levels of lead within subjects, heightening
PD risk (70, 71).

Mercury is a known neurotoxin which can cause neuronal
death (75). Research is still conflicted regarding its participation
in PD pathogenesis, however, mercury is present in organic
(elemental mercury and methylmercury), and inorganic forms
(51, 76) and can contaminate water sources including rain,
ground, and sea. In the aquatic environment, inorganic mercury
is the most toxic form when it is microbially transformed
into methylmercury. The transformation also makes mercury
prone to bioaccumulation and biomagnification leading to
a potential food web transfer causing mercury-laced meat,
vegetables, and fish (77). It has been reported mercury can reduce
the number of neurons present in the brain (75) and cause
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movement disorders including tremors and loss of voluntary
muscle movement (51).

Pesticides
In the 1980’s interest in the action of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) arose due to its ability
to selectively target the substantia nigra. Patients who had
been exposed to MPTP presented with textbook cases of
advanced PD. The research discoveredMPTPwasmetabolized by
astrocytes in the brain to 1-methly-4-phenylpyridium (MPP+)
which had a distinctively similar composition to a popular
pesticide; paraquat thus, inciting the hypothesis of pesticides
and their role in PD pathogenesis (78). The current evidence
suggests there is an association between some pesticides and
PD (Table 1).

Pesticides (including insecticides and herbicides) are used
globally in public health to control disease vectors and in
the agricultural industry to control pests and their subsequent
diseases (83, 84). They have been consistently investigated due to
their ability to affect neurological changes in the brain leading to
the destruction of dopamine producing neurons (85). Insecticide
classes commonly investigated include organochlorines and
organophosphates. A well-known organochlorine pesticide
associated with increasing the risk of PD is dieldrin which
affects the CNS causing neurotoxic damage to the dopaminergic
system (86). Two recent studies on mice models have confirmed
preferential targeting of the dopaminergic system by dieldrin
(87, 88) and both found the severity of the impact of dieldrin
was dose-dependent. Rotenone is the major organophosphate
constituent for raising PD risk and its mode of action is the
acceleration of alpha-synuclein aggregation resulting in the death
of dopaminergic neurons (89). Like dieldrin, its effects appear
to be dose-dependent (90, 91). The question remains, are non-
human models able to predict human health effects with enough
efficacy? Correlation between animal models and human disease
is only an estimated 60% (92).

PD associated risk and herbicide exposure are still unclear.
Studies have found some correlation between PD risk and
the use of a combination of herbicides (93) and occupational
exposure (80) however, individual herbicide action has not been
identified as causative. Tanner et al. conducted an occupational
study and reported pesticide use, rather than occupation was
a risk factor for PD (93). 2,4-Dichlorophenoxyacetic acid (2,4-
D) a primary constituent in Agent Orange was identified as
being statistically significant risk for PD (OR 2.59, 95% CI
1.03–6.48, p = 0.04). Also noted was the significant association
between PD and exposure to any 1 of 8 specific pesticides (2,4-
D, paraquat, permethrin, dieldrin, diquat, maneb, mancozeb,
and rotenone) OR 2.20, 95% CI 1.02–4.75, p = 0.04. Hancock
et al. also found a positive correlation for 2,4-D however, the
association was not statistically significant (94). Other studies
concluded no association between herbicides and increased
PD risk (95, 96).

Many pesticide studies have looked at human exposures
through population-based studies which can suffer from bias.
These biases may occur in the forms of (a) recall bias with
over- or under-estimation of exposure amount or time, (b) social

TABLE 1 | Risk factors of PD in the use of pesticides (with confidence interval

of 95%).

Reference Pesticide(s) Cases vs. controls Odds ratio*

Tanner et al.

(79)

110 vs. 358

Paraquat 23:49 2.50 (1.40–4.70)

Rotenone 19:32 2.50 (1.30–4.70)

Wang et al.

(80)

362 vs. 341

Paraquat 81:78 1.26 (0.86–1.86)

Ziram 6:6 1.37 (0.42–4.49)

Maneb and Paraquat 26:21 1.41 (0.75–2.68)

Ziram and Paraquat 37:24 1.82 (1.03–3.21)

Ziram, Maneb, and Paraquat 46:18 3.09 (1.69–5.64)

Dick et al.

(81)

959 vs. 1989

Any exposure to pesticides 1.25 (0.97–1.61)

Low vs. no exposure 1.09 (0.77–1.55)

High vs. no exposure 1.39 (1.02–1.89)

*Odds Ratio (OR): a ratio for the measure of association between exposure and outcome;

OR = 1 exposure has no effect on outcome, OR > 1 exposure associated with higher risk

of outcome, OR < 1 exposure associated with lower risk of outcome (82).

bias where public approval may influence responses on sensitive
topics (e.g., illicit drug use underestimation), (c) measurement
error bias including systematic and random error, and (d)
confirmation bias where a patient’s preconceptions or beliefs can
influence their response (97).

Illicit Substances
A history of illicit drug use has been found to cause
abnormal morphology in the substantia nigra (98), such that,
substantia nigra hyperechogenicity is a major risk factor for the
development of PD (99). The abuse of illegal stimulants can
elevate reactive oxygen species levels causing oxidative stress
leading to dopamine neuron toxicity and death (100). Illicit drug
residues have been found in river basins, surface waters, and
wastewaters, with inadequately-treated municipal wastewater
discharge, cited as themain vector of contamination (101).Water
epidemiology studies have been used in recent times to estimate
community drug use by measuring drug residues in waste-
water (102–104). These studies have succeeded in the detection
and estimation of drug residue concentrations in wastewater.
Analysis of drinking and surface waters has found extrication
rates of illicit drugs are inadequate, with results demonstrating
detectable levels after treatment (101, 105–107). Due to the high
production volume and use of illicit drugs, their residues may
persist in the environment, and leach into other environmental
media including sediments and biota (107, 108).

The three common psychostimulants implicated in PD are
amphetamine, methamphetamine and cocaine (109–111). High
doses of the stimulant drug amphetamine may cause damage
to dopaminergic neurons and axon terminals within the human
brain (112). Animal studies on non-human primates and rodents
have found acute amphetamine exposure is toxic to dopamine
terminals (113). Garwood et al. (109) through a telephone survey
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found the prolonged use of amphetamine may be a statistically
significant risk factor for PD (OR 4.46, 95%CI 1.0–19.8, p =

0.049). This study had some limitations such as possible recall
bias due to the human factor of the survey, a small sample size (n
= 76 PD), and it did not distinguish between prescribed and non-
prescribed amphetamine use. This is an important differentiation
to be assessed as amphetamines are also used to treat PD (109).

In addition, methamphetamine, a highly water-soluble
psychostimulant drug plays a role in decreasing the integrity
of dopamine neuron terminals in the basal ganglia, reducing
levels of dopamine, and dopamine transporters (114, 115).
These effects can be long-term, causing damage to the
dopamine terminal and death of dopamine neurons (114, 116,
117). A cohort study using hospital admission records found
methamphetamine/amphetamine exposure increased PD risk
nearly three-fold when compared to unexposed controls (Hazard
Ratio 2.8, 95%CI 1.6–4.8, p = 0.01) (111). Although the study
had a good sample size (PD n= 4935, control n= 24,675), due to
no “gold standard” of PD diagnosis some members of the control
group may have been undiagnosed. Additionally, researchers did
not account for other medications or addictions (e.g., alcohol)
which may cause PD-like symptoms.

Lastly, cocaine is a drug of abuse known to bind to
dopamine transport proteins causing short-term inhibition of
dopamine uptake (118, 119) however, no direct association
has been found between an elevated risk of PD and cocaine
use (110, 111). A study of 44 cocaine users vs. 44 controls
medical records reported cocaine users showing excess
iron accumulation in the Globus pallidus. This suggested
cocaine addiction may lead to iron dysregulation (120) thus,
possibly contributing further to oxidative stress. Although the
effects of illicit drugs and their role in PD pathophysiology
presently remain unclear, results so far have shown a strong
argument for a possible role in neurodegeneration. Further
continued research is warranted to fully understand these roles
and associations.

CONCLUSION

In the 200 years since James Parkinson first described the
“shaking palsy” phenomenon, significant research in roads
toward diagnosis and causative associations with PD have been
realized. Yet, science has still not been able to deduce the

complete etiology of PD. There have, however, been many
advances in the genetic inheritance of the disease. The role
in which environmental factors interact to contribute to the
pathophysiology of the disease remains elusive, however, as
discussed, many demographical/environmental factors may be
at play in the etiology of PD and may impact the severity
of the disease. Age is a major risk factor for the condition,
however, age alone may not be the only contributor to PD
genesis. Gender, ethnicity, living circumstances, and occupation
have been implicated in heightened PD risk nevertheless, data
on this is still contradictory. Study design can also impact
the reliability of data and reporting of causal links to PD.
Using a mixed-method approach encompassing patient history
as well as chemical analysis could improve study robustness
especially in regards to population-based studies. Exposure to
toxins in the environment has been linked to PD-associated
neurodegeneration particularly heavy metals, pesticides, and
illicit drugs. These avenues of exposure can be directly related
to rural living, adding support to the argument that rural
living may be a risk factor for PD itself. Each case of PD
is specific to the individual and given the heterogeneity of
the disease, one can hypothesize that individual susceptibility
to environmental factors plays a large role in PD etiology.
The complex nature of PD only adds to the difficulty in
pinpointing its cause.
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