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Abstract

Background: Parkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic
neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their
functional consequences remain unclear. Herein, we addressed this question by an analysis of stool samples from
the Luxembourg Parkinson’s Study (n = 147 typical PD cases, n = 162 controls).

Results: All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological
tests followed by self-reporting questionnaires. Stool samples from these individuals were first analysed by 16S rRNA gene
sequencing. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic
modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results
include the following. Eight genera and seven species changed significantly in their relative abundances between PD
patients and healthy controls. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation.
Particularly, the relative abundances of Bilophila and Paraprevotella were significantly associated with the Hoehn and Yahr
staging after controlling for the disease duration. Furthermore, personalised metabolic modelling of the gut
microbiomes revealed PD-associated metabolic patterns in the predicted secretion potential of nine microbial
metabolites in PD, including increased methionine and cysteinylglycine. The predicted microbial pantothenic
acid production potential was linked to the presence of specific non-motor symptoms.

Conclusion: Our results suggest that PD-associated alterations of the gut microbiome can translate into
substantial functional differences affecting host metabolism and disease phenotype.
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Transsulfuration pathway
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Background
Parkinson’s disease (PD) is a complex multifactorial dis-

ease, with both genetic and environmental factors con-

tributing to the evolution and progression of the disease

[1]. While several studies have elucidated the role of

genetic factors in the pathogenesis of the disease [2–5],

the role and the contribution of various environmental

and lifestyle factors are still not completely understood

[6]. Importantly, about 60% of the PD patients suffer

from constipation [7], which can start up to 20 years be-

fore the diagnosis and is one of the prodromal syn-

dromes [8, 9].

Human beings are considered to be superorganisms

recognising the complex interplay between the host and

microbes [10]. For instance, the human gut microbiome

has been shown to complement the host with essential

functions (trophic, metabolic, and protective) and to

influence the host’s central nervous system (CNS) via

the gut-brain axis through the modulation of neural

pathways and GABAergic and serotoninergic signalling

systems [11].

Recent studies have reported an altered gut compos-

ition in PD [12–20]. These studies have demonstrated

that PD patients have an altered microbiome compos-

ition, compared to age-matched controls. However, the

functional implications of the altered microbiome re-

main to be elucidated, e.g. using animal models [21]. A

complementary approach is computational modelling, or

constraint-based reconstruction and analyses (COBRA)

[22], of microbiome-level metabolism. In this approach,

metabolic reconstructions for hundreds of gut microbes

[23] are combined based on microbiome data [24–26].

Flux balance analysis (FBA) [22] is then used to com-

pute, e.g., possible metabolite uptake or secretion flux

Fig. 1 Overview of the study approach and the key methods used. Relative abundances were derived from 16S rRNA gene sequences (the
“Analysis of the microbial composition with 16S rRNA gene sequencing” section) and used as an input for the personalised community modelling
to simulate metabolite secretion profiles. Relative abundances and secretion profiles were statistically analysed to identify microbial or metabolic
differences between PD patients and controls
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rates of each microbiome model (microbiome metabolic

profile) [25] or to study microbial metabolic interactions

(cross-feedings) [27, 28]. This approach has been applied

to various microbiome datasets to gain functional in-

sights [25, 26 29], including for PD where we have pro-

posed that the microbial sulphur metabolism could

contribute to observed changes in the blood metabolome

of PD patients [29].

In the present study, we aim at investigating microbial

changes associated with PD while focusing on possible

covariates influencing the microbial composition and at

proposing functional, i.e. metabolic, consequences aris-

ing from the microbiome changes. First, we analysed the

faecal microbial composition of PD patients and controls

from the Luxembourg Parkinson’s Study [30] (Fig. 1).

Second, based on the observed significant differences in

the composition of microbial communities between PD

patients and controls, we created and interrogated per-

sonalised computational models representing the metab-

olism of each individual’s microbial community. We

demonstrate that the combined microbial composition

and functional metabolite analysis provides novel

hypotheses on microbial changes associated with PD and

disease severity, enabling future mechanism-based

experiments.

Results
The Luxembourg Parkinson’s Disease study includes patients

with typical PD, atypical parkinsonism, and secondary par-

kinsonism of any disease stage as well as age/sex-matched

healthy control subjects from Luxembourg and its neigh-

bouring regions from a broad age range [30]. For the present

study, we focused on typical PD patients and healthy controls

over the age of 50 (Table 1, the “Methods” section). Stool

samples were analysed for 147 PD patients and 162 controls

using 16S rRNA gene sequences (the “Analysis of the micro-

bial composition with 16S rRNA gene sequencing” section).

From these 309 individuals, one individual had to be ex-

cluded from analyses because of missing body mass index

(BMI), resulting in 308 individuals that were included in stat-

istical analyses. Note that the case numbers for individual

statistical analyses may be lower because of missing values in

other variables (e.g. clinical assessment) (see Table 1).

Beta diversity is altered in PD microbial communities

We analysed alpha and beta diversity indices across

healthy controls and PD microbiomes. These analyses

were carried out on the 308 individuals with complete

covariate data via linear regressions. In terms of alpha

diversity, we calculated the richness in species, Shannon

entropy, and the evenness Pielou indices [31]. The

Table 1 Descriptive statistics of the analyses sample from the Luxembourg Parkinson’s Disease Study

Variable PD Control Missing values

PD (%) Control (%)

Cases vs. controls 147 162 0 0

Female subjects 31.5% 35.8% 0 0

Age at basic assessment (mean ± SD) 69.3 ± 8.6 63.3 ± 8.3 0 0

Body mass index (mean ± SD) 27.3 ± 4.5 27.9 ± 4.8 0.7 0

Sniff score (mean ± SD) 7.1 ± 3.4 12.7 ± 2.1 0 0

Diabetes 4.1% 3.1% 0 0

Non-motor symptoms questionnaire score (NMS-PD) (mean ± SD) 9.3 ± 5.1 3.9 ± 3.9 9.5 3.7

Constipation 36.7% 6.2% 0 0

PD disease duration since diagnosis 5.9 ± 5.7 – 6.1 –

UPDRS-part I (mean ± SD) 10.0 ± 5.9 4.5 ± 4.4 3.4 3.1

UPDRS-part II (mean ± SD) 11.8 ± 8.1 1.3 ± 2.8 1.4 2.4

UPDRS-part III (mean ± SD) 34.6 ± 16.1 2.3 ± 2.9 1.4 0

UPDRS-part IV (mean ± SD) 1.7 ± 3.2 – 1.4 –

Hoehn and Yahr (mean ± SD) 2.2 ± 0.6 – 0 –

L-DOPA intake 66.7% 0% 0 0

Dopamine agonist intake 56.5% 0% 0 0

MAO-B inhibitor intake 41.5% 0% 0 0

COMT inhibitor intake 4.1% 0% 0 0

PD disease duration refers to the time since diagnosis at the date of stool sampling

SD standard deviation, UPDRS Unified Parkinson Disease Rating Scale, L-DOPA levodopa, MAO-B monoaminooxidase B, COMT catecholamine-methyl-transferase,

NMPC net maximal production capability, “–” no value to report
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Shannon entropy did not significantly differ between PD

cases and controls, in agreement with earlier studies [12,

15, 20] but in disagreement with two different PD stud-

ies [13, 16]. However, the species richness was slightly

increased in PD (regression coefficient b = 4.76, 95%

confidence interval (CI) 0.44;9.08, p = 0.03) (Add-

itional file 1: Fig. S1). Importantly, we found a significant

sex-group interaction term regarding the Pielou index

with the effect sign of PD being reversed. The Pielou

index was reduced in female PD patients but increased

in male PD patients (Additional file 1: Fig. S1). Most no-

ticeable, however, was the increased variance in the Pie-

lou index in men (Additional file 1: Fig. S1). These

results indicate a sex dependence of the alpha diversity,

although this isolated result needs validation. However,

sex-dependent microbiome changes in the context of

disease were at least described in a mouse model of in-

flammatory bowel disease and are discussed in the con-

text of the gut-brain axis [32, 33]. Thus, sex-microbiome

interaction in health and disease deserves further

investigation.

In terms of beta diversity, the performed ANOSIM

analyses of the Bray-Curtis dissimilarities indicated small

but significant differences between PD and healthy mi-

crobial communities (ANOSIM statistics R = 0.04, p =

0.001). Thus, beta diversity, corroborating earlier results

[12, 13, 15–18, 20, 34–36]), differs between healthy and

PD microbial communities (Additional file 1: Fig. S2).

Species and genus level changes in PD microbiomes

We investigated disease-associated microbial changes at the

species level. Seven species were significantly altered in PD

(FDR < 0.05, Fig. 2) in multivariable fractional regressions

on the 308 individuals with complete covariate data. Note

that when comparing results between different taxonomic

levels, changes observed for Ruminococcus and Roseburia

species were not significant on the genus level but on the

species level, highlighting the importance of species-level

resolution. The highest effect size on the species level was

associated with Akkermansia muciniphila (odds ratio

(OR) = 1.80, 95% CI = (1.29, 2.51), p = 6.02e−04, FDR <

0.05) in agreement with the previously reported higher

Fig. 2 Boxplots of seven significantly changed species in PD vs. controls (FDR < 0.05). Significance levels were determined using multivariable
semi-parametrical fractional regressions with the group variable (PD vs. control) as a predictor of interest, including age, gender, BMI, and
technical variables (total read counts and sequencing run (batch)) as covariates. FDR, false discovery rate
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abundance of A. muciniphila in PD patients [12, 13]). This

odds ratio of 1.8 means that the odds of a certain sequence

read being assigned to A. muciniphila was estimated to be

80% higher in PD cases than in controls. These odds ratios

and later estimates were calculated from the fractional data

(e.g. the relative abundance data). Subsequently, we exam-

ined possible differences at the genus level by performing

semiparametric fractional regressions while adjusting for

age, sex, the body mass index (BMI), batch, and total read

counts. We identified eight genera to be significantly in-

creased in PD (FDR < 0.05; Fig. 3, Table 2), with Lactobacil-

lus showing the highest effect size (odds ratio (OR) = 5.75,

95% CI = (2.29, 14.45), p = 1.96e−04, FDR < 0.05, Fig. 3). In

contrast, the genera Turicibacter decreased significantly in

PD cases (FDR < 0.05). We repeated these analyses adjust-

ing additionally for constipation to account for this poten-

tial confounder in sensitivity analyses. All genera and

species remained significant except for the Ruminococcus

species. To summarise, significant changes could be ob-

served on the species and genus levels.

PD modifies the effects of basic covariates on the

microbiome

Furthermore, we investigated whether the genus-level al-

terations in PD were affected by basic confounding fac-

tors using multivariable fractional regressions based on

the data from 308 individuals with complete covariate

data. This interaction analyses uncovered rich effect

modifications, revealing that microbiome changes in PD

should be considered in the context of age, BMI, and

gender. Our analyses demonstrated that the effects of

PD were not homogeneous amongst important sub-

groups of patients. For example, Paraprevotella was ex-

clusively reduced in female patients in comparison with

Table 2 Disease study and overview of associations

Red label means a significant positive association (FDR < 0.05) with the variable denoted in the “variable” column, blue label means a significant negative

association, and “–” means no significant result after correction for multiple testing. PD disease duration refers to the time since diagnosis at the date of stool

sampling

UPDRS Unified Parkinson Rating Scale, L-DOPA levodopa, MAO-B monoaminooxidase B, COMT catecholamine-methyl-transferase, NMPC net maximal production

capability

Baldini et al. BMC Biology           (2020) 18:62 Page 5 of 21



male participants but not in female controls (Fig. 4a),

highlighting gender-dependent alterations of microbial

communities in PD. In addition, the effects of BMI and

age were modified in PD cases. The PD cases had in-

creased Anaerotruncus abundance with age, while non-

linear, overall decreasing abundances of Roseburia and

Paraprevotella were observed with age and BMI, re-

spectively (Fig. 4b). Taken together, these analyses sug-

gest that microbial abundances are shifted in PD cases

and that also the effects of important covariates were al-

tered in PD, reflecting the systemic and complex nature

of PD.

Microbial abundances, medication intake, and

constipation in PD

The Luxembourg Parkinson’s Study has enrolled pa-

tients of all stages of PD [30]. Therefore, the patients

have considerable inter-individual variance in PD-related

features, such as constipation and intake of medication

(Table 1). We analysed whether these features had an

impact on the microbiome composition in PD via multi-

variable fractional regressions on the data of all 308

study participants with complete covariate data. In our

data, we could not find any evidence for an effect of the

three medication types on the microbiome, i.e. levodopa,

or MAO-B inhibitors, when correcting for multiple test-

ing (Additional file 1: Table S2). Noteworthy, we were

not able to investigate the effects of COMT inhibitors

due to the small number of cases (n = 6). In contrast,

constipation, a prevalent non-motor symptom in PD pa-

tients [37], was associated with an increased abundance

of Bifidobacterium, with a clear effect in constipated PD

cases (Fig. 4a). However, since there were only ten con-

stipated controls (Table 2), these results must be con-

firmed in larger cohorts.

Genus association with the disease severity

We next investigated whether the stage of the disease,

i.e. defined by Hoehn and Yahr staging, non-motor

symptoms scale (NMS-PD), and Movement Disorder

Society-Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS; further abbreviated as UPDRS) scores and its

subscales, was associated with altered genus abundance.

Because of missing data, the case numbers included into

the statistical analyses varied between those variables

with n = 146 in case of Hoehn and Yahr staging, n = 133

Fig. 3 Boxplots of eight significantly changed genera in PD vs. controls (FDR < 0.05). Significance levels were determined using multivariable
semi-parametrical fractional regressions with the group variable (PD vs. control) as a predictor of interest, including age, gender, BMI, and
technical variables (total read counts and sequencing run (batch)) as covariates. FDR, false discovery rate
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for the NMS-PD, n = 145 for the UPDRS scales, and n =

138 for the disease duration. For the Hoehn and Yahr

staging, Paraprevotella showed a negative association

and Bilophila showed a positive association, both of

which were significant after multiple testing (Fig. 4c).

For the UPDRS III subscale score (i.e. motor symptoms,

Table 2), three genera, being Peptococcus, Flavonifractor,

and Paraprevotella, survived correction for multiple test-

ing (Fig. 4d). In contrast, the other UPDRS subscales

and the NMS-PD were not significantly associated with

microbial changes, after correction for multiple testing.

Note that these analyses were performed while adjusting

for disease duration. When analysing the association pat-

tern of disease duration, we found Lactobacillus posi-

tively correlated with the disease duration (FDR < 0.05,

Additional file 1: Fig. S3). In conclusion, our data sug-

gest that the microbial composition may be utilised as a

correlate of disease severity.

Metabolic modelling reveals distinct metabolic secretion

capabilities of PD microbiomes

To obtain insight into the possible functional conse-

quence of observed microbiome changes in PD, we used

metabolic modelling (cf. the “Methods” section and

Additional file 1). Briefly, we mapped each of the 308

microbiome samples with complete covariate data on

the generic microbial community model consisting of

819 gut microbial reconstructions [23, 25] to derive per-

sonalised microbiome models [24]. We then computed

the net maximal production capability (NMPC), or max-

imal secretion flux potential, for 129 different metabo-

lites that could be secreted by each microbial

community model (cf. “Methods” section), providing

thereby a characterisation of the differential microbial

metabolic capabilities in PDs and controls. For one indi-

vidual, the computation failed as the applied diet con-

straints resulted in an infeasible community model.

Consequently, the statistical analyses, via multivariable

mixed effect linear regression, were performed on com-

putational modelling results of 307 community models.

The predicted NMPCs of nine metabolites were different

in PD (Fig. 5a, all FDR < 0.05). Moreover, although less

dominant in comparison with the abundance data, PD-

covariate interactions were also prevalent, with the pre-

dicted uracil NMPC showing a sex-specific effect and

cysteine-glycine showing a age-dependent PD effect

(Fig. 5b, d). In subsequent analyses, we tested for associ-

ations of the NMPCs with constipation, medication, dis-

ease duration, Hoehn-Yahr staging, NMS, and UPDRS

III scores, complementing thereby the analyses on the

abundance level. Notably, we found the NMPCs of

xanthine, D-alanine, L-lactic acid, D-ribose, and pantothe-

nic acid positively associated with constipation (Fig. 5b),

while no NMPC was associated with medication or with

disease duration. However, the NMPC of pantothenic acid

was positively associated with higher NMS scores, interest-

ingly both in PD and in controls (Fig. 5c). No NMPC

survived correction for multiple testing regarding associa-

tions with the UPDRS III score and Hoehn-Yahr staging.

To conclude, these results suggest that the altered micro-

bial composition in PD could result in broad changes in

metabolic capabilities, which manifested themselves add-

itionally in non-motor symptoms and constipation.

PD-specific secretion profiles were altered due to

changed community structure and species abundances

Next, we analysed which microbes contributed to the

predicted differential NMPCs by correlating them to the

abundance data (Fig. 6). These analyses were performed

via linear regressions on the 307 cases with complete co-

variate data and feasible community models. For six

NMPCs, large portions of the observed variance could

be explained by single genus (Fig. 6a), while for the other

four NMPCs, no single dominant genus could be identi-

fied. In addition, we computed the variance explained by

each genus for the predicted NMPCs of each secreted

metabolite. From the PD-associated genera, only Akker-

mansia, Acidaminococcus, and Roseburia explained over

25% of the variances in NMPCs. Acidaminococcus was

responsible for 64% of the variance in cysteine-glycine

production and Roseburia for 30% of the variance in ura-

cil production potential. Akkermansia impacted the pre-

dicted NMPCs the most by substantially explaining

variances in the predicted NMPCs of nine metabolites

(Fig. 6b), including the neurotransmitter gamma-

aminobutyric acid (GABA, Fig. 6d) and two sulphur spe-

cies, being hydrogen sulphide and methionine. GABA

was also significantly altered between PD and controls

on a nominal level, missing FDR-corrected significance

narrowly (b = 0.18, 95% CI 0.06;0.30, p = 0.003, FDR =

0.0501, Fig. 6c). Note that the relation between microbial

abundance and NMPC is not necessarily linear as shown

in the case of GABA and Akkermansia (Fig. 6d). These

analyses demonstrate the added value of metabolic mod-

elling to investigate altered metabolic functions of the

whole microbial composition.

Discussion
In this study, we aimed at elucidating compositional and

functional changes in the faecal microbiome of PD pa-

tients. Therefore, we analysed 16S rRNA gene sequen-

cing data from a cohort of typical PD patients (n = 147)

and controls (n = 162) and performed personalised mi-

crobial computational modelling. We identified (i) eight

genera and seven species that changed significantly in

their relative abundances between PD patients and

healthy controls; (ii) PD-associated microbial patterns

that were dependent on sex, age, BMI, and constipation;
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and (iii) in PD patients, altered metabolite secretion

potentials, predicted using metabolic modelling of

microbial communities, were found particularly for

sulphur metabolism. Overall, our work demonstrated

compositional and predicted functional differences in

the gut microbial communities of Parkinson’s disease pa-

tients providing novel experimentally testable hypothesis

related to PD pathogenesis.

The microbial compositional analyses of our cohort

identified significantly different microbial abundance

distributions between PD patients and healthy controls

(Table 2). An increasing number of studies have described

altered colonic microbial compositions associated with PD,

and an overall picture starts to arise [38] (Fig. 7). For in-

stance, the microbial families of Verrucomicrobiaceae and

Lactobacillaceae have been consistently found to have an

increased abundance in PD (Fig. 7). In accordance, our

study also reports increased abundance in PD of Akker-

mansia, Christensenella, and Lactobacillus. Similarly, Bifi-

dobacteria has also been repeatedly associated with PD

(Fig. 7), but in our study, we could show that the Bifidobac-

teria association was dependent on constipation (Fig. 4a)

highlighting the need for incorporating disease-specific

phenotypes as covariates into the statistical design.

At the same time, inconsistencies between the studies

remain, and they may be due to the differences in the

study design, inclusion criteria, faecal sampling, the use

of whole-genome sequencing [12], 16S marker gene re-

gions to be targeted, DNA extraction protocols, and stat-

istical methods. For instance, we used a relatively large,

Fig. 4 Genus alterations in PDs in the context of basic covariates and clinical variables. a Boxplots of Paraprevotella and Bifidobacterium for cases
and controls in dependence of sex and constipation, respectively. In both cases, differences in mean abundance had FDR < 0.05. b Scatter plots
and non-linear regression lines for cases and controls of genus abundances of Anaerotruncus, Roseburia, and Paraprevotella in dependence of age
and BMI. Global test (Wald test, testing all interaction terms simultaneously on zero) had an FDR < 0.05 in all three cases. For graphical assessment
of the interaction terms, the z-transformed residual abundances are displayed after correction for technical covariates (batch and read counts). c
Error bar plots of Paraprevotella and Bilophila abundances in dependence of disease staging. Genus association with disease staging showed a
decrease of relative abundance of Paraprevotella and an increase of Bilophila genus over increasing Hoehn and Yahr scale values (FDR < 0.05).
Error bars represent 95% confidence intervals. d Scatter plots of motor symptoms (UPDRS-part III) were positively associated with of Flavonifractor
and Peptococcus abundances and negatively with Paraprevotella abundance (FDR < 0.05). UPDRS, Unified Parkinson Rating Scale; BMI, body mass
index; FDR, false discovery rate
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PD cohort while Bedarf and colleagues [12] studied a

small, well-defined cohort of drug-naive, male PD pa-

tients and male controls (Fig. 7). Three studies included

individuals of Chinese descent [34–36], one conducted

with qPCR assay which included individuals from Japan

[19], while the other studies focused on Caucasian indi-

viduals. It has been shown that microbial composition is

associated with ethnic background, geography, and diet-

ary habits [39–41], which may explain some of the dis-

crepancies. The differences between the studies, hence,

highlight the importance of performing a meta-analysis

to identify global microbial signatures, as it has been

done for, e.g., colorectal cancer [42]. Such meta-analysis

may also permit to investigate subgroups of PD, as the

number of cases and controls would be substantially in-

creased and thus provide higher statistical power. For in-

stance, we observed various effect modulators that were

not reported before in humans (Table 2), such as Para-

prevotella abundance reduction being specific to women.

This result is apparently in contradiction with the find-

ings from Bedarf and colleagues [12] who reported de-

creased levels of Prevotellaceae in a cohort of only male

PD patients. However, since alterations on the genus

level may compensate for the ones detected at a family

taxonomic level (e.g. lowered Paraprevotella but higher

Prevotella), the results described on the genus level are

not directly comparable to the results on the phylum

level. Additionally, and as highlighted above, differences

might be due to sex-specific effects, as observed here

(Fig. 4a). Accordingly, a study reported a higher abun-

dance of Paraprevotella in male mice compared to female

mice [43]. Despite the lack of extensive studies on gender-

specific differences in microbiome composition, we sug-

gest that machine learning procedures on microbiome

data should be performed in a sex-stratified manner. Lar-

ger cohorts, e.g. through a meta-analysis of published co-

horts, would allow the identification of generalisable

microbial differences in PD patients and also specific

Fig. 5 Overview of the significantly different predicted net metabolite production potentials (NMPCs) of microbial communities from PD patients
and healthy individuals. a Box plots for NMPC differential between cases and controls with FDR < 0.05. b Box plots for NMPCs with sex-specific
PD signature or constipation effects (all FDR < 0.05). c Scatter plot of non-motor symptom scores and the NMPC of pantothenic acid displaying
the regression lines for cases and controls. The slope was significantly bigger than zero (FDR < 0.05). d Scatter plot of cysteine-glycine NMPC and
age for cases and controls displaying the corresponding regression lines. The difference in slopes of regression lines was significant (FDR < 0.05).
FDR, false discovery rate
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microbial changes associated with certain traits and

physiological characteristics, as suggested by our data.

We could not detect any evidence for an effect of the

dopaminergic, PD-specific medication on the microbiome

composition, after correction for multiple testing. It

should be noted that, with our study design, we cannot

rule out impacts of dopaminergic medication on the

microbiome. To detect small effect sizes of dopaminergic

medication, a higher sample size would be required than

present in our cohort. It is also to be noted that PD medi-

cation is often taken in conjunction with other drugs,

again requiring larger sample sizes, than used in our study,

to permit the investigation of all possible drug combina-

tions. For instance, the potential effects of COMT inhibi-

tors could not be analysed in this study because of missing

sample size. Nonetheless, in previous studies, Dorea and

Phascolarctobacterium genera have been negatively associ-

ated with levodopa equivalent doses [36], and members of

the family of Bacillaceae have been correlated with levo-

dopa treatment [13]. It is also to be considered that levo-

dopa is absorbed in the upper part of the small intestine

[44], and thus, small intestinal rather than large intestinal

microbes may play a more prominent role in levodopa

bioavailability. Consistently, a recent study showed that

bacterial tyrosine decarboxylases restrict the bioavailability

of levodopa [45]. Interestingly, 193 of the 818 (24%) gut

microbes with genome-scale metabolic reconstructions

[23, 46] carry the necessary genes encoding for proteins

that convert levodopa into dopamine. Levodopa is always

given with decarboxylase inhibitors, such as carbidopa or

benserazide, targeting the human decarboxylases, but it

cannot be excluded that they also act on the microbial

counterpart. However, van Kessel et al. have shown that

carbidopa and benserazide are only a weak inhibitor of the

microbial tyrosine decarboxylase [45].

We identified a positive association of Bilophila abun-

dance with the Hoehn and Yahr staging, which captures

motor impairment and disability independent of disease

duration. Indeed, the abundance of Bilophila was not as-

sociated with disease duration indicating mainly the de-

pendency on the progression of symptoms. This finding

is consistent with experimental mouse studies demon-

strating the pro-inflammatory effect of Bilophila over-

growth [47, 48]. Bilophila has a unique capability

amongst the microbes covered by AGORA [23] to use

taurine, an inhibitory neurotransmitter with neuropro-

tective effects [49, 50], as an energy source [51]. This

pathway involves the pyruvate aminotransferase [51],

which converts pyruvate and taurine into L-alanine and

sulfoacetaldehyde, respectively. As Bilophila was signifi-

cantly increased in PD cases (FDR < 0.05) and Bilophila

represents the only genus capable of using taurine for

ATP generation, PD microbiomes are in consequence

enriched for this specific metabolic function (generation

of ATP from taurine). In a previous study [29], we have

shown that blood taurine-conjugated bile acids were

positively associated with motor symptoms. We have

proposed that Bilophila may be a marker of disease pro-

gression in PD, and it could modulate human sulphur

metabolism through its taurine degradation capabilities

[29]. Accordingly, we have reported alterations in

sulphur metabolism when using computational model-

ling of microbiomes [29] from a cohort of early diag-

nosed and levodopa-naive PD patients [12] as well as an

increased concentration of methionine and derived me-

tabolites in blood samples [29]. Furthermore, we and

others have reported alterations in bile acids and

taurine-conjugated bile acids in PD patients [29, 52]. In

accordance, our present study found Bilophila to be as-

sociated with disease severity strengthening the link be-

tween Bilophila, taurine, and Parkinson’s disease.

Interestingly, an increased abundance of Bilophila

wadsworthia has been linked to constipation [53], which

another study on individuals with chronic constipation

has reported a decrease in Bifidobacteria abundance

[54]. We found an increase in Bifidobacteria abundance

in constipated individuals and, particularly, in consti-

pated PD patients; however, the number of constipated

controls in our study was very low (n = 10). In contrast,

we could not find statistically significant changes in the

association between the abundance of B. wadsworthia

and individual constipated PD patients (Fig. 4c). Overall,

the available data suggest that complex alterations in the

microbial composition are associated with constipation

but may differ between diseases. Hence, whether B.

wadsworthia plays a role in constipation of PD patients

needs to be further investigated.

The mucin-degrading microbe, A. muciniphila, repre-

sents about 1–4% of the faecal microbiome in humans

[55]. Numerous diseases have been associated with a de-

crease in A. muciniphila abundance [56, 57], while an

increase has been consistently reported in PD patients

(Fig. 7). The A. muciniphila abundance had the largest

contribution to the significantly altered metabolite secre-

tion profiles (Fig. 6b), including the neurotransmitter

gamma-aminobutyric acid (GABA). While its predicted

secretion potential was only nominally increased in PD

patients in the present study, higher GABA secretion

rates have also been predicted based on the microbiome

data from early-stage levodopa-naive PD patients [29].

Importantly, GABA receptors have been found in the

enteric nervous system, gut muscle, gut epithelial layers,

and endocrine-like cells [58], and its gut receptors are

thought to be related to gastric motility (peristalsis), gas-

tric emptying, and acid secretion [58]. Experiments with

the GABAb receptor agonist baclofen have shown that

GABAb receptors can reduce gastric mobility in the

colon of rabbits via cholinergic modulation [59]. GABA
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could reach the CNS via the bloodstream as a lipophilic

compound, being able to pass the blood-brain barrier.

Additionally, microbial GABA could affect the brain-gut

axis by contributing the human GABA pools, especially

as it has been shown that the microbiome can affect

GABA receptor density in the CNS via the vagus nerve

[60]. Interestingly, A. muciniphila has been shown to be

positively associated with gastrointestinal transit time

[61, 62], so one may hypothesise that this effect may be

due to its GABA production capability. To establish

whether and which role A. muciniphila and GABA may

play a role in prodromal PD, further experimental stud-

ies will be required.

In order to move beyond mere cataloguing of micro-

bial changes associated with diseases, pathway-based

tools (e.g. [63]) have been developed, in which microbial

sequences (or reads) are mapped, e.g. onto the Kyoto

Encyclopedia of Genes and Genomes (KEGG) ontologies

present in the KEGG database [64]. Using such tools,

Bedarf et al. reported decreased glucuronate degradation

and an increase in tryptophan degradation and formate

conversion [12]. Similarly, Heinz-Buschart et al. reported

26 KEGG pathways to be altered in PD microbiomes

[13]. In our study, we complemented the compositional

analysis with computational modelling to gain insight

into potential functional, i.e. metabolic, consequences of

changed microbe abundances in PD. The advantage of

our approach is that the functional assignments may be

more comprehensive than more canonical methods,

such as KEGG ontologies, because (1) the underlying

genome-scale metabolic reconstructions have been as-

sembled based on refined genome annotations and have

Fig. 6 Overview of the analyses of species contribution to NMPCs. a Table of genera explaining more than 25% of the variance in metabolite
NMPCs different between cases and controls. b Table of NMPCs, for which Akkermansia explained at least 25% of the variance in the total to
community net production capacity. c Box plots of gamma-aminobutyrate (GABA) net production capacity for PD cases and controls (b = 0.18,
95% CI 0.06, 0.30, p = 0.003, FDR = 0.0501). d Scatter plot of GABA net production capacity in dependence of Akkermansia abundance with non-
linear regression lines. NMPC, = net maximal production capacity; GABA, gamma-aminobutyrate; FDR, false discovery rate. Effect sign “–”: negative
correlation. Effect sign “+”: positive correlation
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been manually curated to ensure that the reaction and

gene content is consistent with current knowledge about

the microbe’s physiology [65], and (2) each of these re-

constructions, alone or in combinations, is amenable to

metabolic modelling, and thus, functional and metabolic

consequences of a changed environment (e.g. nutrients

or other microbes in the models) can be computed [22].

These simulations are thus allowing to predict functional

consequences and not only pathway or reaction enrich-

ment, as typically done.

Strengths and limitations

Here, we presented microbiome analyses in a large

monocentric longitudinal study on PD (including cases

and controls) with a nation-wide outreach in

Luxembourg and the adjacent border regions (Greater

Region), which includes an clinical spectrum of all

disease stages [30]. We demonstrated that the microbial

composition is not only altered in PD but also that the

observed associations of PD with changes in the com-

position of the microbiome should be interpreted in the

context of age, sex, BMI, and constipation. This informa-

tion is of importance for clinical translation, highlighting

the need for both (i) a personalised and (ii) a holistic ap-

proach, in order to understand the role of microbial

communities in PD pathogenesis. In a second step tar-

geting the potential functional changes related to PD-

associated microbiomes, we performed metabolic model-

ling based on the AGORA collection [23] of genome-

scale metabolic reconstructions, allowing for the predic-

tions of metabolite secretion profiles. Thus, our analyses

facilitated a detailed investigation of the altered metabol-

ism of PD-related microbial communities in the gut

pointing towards a role of the known pro-inflammatory

Fig. 7 Reported microbial changes at the family level associated with PD in different studies. Only those bacterial families are shown, for which
significant associations with species or genera have been reported in at least two studies comparing stool samples from patients and controls.
Red—increased in PD; blue—decreased in PD. a: Actinomycetales; b: Bacteroides fragilis; c: Bifidobacterium; d: Christensenella; e: Clostridium coccoides/
leptum; f: Faecalibacterium and Dorea; g: Clostridium IV/XVIII, Butyricicoccus and Anaerotruncus; h: Anaerotruncus; i: Aquabacterium; j: Holdemania; k:
Lactobacillus; l: Oscillospira; m: Ruminococcus romii and Ruminococcus torques; n: Sphingomonas; o: Streptococcus; p: Akkermansia. *Drug-naive, de novo
PD patients only, Based on [14]
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species B. wadsworthia interacting with the host on

sulphur metabolism. Hence, metabolic modelling pro-

vides a valuable tool for deciphering the metabolic activ-

ity of microbial communities in PD.

However, despite the partial confirmation of previous

results by our study (Fig. 7), several limitations should

be kept in mind. First, certain covariates were not inves-

tigated, such as diet, exercise, and smoking. Whether

these covariates alter the PD-specific signature has yet to

be analysed. Although our study belongs to the three lar-

gest studies performed on PD, our sample size was still

too small to deliver insights on combinations of drugs,

as the statistical power to detect effects of drugs was

lower than the statistical power to detect differences be-

tween cases and controls due to the reduced sample size.

Furthermore, 16S rRNA gene sequencing, as applied in

our study, does not allow analyses on the strain level as

it could lead to misclassifications [66]. Furthermore, the

SPINGO classifier does not have a strategy to exclude

sequencing errors, but the authors have shown that this

shortcoming had little influence on SPINGO’s accuracy

[67]. Another limitation resulting from the usage of 16S

rRNA gene sequencing lays within the missing reso-

lution on the strain level, forcing us to group metabolic

capabilities of strains on the species level. As different

strains of the same species may have different metabolic

capabilities, computational modelling on the basis of the

species level has to be treated with some care. Conse-

quently, follow-up studies based on shotgun sequencing

are needed to further corroborate our results and those

found by other 16S RNA gene sequencing studies (Fig. 7).

In this respect, it is noteworthy to mention that AGORA

had a high coverage of the species mainly detected in

the microbiome (Additional file 1: Table S1). However,

AGORA does not show complete coverage, which pre-

sents a limitation to this study. Consequently, certain

species and genera present in the microbiome may be

excluded from analyses because they were not included

in the AGORA collection. Further expansion of the mi-

crobial metabolic reconstruction collection is hence

needed. Additionally, we could only extract species (and

not strain) abundances from the sequenced samples,

which have important consequences for metabolic mod-

elling. The lack of strain-resolved taxonomic information

required us to generate species-level metabolic models,

in which we grouped the metabolic capabilities of

multiple strains into one metabolic model of the

correspondent species. This approach may overestimate

the metabolic capabilities as not all biochemical reac-

tions included in the species metabolic model may be

present in a single strain.

Being cross-sectional in nature, causal inference is not

possible. Consequently, although metabolic modelling

has numerous times been shown to correctly predict

attributes of living systems [68–70], our hypothesis on

the role of B. wadsworthia in PD interlinking sulphur

metabolism with disease severity requires experimental

validation. Additionally, the computational prediction of

secretion profiles is in need of validation via integration

with stool and blood metabolome data. Furthermore, the

statistical properties of populations of constraint-based

metabolic models have not been described in detail so

far. Basically, this study uses the predicted net produc-

tion capacities as a further layer to the omics data, on

which statistical screenings by sequential regressions can

be performed in analogy to ‘ome-wide association stud-

ies. Furthermore, the host metabolism has not been con-

sidered in the current study but such analysis is

computationally possible (e.g. [27, 71–74]. To this end,

sex-specific whole-body metabolic models [26] have

been developed, which include human physiological con-

straints, and which can be expanded with microbiome

models to investigate potential host-microbiome meta-

bolic interaction, but such analysis was beyond the scope

of this study.

Conclusion
Overall, this study represents a step towards a systems

biology description of the metabolic consequences of

PD-associated alterations in the microbiome, but further

development of statistical and computational tools inte-

grating omics data with modelling techniques, such as

constraint-based modelling, will need to be done.

Methods
Description of the Luxembourg Parkinson’s Study

Data and biospecimen of the Luxembourg Parkinson’s

Study cohort were utilised [30]. The Luxembourg Par-

kinson’s Study includes a variegated group of patients

with typical PD, atypical parkinsonism, and secondary

parkinsonism as well as healthy controls from

Luxembourg and its neighbouring regions geographic-

ally defined as Great Region [30]. Within the cohort,

healthy controls were selected amongst spouses of

chosen patients and volunteers and individuals from

other independent Luxembourgish studies [75, 76].

However, the corresponding information on the family

relations between controls and cases was not available.

Cancer diagnosis with ongoing treatment, pregnancy,

and secondary parkinsonism in the frame of normo-

tensive hydrocephalus were the exclusion criteria for

enrolling in the patient or healthy control group. For

454 individuals (controls: n = 248, PD: n = 206) from

the Luxembourg Parkinson’s Study cohort, stool sam-

ples were available and used for 16S RNA gene se-

quencing data (see below). As we aimed to target

specifically typical PD, we excluded all individuals

with age below 50 (controls: n = 47, PD: n = 9) and all
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individuals with an unclear status of PD diagnosis or

an atypical PD diagnosis (PD: n = 47). PD patients

were defined as typical PD, according to the inclusion

criteria by the United Kingdom Parkinson’s Disease

Society Brain Bank Clinical Diagnostic Criteria [77].

Furthermore, we excluded control patients with a

UPDRS III score above 10, except for one control

where the high UPDRS III score was caused by an arm

injury. Furthermore, we excluded control persons who

took dopaminergic medications (n = 5; intake for a dif-

ferent than anti-PD indication) and individuals who

reported to have taken antibiotics in the last 6 months

(controls: n = 20, PD: n = 13). Note that excluded ob-

servations behave sub-additive because of an overlap

between the exclusion criteria (i.e. individuals below

age 50 and taking antibiotics). Finally, from 309 indi-

viduals (controls: n = 162, cases: n = 147) fulfilling the

inclusion criteria, 308 were included in statistical ana-

lyses as one individual had a missing BMI value.

All study participants gave written informed consents,

and the study was performed in accordance with the

Declaration of Helsinki. The Luxembourg Parkinson’s

Study [30] was approved by the National Ethics Board

(CNER Ref: 201407/13) and Data Protection Committee

(CNPD Ref: 446/2017).

Measurements and neuropsychiatric testing

All patients and healthy controls were assessed by a

neurologist, neuropsychologist, or trained study nurse

during the comprehensive battery of clinical assessment.

Olfaction testing was conducted using the Sniffin’ Sticks

16-item version (SS) yielding the “Sniff Score”. Antibiotic

usage was defined as intake of antibiotics within the pre-

vious 6 months prior to stool collection. Constipation

was evaluated by the study neurologists based on the

personal clinical story of each individual. As definition

of constipation, two criteria were considered: (i) difficult

stool passage includes straining, a sense of difficulty

passing stool, incomplete evacuation, hard/lumpy stool,

prolonged time to stool, or need for manual manoeuvres

to pass stool [78], and (ii) symptom-based including

fewer than three stools per week, stool form that is

mostly hard or lumpy, and difficult stool passage (need

to strain or incomplete evacuation) for more than

6 months [79]. For assessing PD-related motor and non-

motor symptoms, the UPDRS rating scales I–IV were

used [80]. The severity of the disease was reflected by

the Hoehn and Yahr staging [81]. Non-motor symptoms

were measured using a corresponding questionnaire

NMS-PD [82]. The use of medication was recorded in

details, and for this study, three classes of PD-specific

medication was used: (1) levodopa, (2) dopamine recep-

tor agonist, and (3) MAO-B/COMT inhibitors.

Collection and processing of stool samples

All samples were processed following standard operat-

ing procedures [83, 84]: stool samples were collected

at home by patients using the OMNIgene.GUT® kit

(DNA Genotek) and sent to the Integrated Biobank

Luxembourg (IBBL) where one aliquot of 1 ml was

used for DNA extraction. The mean delay from sam-

ple collection to sample reception at IBBL was on

average of 3.8 days. The microbiome profiles were ob-

tained from stabilised samples within the OMNI-

gene®-GUT kit, which has been shown to be

comparable for downstream 16S rRNA gene sequen-

cing, robustness, and sample stability to the snap-

frozen samples [84, 85]. Leaving the OMNIgene®-

GUT-stabilised samples for 2 weeks at room

temperature does not produce any significant effects

on microbiome profiles [86, 87]. For the DNA extrac-

tion, a modified Chemagic DNA blood protocol was

used with the MSM I instrument (PerkinElmer), the

Chemagic Blood kit special 4 ml (Ref. CMG-1074)

with a lysis buffer for faecal samples, and MSM I

software. Samples were lysed using the SEB lysis buf-

fer (included in the kit) and vortexed to obtain a

homogenous suspension that was incubated for 10

min at 70 °C, then 5 min at 95 °C. Lysates (1.5 ml)

were centrifuged for 5 min at 10,000g at RT. Super-

natants were transferred to a 24XL deep-well plate.

Plates were processed using the MSM I automated

protocol.

Analysis of the microbial composition with 16S rRNA

gene sequencing

The V3–V4 regions of the 16S rRNA genes were tar-

geted with gene-specific primers and sequenced at IBBL

using an Illumina Platform (Illumina MiSeq) using 2 ×

300 bp paired-end reads [30]. The primers were de-

signed with Illumina overhang adapters and used to

amplify templates from genomic DNA. Amplicons were

generated, cleaned, indexed, and sequenced according to

the Illumina-demonstrated 16S metagenomic sequencing

library preparation protocol with certain modifications.

In brief, an initial PCR reaction contained at least 12.5

ng of DNA. A subsequent limited-cycle amplification

step was performed to add multiplexing indices and Illu-

mina sequencing adapters. Libraries were normalised,

pooled, and sequenced on the Illumina MiSeq system

using 2 × 300 bp paired-end reads. Dual index barcoding

was used using the Illumina Nextera XT index primers.

The demultiplexed samples were processed merging for-

ward and reverse reads and quality filtered using the dedi-

cated pipeline “Merging and Filtering tool (MeFit)” [88]

with default parameters. To obtain a reliable microbial

identification, identification to both genus and species

taxonomic levels was obtained using the SPINGO (SPecies
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level IdentificatioN of metaGenOmic amplicons) classifier

[67] with default parameters. The SPINGO classifier has

been designed for species taxonomic assignment [67].

Relative abundances were computed, for each sample,

parsing the classification results of the SPINGO classifier

using an R (R Foundation for Statistical Computing,

Vienna, Austria) [89] custom script. Briefly, for each sam-

ple, the counts of each genus/species were retrieved, and

then the sum of the counts of all the genera/species was

used to normalise to a total value of 1 each genus/species

count. Information about the read counts can be found in

Additional file 1: Table S3.

Genome-scale metabolic reconstructions, flux balance

analysis (FBA), and community metabolic modelling

A metabolic reconstruction consists of the list of all

metabolic reactions known to occur in an organism and

describe each reaction’s stoichiometry and directionality

[22, 65]. Such reconstructions are generally generated

from the genome of an organism, the corresponding

genomic annotation, and extensive review of organism-

specific, biochemical, and physiological literature [65].

These metabolic reconstructions can be visualised as

networks (each reaction is an arch connecting the in-

volved metabolites), and they can be converted in a

computational format. When converting into a compu-

tational format, a sparse matrix named the stoichiomet-

ric matrix (S) is generated from the stoichiometric

coefficients of each reaction. In the S matrix, each row

represents a different metabolite in the network, and

each column a different reaction [22]. By definition, each

substrate of a reaction obtains a negative sign, while the

product receives a positive sign. If a metabolite does not

participate in a reaction, the stoichiometric coefficient,

and thus the S matrix entry, is 0. Each metabolite vari-

ation over time (i.e. dx/dt) will be therefore obtained by

the multiplication of S for a vector V containing the vel-

ocities (fluxes), at which each reaction happens, and a

system of linear equations can be written [22].

Flux balance analysis (FBA) [22] is a method used to

study the properties of the metabolic reconstructions.

FBA is based on three assumptions: (i) Steady-state:

under this assumption, no metabolite can be accumu-

lated, and the change of concentration of each metabol-

ite overtime is zero, and therefore, S × v = dx/dt = 0). (ii)

Capacity constraints: the existence of a minimal and

maximal flux allowed through a reaction represented as

upper and lower bounds. These constraints can be ob-

tained from experimental data (e.g. vmax of enzymes,

dietary uptake rate). (iii) Objective function: the flux

through one reaction, most commonly the biomass

(growth) reaction [90], is optimised. These assumptions

allow for the retrieval of one possible, but not necessarily

unique, flux distribution through the network (encoded

in the vector of fluxes v) that is consistent with all ap-

plied constraints. The objective value for the objective

function is, in contrast, unique [22].

Metabolic reconstructions can provide mechanistic

insight into the metabolism of single organisms under

specific conditions. However, microbial communities are

complex systems where the final result is given by the

interaction of different microbes [91]. For this reason, a

multispecies approach for metabolic modelling of micro-

bial communities named compartmentalisation was de-

veloped [24, 73]. In compartmentalisation approaches,

different reconstructions are joined through a common

compartment allowing them to metabolically interact

(shared metabolites). The microbiome modelling toolbox

[24, 92] allows for the creation of personalised micro-

biota models, where hundreds of microbial reconstruc-

tions are joined on the base of their presence/absence in

the relative sample. For each microbiota model, relative

abundances are integrated into a community objective

function joining the biomass contribution of each organ-

ism to the community. This method is specifically devel-

oped for compositional data as the sum of all the

coefficients has to equal the value of 1. Then, metabo-

lites secreted by each community overall are computed,

which can then be absorbed by the human host or

otherwise may be excreted in the faeces.

Mapping detected species on the gut microbial

reconstruction collection

Currently, strain-specific metabolic reconstructions have

been published for 819 gut microbes, named the

AGORA collection [23, 25, 46] corresponding to 646

species. In the analysis dataset of the current study (n =

309), 515 species were detected at least in 5% of the

stools samples and 243 overlapped with AGORA. A total

of 125 species were detected in at least 50% of the sam-

ples with an overlap of 87 AGORA species. Thus, 70%

of the identified species were covered by the AGORA se-

lection (Additional file 1: Table S1). We conclude that

our AGORA collection covers most of the frequently

found species in our dataset.

Generation of personalised models

As a next step, we generated a generic microbiome meta-

bolic reconstruction consisting of 257 microbial metabolic

reconstructions, which were had a relative abundance in

our dataset above 1e−4 and which were present in the

AGORA collection. This generic microbiome reconstruc-

tion was then personalised to each sample by eliminating

all species in a sample below this threshold (being 1e−4)

and by adjusting the community biomass reaction coeffi-

cients to the normalised relative abundance data, as ob-

tained with SPINGO [67]. In the absence of personal

nutrition information, an average European diet was used

Baldini et al. BMC Biology           (2020) 18:62 Page 15 of 21



to constrain each microbiome model [24, 25] (Add-

itional file 1: Table S4). In average, the personalised micro-

biome models contained 67 species, 77,390 (non-unique)

reactions, and 69,265 (non-unique) metabolites (Add-

itional file 1: Table S2). Furthermore, on average, the per-

sonalised microbiome models covered 2727 unique

reactions (Additional file 1: Table S2). The number of

unique reactions, total reactions, and total metabolites

was slightly higher in PD in comparison with controls.

Analyses of diversity indices

All numerical ecology analyses were computed in R for

both genus and species taxonomic resolution. Richness

was computed as the total number of detected organ-

isms, while the alpha diversity was computed using the

Shannon index as implemented in the “diversity” func-

tion of the 2.5-2 R vegan package [93]. Pielou evenness

was computed with the “diversity” function of the 2.5-2

R vegan package [93] using the Simpson index. The beta

diversity was computed using the “vegdist” function of

the 2.5-2 R vegan package [93] using the Bray-Curtis dis-

similarity index. Possible differences between PD pa-

tients and controls for richness, Shannon diversity, and

Pielou index were assessed using linear mixed models

with the batch variable as the random effect variable and

included age, BMI, sex, and read count variables as co-

variates, while the group variable was the predictor of

interest. In exploratory post hoc analyses, we tested fur-

ther whether any of the basic confounders (age, sex, and

BMI) interacted with the group variable influencing the

various diversity indices. For the beta diversity, we con-

ducted ANOSIM and ADONIS analyses as implemented

in the 2.5-2 R vegan package [93] using the functions

“Adonis” and “Anosim” with default parameters.

Analyses of relative abundances via fractional regressions

For descriptive statistics, metric variables were described

by means and standard deviations, while nominal vari-

ables were described by proportions. Missing values

were not imputed, and the pattern of missing values was

not assessable via the ADA platform [30]. The read

counts for each metagenomic feature (e.g. genera and

species) were divided by total read counts such that rela-

tive abundances were retrieved. Relative abundances

were checked for outliers. Observations with more than

four standard deviations from the mean were excluded

from the analyses. Only the genera and species detected

in more than 50% of all samples were included in the

analyses, resulting in 62 genera and 127 species.

The metagenomic data was analysed using fractional

regressions as developed by [94]. Fractional regressions,

developed in the field of econometrics, are part of the

family of generalised linear models and are specifically

designed for the analyses of fractional data, such as

relative abundance data. The relative abundance is

herein the response variable, which is then regressed on

a vector of predictors. Fractional regressions are semi-

parametric methods designed to model fractional data

without the need for specifying the distribution of the

response variable. Moreover, fractional regressions are

inherently robust against heteroscedasticity and against

overdispersion. These characteristics make the method

very suitable for the analysis of microbiome data, where

different species may not be sampled from the same

class of distributions. In general, the quasi log-likelihood

ln L of fractional regressions is given by the Bernoulli

log-likelihood function:

lnL ¼
X

N

j¼1

y j ln G x
0

jβ
� �� �

þ 1−y j

� �

ln 1−G x
0

jβ
� �� �h i

ð1Þ

with G(∗) being a function fulfilling 0 ≤G(z) ≤ 1 for all

z ∈ℝ, where xj represents the predictors for the individ-

ual j, yj the fractional response variable in individual j,

and N the sample size (see [94] for further details). The

most canonical choice for G(∗) is the logistic function,

which allows the interpretation of the regression coeffi-

cients as odds ratios (OR). In the case of microbiome

data, an OR refers to the chance that a certain sequence

read is assigned to certain species. For example, consider

a case-control design, where in the cases, the mean rela-

tive abundance for a certain species was ycases ¼ 0:04

and in the controls, ycontrols ¼ 0:02. Then, a fractional re-

gression using logit parametrisation with the relative

abundance of the species as the response variable and

the group variable as the predictor would result in:

OR ¼
ycases 1−ycontrolsð Þ

ycontrols 1−ycasesð Þ
¼

0:04� 0:98

0:96� 0:02
¼ 2:04: ð2Þ

Thus, in this example, we would state that the odds

that a certain sequence read is assigned to this species is

2.04 times higher in cases than in controls. Now, as in

other regression analyses, we can include covariates de-

riving estimates conditional on a set of variables for

which we would like to control. Note that we under-

stand the relative abundance herein as an estimate of the

probability that a read is assigned to a certain species.

All fractional regressions included technical covariates,

by which we mean batch (sequencing run), total read

counts, and unclassified sequence read counts (reads for

which a taxonomic assignment was not possible inde-

pendently from any threshold of confidence estimate

value used). The read count variables were included into

the statistical model, as it has been shown that normal-

isation by division can introduce bias if certain statistical

assumptions implied by the application of division are
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not fulfilled [95]. In the case of metagenomic data, the

effect of read counts would be removed by division if

the observations would be sampled from a multinomial

distribution. However, this is not a given as species and

genera correlate amongst each other, violating the as-

sumptions needed to construct multinomial distribu-

tions. In consequence, read count normalisation by

division is prone to introduce a bias into the metage-

nomic data; as potential bias, we corrected for by includ-

ing the read counts as covariates into the model.

Before fitting the final statistical models, we explored

the associations of basic covariates (i.e. age, sex, and

BMI) with metagenomic features using fractional regres-

sions as described above to avoid misspecifications of

the statistical models. Since the data showed a broad

range in age and BMI, we tested for potential non-linear

associations by including these variables into the models

as restricted cubic splines [96] using three knots defined

by the 5% percentile, the median, and the 95% percent-

ile. As in the case of age, we found species with indica-

tions of non-linear age associations with p < 0.01; age

was modelled in all analyses via restricted cubic splines.

All p values are reported two-tailed. Statistical analyses

were performed in STATA 14/MP (College Station, TX,

USA). Summary statistics of the performed analyses are

given in Additional files 2, 3, 4, and 5.

Differences between PD and controls in microbial

composition and the influence of covariates

To analyse the difference between genus abundances be-

tween PD and controls, fractional regressions were car-

ried out with the relative abundance of the genus as the

response variable, while including technical covariates,

age (restricted cubic splines), sex, and BMI into the stat-

istical modelling. The predictor of interest was the study

group indicator variable. We corrected for multiple test-

ing using the Benjamini-Hochberg procedure [97] by

setting the false discovery rate (FDR) to 0.05. Conse-

quently, we corrected for 62 tests when reporting genus

results. These analyses were repeated analogously for the

taxonomic level of species, while correcting for multiple

testing via the FDR.

Next, we explored the possibility of statistical interac-

tions between basic covariates (age, sex, and BMI) and

the group indicator. For these analyses, we once again

modelled age and BMI via restricted cubic splines allow-

ing for non-linear interaction terms. We only tested

two-way interaction terms. All interaction terms were

introduced simultaneously into the statistical model and

tested on significance via a Wald test [96], correcting for

multiple testing via the FDR. For the globally significant

test, the single interaction terms were investigated to

explore which covariate-group interaction contributed

to the overall significance. For interpretation, the

interaction terms were visually inspected by plotting the

predictions conditional on technical covariates. These

analyses were then rerun with species abundances as a

response variable instead of genus abundances.

We assessed the influence of constipation on the mi-

crobial composition. We introduced the binary predictor

constipation (yes/no) as an additional predictor into the

model and the corresponding group-constipation inter-

action term. Both terms were tested simultaneously on

zero with a Wald test. The analyses were once again ad-

justed for technical covariates, age (restricted cubic

splines), sex, and BMI, and we corrected for multiple

testing via the FDR.

Analyses of within PD phenotypes in relation to microbial

composition

We investigated the association pattern of medication

and clinical features regarding the microbial compos-

ition. These analyses were only performed on the IPD

cases, while controls were excluded from the analyses.

First, we analysed the disease duration as measured in

years between the date of the stool sampling and the

year of the diagnosis. The analyses were conducted as

before via fractional regressions with the genus abun-

dances as the response variable, while adjusting for tech-

nical covariates, age (restricted cubic splines), sex, and

BMI. Then, we assessed in separate analyses the UPDRS

III score as an indicator for motor symptoms, the non-

motor symptoms as measured by the NMS, the Hoehn-

Yahr staging of the disease as a global measure of disease

progression, and the sniff score. All these analyses were

performed adjusted for technical covariates, age (re-

stricted cubic splines), sex, BMI, and disease duration.

Each of these series of regression represents 62 tests,

which were accounted for using the FDR. The impact of

medication was analysed by examining three classes of

medication: (a) levodopa, (b) mono-amino oxidase/cat-

echol-O-methyltransferase inhibitors, and (c) dopamine

receptor agonists. We generated three corresponding

binary phenotypes (intake/no intake) and added these

three variables simultaneously to the statistical model

determining the significance of this add-on via a Wald

test. We then tested each medication class in separate

analyses, strictly correcting for multiple testing via the

FDR (186 tests in total). The analyses were performed

adjusted for technical covariates, age (restricted cubic

splines), sex, BMI, and disease duration.

Personalised constraint-based modelling of microbial

communities

AGORA consists of a set of 818 strain-specific genome-

scale metabolic reconstructions for microbes commonly

found in the human gut [23, 46]. To match species

taxonomic resolution, we combined the metabolites
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and biochemical reactions present in the strain-specific,

metabolic reconstructions of the same species in one

pan-species reconstruction (“panSpeciesModel.m”)

using the function “createPanModels.m” of the micro-

biome modelling toolbox [24]. A pan-biomass reaction

was built by averaging all strain-specific biomass reac-

tions. A total of 646 species-specific metabolic recon-

structions were assembled in this manner.

Subsequently, we performed an automatic name match-

ing between SPINGO species taxonomic assignment

and panSpecies names. Note that we had to disregard

all species that were not present within these 646 meta-

bolic reconstructions but identified in the microbiome

data (Additional file 1: Table S1). A threshold for asses-

sing the bacterial presence of a relative abundance

value of 0.0001 was used to reduce the time of compu-

tations while limiting the order of magnitude simula-

tion results of stoichiometric coefficients to 10. A total

of 259 species overlapped between our set of species

models and SPINGO species assignment when consid-

ering species identified at least in 10% of the micro-

biome samples (Additional file 1, Table S1). In the next

step, the retrieved microbial abundance information for

each sample was integrated into a community model-

ling setup obtaining personalised microbiome models

using the automated module of the microbiome model-

ling toolbox [24] called mgPipe within the COBRA

toolbox [92] (commit: b097185b641fc783fa6fea4900bd-

d303643a6a7e). Briefly, the metabolic models of the

community members are connected by a common

compartment, where each model can secrete/uptake

metabolites. An average European diet was applied as

input constraints for the metabolite (diet) update reac-

tions in each microbiome model [46]. The average

European diet (cf. Additional file 1: Table S4) was ex-

trapolated from an Austrian survey, which included

1002 participants from different ages [98]. A commu-

nity objective function was formulated based on the

sum of each microbial model objective function and

constrained to a lower bound of 0.4 per day and upper

bound of 1 per day, corresponding to a faecal excretion

of once every 2.5 days to once a day. A set of exchange

reactions connects the shared compartment to the en-

vironment enabling to predict metabolite uptake (from

the defined diet) and secretion flux rates (metabolic

profiles/NMPCs) consistent with the applied con-

straints. The personalisation of each microbiome model

was achieved by adjusting stoichiometric coefficients in

the community biomass reactions to each sample’s rela-

tive microbial abundance after removing undetected

species from the community models.

Relative reaction abundances were calculated by

summing the number of species having the reaction in

a microbiome model and scaling the sum by the

respective species relative abundance. Community

metabolic profiles of these microbial communities were

assessed using flux variability analysis on the exchange

reactions [99]. AGORA microbial metabolic recon-

structions used for the construction of the community

models were downloaded from the VMH (www.vmh.

life, [46]). All computations were performed in

MATLAB version 2018a (Mathworks, Inc.), using the

IBM CPLEX (IBM, Inc.) solver through the Tomlab

(Tomlab, Inc.) interface.

Statistical analyses of fluxes

The NMPCs were log-transformed such that the

skewness of the distribution was minimised [100].

This type of transformation was applied because of

the very differently skewed distributions of the single

NMPCs. Then, outliers were excluded using the 4-SD

outlier rule as before. Only fluxes with more than

50% non-zero values were retained in analyses. Fur-

thermore, NMPCs with distributions not suitable for

statistical analyses (e.g. distributions with a high num-

ber of observations with exact the same numerical

value) were excluded resulting in 129 NMPCs in-

cluded into the analyses.

The NMPCs were analysed with mixed linear regres-

sions including the batch as random effects. Including

the batch variable as a random effect has a higher stat-

istical power in comparison with the fixed effect ap-

proach but relies on more restrictive assumptions. We

tested the corresponding random effect assumption by

Hausman specification tests and found no indications

of violations of the random effects assumption. Note

that this possibility to account for batch effects via

random effects is not available with fractional regres-

sions where batch effects were corrected via fixed

effects.

We performed the same analyses as with the metage-

nomic data, with the sole exception of replacing the frac-

tional regression model with the linear mixed model. In

all other aspects, the analyses followed the same scheme.

Multiple testing correction was performed using the

FDR, correcting for 129 tests.

Analyses of species contribution to fluxes

To investigate the contribution of species and genera,

we calculated for all included genera and all analysed

fluxes, the pairwise correlation, and the correspond-

ing variance contribution (the squared correlation).

We classified every correlation above 0.5 (equal to

25% of variance contribution) as a strong correlation

in accordance with classical classifications of effect

size [101].
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