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Abstract

Parkinson’s disease (PD) is a neurodegenerative disease inducing dystrophy of the motor

system. Automatic movement analysis systems have potential in improving patient care by

enabling personalized and more accurate adjust of treatment. These systems utilize

machine learning to classify the movement properties based on the features derived from

the signals. Smartphones can provide an inexpensive measurement platform with their

built-in sensors for movement assessment. This study compared three feature selection

and nine classification methods for identifying PD patients from control subjects based on

accelerometer and gyroscope signals measured with a smartphone during a 20-step walk-

ing test. Minimum Redundancy Maximum Relevance (mRMR) and sequential feature selec-

tion with both forward (SFS) and backward (SBS) propagation directions were used in this

study. The number of selected features was narrowed down from 201 to 4–15 features by

applying SFS and mRMRmethods. From the methods compared in this study, the highest

accuracy for individual steps was achieved with SFS (7 features) and Naive Bayes classifier

(accuracy 75.3%), and the second highest accuracy with SFS (4 features) and k Nearest

neighbours (accuracy 75.1%). Leave-one-subject-out cross-validation was used in the anal-

ysis. For the overall classification of each subject, which was based on the majority vote of

the classified steps, k Nearest Neighbors provided the most accurate result with an accu-

racy of 84.5% and an error rate of 15.5%. This study shows the differences in feature selec-

tion methods and classifiers and provides generalizations for optimizing methodologies for

smartphone-based monitoring of PD patients. The results are promising for further develop-

ing the analysis system for longer measurements carried out in free-living conditions.
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Introduction

Parkinson’s disease (PD) [1] is a progressive neurological disease affecting the motor ability of

the patient, by inducing involuntary tremor at rest, rigidity and slowness of movement [2].

Additionally, PD may cause difficulties in walking by impacting balance and increasing the

frequency of falls or cause the inability to fluently walk through visual obstacles, also known as

freezing of gait [3]. The symptoms may be suppressed by levodopa medication, which com-

pensates the loss of dopamine in the central nervous system, but the effect of the medication

varies on an individual level and is dependent on many factors. PD cannot be cured, but with a

successful symptom management plan, the quality of life of the patient can be maintained for

decades.

The Movement Disorder Society has developed the clinical diagnostic criteria for PD,

which was last revised and published in 2015 [2]. The diagnosis consists of excluding any other

diseases with similar symptoms and the detection of at least two out of three cardinal features

of PD. Currently the assessment of PD patients is based on subjective assessment by a neurolo-

gist, including physical tests and interviews of the patient, but not necessarily using any stan-

dard format of questionnaire or test sequence like the Unified Parkinson’s Disease Rating

Scale (UPDRS) [4]. However, UPDRS is widely used in categorizing the symptoms during

research studies, for example by Eskofier et al. [5] and Arora et al. [6].

As PD is a progressive disease, the patients regularly visit doctors to follow-up their health

and to adjust the treatments if necessary. These follow-ups are based on subjective visual

assessment by the neurologist and patient’s own description of the symptoms. However, visual

assessment is prone to errors. The severity of symptoms of a PD patient changes on a daily

basis due to medication intake, stress, or the overall health of the patient. Therefore, there is a

need for methods to objectively assess PD symptoms for longer periods to maintain appropri-

ate medication balance and the quality of life at home. Furthermore, up to one-fourth of diag-

noses are incorrect when the analysis is only made based on the initial visit [7, 8]. Diagnostic

accuracy improves during follow-ups, which also indicates that a longer period of monitoring

time would help in reaching the correct diagnosis immediately. As wearable sensor develop-

ment has been increasing in recent years, the option for objective assessment of patients at

home without increasing the number of clinical visits has become more feasible.

Objective measurement methods have been studied and applied in detecting and monitor-

ing PD. Wearable sensors have been used in PD to study various different motor symptoms,

for example, tremor [9], rigidity, freezing of gait [10–12] and the risk of fall [13, 14] or fall

detection [15, 16] both in the clinic and at home. For example, Del Din et al. [17] discovered

that wearable sensors provide accurate information for the analysis of gait characteristics in

free-living environments. Schlachetzki et al. [18] studied the differences of gait properties in

the clinic by conducting 10 meter walking tests for 190 PD patients and 101 age-matched con-

trols by attaching inertial sensor units to both shoes. The difference between gait parameters in

PD patients and controls was significant at moderate stages of the disease. These studies show

that the changes in movement can not only be observed visually but also measured quantita-

tively with wearable sensors.

Machine learning approaches have been popular in many areas, and the use has also

increased in the research in PD application area. Several machine learning studies featuring

different symptoms have been conducted with a varying number of participants [5, 10, 12, 19–

23]. Most of the studies implementing machine learning in assessing PD symptoms at the labo-

ratory or clinic environment have collected a relatively small dataset (n = 5–20) of PD patients

[5, 10, 19–21]. Some have also collected a group of healthy controls [12, 22]. There is a larger

study by Klucken et al. [23], in which 92 subjects were used in the training phase and 81
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subjects were used in an independent validation phase. Clinic and laboratory studies have

reached classification results up to 96% in detecting freezing of gait [10, 12, 21]. There are sev-

eral studies reaching to accuracies of 82–90% in detecting other symptoms [5, 19, 20, 23].

In addition to the clinic measurements, few home or free-living studies have been con-

ducted as well. A small-scale test by Arora et al. [6] showed that Random Forest (RF) is an effi-

cient classification method in detecting PD from controls using gait. 98% sensitivity and

specificity were achieved in their study. Larger datasets of several hundreds or thousands of

participants have been collected by recruiting the subjects personally [24] or completely

remotely using the subjects own cell phones to participate and collect the data [25, 26]. This

implies that large datasets can be collected via smartphone with relatively small resources. The

selection of the dataset depends on the research question, for example Nguyen et al. [27] used

the data of 6805 subjects with less balanced groups, whereas Mehrang et al. [28] used only

1237 subjects of the same dataset but with age-matched PD patients and controls. They dis-

criminated PD patients from healthy controls with RF receiving accuracy, sensitivity and spec-

ificity of 70% each. Further, the effects of taking levodopa medication have been detected with

an area under the curve value of 0.7 using K-nearest neighbours [27] and accuracy of 71%

using RF [26] classification methods. Body fixed sensors can also monitor for example, walk-

to-sit and sit-to-walk transitions to discriminate healthy older adults from mild and severe PD

patients (85–92% accuracy using Support Vector Machine -type classifier) [24].

The gaps remaining in the existing literature seem to be the following: a variety of symp-

toms has been assessed in clinic-based measurements, whereas most of the home measure-

ments have currently only discriminated PD patients from healthy controls although some

studies included the study of medication effects [27]. Also, some of the earlier studies are

rather small in the number of participants, therefore statistically powerful datasets are needed

to assess the symptoms at home using machine learning. Finally, machine learning does not

have a single methodology that suits for every purpose. Therefore, testing several methods for

the datasets before analyzing the details is important to find optimal methodologies for the

type of data used in the study, and to gather more knowledge on which machine learning

methods are the most useful in this application area.

The research question of this study was to determine, what are feasible ways of selecting the

features and classifying the walking tests performed at the clinic [29]. We aimed to analyze dif-

ferent feature selection methods to find the most feasible features for detecting the differences

in walking. We also aimed to test the performance of different machine learning algorithms to

find suitable methods to differentiate the PD group and control group from each other. These

research questions aim to provide more knowledge on the use of smartphones in measuring

PD patients, and to provide general information of the machine learning methodologies suit-

able for this application area.

This article is structured as follows: Material and Methods section provides the details of

the dataset used in this study, and the methods used in the human activity recognition chain.

Results section provides the numerical and graphical results of the feature selection and classi-

fication. Discussion section analyzes the results compared to earlier state-of-art and discusses

possible limitations of the study and future work. Finally, Conclusions section provides a sum-

mary of the study and our main conclusions.

Material andmethods

Material

Data collection was performed in Satakunta Hospital District, Pori, Finland during 2018 [29]. 103

subjects participated in the study, and 97 subjects went through the whole study protocol. Patients
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and control subjects were recruited from outpatients of Satakunta Hospital District and volunteers

living in the same area. Before conducting the measurements, the subjects were classified accord-

ing to the Finnish Unified Parkinson’s Disease Rating Scale, section V (FIN-UPDRS-V) [4] to cat-

egories with score 0–5, 0 indicating no symptoms of PD and scores 1–5 indicating the increasing

severity of PD symptoms. The subjects signed an informed consent. The study protocol was

approved by the Ethics Committee of the Hospital District of Southwest Finland in Turku, Fin-

land (ETMK 101/18012017) and the National Supervisory Authority forWelfare and Health (Val-

vira) in Helsinki, Finland approved the study protocol (identification number 394–2018). More

details of the study protocol and ethical aspects are discussed by Jauhiainen et al. in [29].

In order to optimize the performance for detecting both PD and non-PD subjects, the data-

set needs to have enough training data for both groups. Thus, a balanced subset was selected

from the study population: there were 29 control subjects successfully recorded at the clinic;

thus we also selected 29 measured PD patients for this study. The selection criteria was the fol-

lowing: the PD patients were included by the severity of the symptoms in the UPDRS score.

The patients with less severe symptoms were excluded from the dataset. All patients with a

score of 1 (18 in total), and 4 patients with a score of 1.5 were excluded. The exclusion of these

subjects during the matching phase can be justified, since the medication schedule of the PD

patients is not interfered and therefore, some of the patients who took the medication just

before the test had only very mild symptoms or even were asymptomatic, if they were respond-

ing well to their normal dose. Since not all patients with score 1.5 were excluded, the selection

of inclusion and exclusion of those patients was random. The UPDRS score distribution of all

patients in the selected dataset is seen in Fig 1.

Fig 1. The distribution of PD patients based on the total Unified Parkinson’s Disease Rating Scale (UPDRS). The modified score is used to evaluate the symptoms, 0
being no symptoms, and 5 denoting full bed rest or using a wheelchair.

https://doi.org/10.1371/journal.pone.0236258.g001
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The distribution of PD patients between scores 1.5–4 was relatively homogenous, although

each subgroup is rather small to be analyzed separately. In addition, the basic background

information and medical history was recorded from all the subjects. The descriptive informa-

tion of the cohort is shown in Table 1.

It can be seen in Table 1 that the gender distribution of the subjects is skewed: whereas the

number of PD patients is almost equal between men and women, there are many more female

controls compared to the male controls. However, the other parameters are similar among the

two groups, such as the mean age and the body mass index between groups. In addition, any

earlier diagnoses were recorded for later use in evaluating the machine learning model perfor-

mance. For example, if misclassifications occurred, the subject information could be checked

for any explanatory factors affecting the walking test.

Methods

All data analysis of this study was performed with MATLAB R2018a version (The MathWorks,

Inc, Natick, MA). Data analysis of this study was following the general workflow of classifica-

tion studies, presented for example, by Bulling et al. [30] and later by Haladjian et al. [31]. The

workflow is illustrated in Fig 2.

Walking data were collected using a smartphone inertial sensors, and the data were first

preprocessed and segmented into individual strides. A large set of features, 201, were calcu-

lated from each stride, and the most appropriate features were selected to be used in the feature

selection phase. Finally, the strides were classified into two classes: PD or non-PD, and the

final classification of subjects was the class with majority of the strides. Each processing step is

discussed in detail in the following sections.

Data collection

A walking test was used to measure the physical condition of the subjects in addition to the

subjective UPDRS assessment made by the study physiotherapist [29]. The protocol from the

mPower study [25] was adopted, and each subject walked indoors in a straight hallway for 20

steps. The physiotherapist counted the steps silently and asked the subject to start and stop

walking accordingly [29]. The subjects did not count their steps, since rhythmic audio or con-

scious counting is known to improve the walking of PD patients [32–34]. In practice, some of

Table 1. Demographic data of cohort used in study.

Parkinson’s Disease Control Total

Number of subjects 29 29 58

Age, Mean ± standard deviation 69.1 ± 7.9 years 60.4 ± 14.1 years 64.8 ± 12.2 years

Body mass index (kg/m^2), mean ± standard deviation 26.4 ± 3.4 26.6 ± 4.0 26.5 ± 3.7

Gender (Female) 15 24 39

Gender (Male) 14 5 19

Number of steps 1075 1043 2118

https://doi.org/10.1371/journal.pone.0236258.t001

Fig 2. General workflow of the machine learning system from [31]. Figure adapted from the original source.

https://doi.org/10.1371/journal.pone.0236258.g002
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the subjects took an extra step after being asked to stop walking. The walking test was con-

ducted twice for each subject, but some of the recordings were unsuccessful. Thus, each

included subject had 19–41 steps in total in the analysis [29].

During the walking tests, acceleration and gyroscope signals were collected with built-in

sensors of an Android smartphone (Nokia(R) 6, with Android 8) attached firmly to subject’s

waist in a bag [29]. The device orientation with the walking direction is illustrated in Fig 3.

From the subject’s perspective, The x-axis was defined to be the plane in the vertical direc-

tion (up is positive), the Y axis in the transverse direction (right is positive), and the Z axis in

the anterior-posterior direction (forward is positive). Data collection was initiated and ended

with another smartphone, which was used by the study physiotherapist as a controller for the

data collection smartphone. The data was stored as separate files in the controller smart-

phone’s internal memory, and transferred manually to the database.

Fig 3. The orientation of the smartphone during 20 step walking tests: X, Y and Z axes denote up-down, right-left and forth-back directions, respectively. Positive
Z axis denotes the walking direction, when walking a straight line.

https://doi.org/10.1371/journal.pone.0236258.g003
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Preprocessing

In the beginning of the data processing, only recordings that included both acceleration and

gyroscope data files were selected for preprocessing. Out of 97 participants, 80 subjects had the

complete dataset for at least one recording of analyzable walking data, and in total 146 record-

ings were successful. The final dataset (n = 58), was selected from these successful recordings

by balancing the study and control groups, that is discarding 22 patients with scores 1 or 1.5,

as discussed earlier in the Materials section. Example signals of raw and preprocessed data are

illustrated in Fig 4 below.

The accelerometer and gyroscope signals collected from each walking test were synchro-

nized by removing any excessive parts of the beginning of the files, such that the walking tests

were aligned from each sensor. This operation also removed the part of the signals not belong-

ing to the actual test. Both signals included three channels for x-, y- and z-axis (Fig 3). The sig-

nals were then interpolated at a sampling frequency of 100 Hz, since the phone sensors were

using slightly asynchronous sampling. Then, all signals were smoothed with a fourth order

low-pass Butterworth filter with a cutoff frequency at 20 Hz, earlier used in gait analysis studies

by Zhu et al. [35]. Also, it has been shown that meaningful human movement is below 20 Hz

[36], thus justifying the selected cut-off frequency.

Segmentation

The relevant information of gait is within individual steps and in the combination of several

consecutive steps. This study aimed to differentiate the walking features of PD patients and

control subjects within single steps, and then to classify the subjects into these two classes

Fig 4. Example signal from raw ang low-pass filtered walking signal, from the x-axis accelerometer.

https://doi.org/10.1371/journal.pone.0236258.g004
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based on the majority of the classified steps. Thus, a stride detection algorithm was developed

based on and modifying the earlier work by Haladjian et al. [31] to identify each step of the

walking segment. The aim of the walking detection was to detect individual steps and to reject

the inactive periods from the beginning and the end of the measurements.

The vertical direction (x-axis) of the acceleration signal recorded in each walking test was

used to detect the beginning of each step. A heel strike, illustrated in Fig 5 with a red dot, trans-

lates to the signal as a sharp, negative acceleration in the signal. The local maxima in the signal

were also considered. These were corresponding to the toe-off stage of a step, where one foot

was just about to leave the ground. Detecting the local maxima and minima of the signal pro-

duced a more accurate measure of the duration of ground phase of each step.

To distinguish the walking segments from the inactive period, a wavelet transformation was

applied to the x-axis (vertical) of the acceleration signal. This made it easier to visualize the

minima and maxima of the signal waveform. Peaks were detected as local maxima that were

above a positive acceleration threshold, and troughs were detected as local minima that were

below a negative acceleration threshold. Generation of a typical pattern of accelerometer signal

in vertical direction during one step is illustrated in Fig 5.

After all peaks and troughs were identified, two segments were measured per step cycle. For

each step i, the time from minimum to maximum stride amplitude (Ai), and the time from

maximum to minimum stride amplitude (Bi) were measured. The mean duration of these seg-

ments was calculated from all the steps, and the length of the step was a fixed window from the

sum of A and B. This approach was based on an earlier study [31]. This process was performed

to all walking recordings. This implementation for walking is developed with a certainty, that

the recorded files only contain walking and/or standing, and therefore no other types of activ-

ity are present to disturb the stride detection.

Feature extraction and selection

Once individual steps were segmented from walking tests, 201 statistical features were calcu-

lated for each step. These features included for example, mean, median, and standard deviation

Fig 5. One step cycle from a filtered accelerometer signal in the vertical direction (from heel strike to heel strike). The peaks (green dot) and troughs (red dots) were
identified as the local maxima and minima above and below a threshold, respectively. Thresholds are indicated by the green and red dotted lines. Two segments, Ai and
Bi were measured for each step i. A denotes the time from the beginning of a heel strike to a toe-off. B denotes the time from the toe-off to the next heel strike.

https://doi.org/10.1371/journal.pone.0236258.g005
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calculated for every axis of each signal as well as comparative features. Features comparing the

recorded signals, such as correlation between two axes, were calculated between ACC and

GYRO signals on different axes (for example, ACC-X and GYRO-Y), or different axes of the

same sensor (for example, ACC-X and ACC-Z). Similar features have been used in previous

PD detection studies as well, for example by Mehrang et al. [28] and Arora et al. [6]. All the cal-

culated features are listed in the S1 Table.

Feature selection is often used to pick the best features from a large initial set of features

thus decreasing the computational demand and improving generalization of the machine

learning method. Three feature selection methods were compared in the study: minimum

Redundancy Maximum Relevance (mRMR) [37], sequential forward feature selection (SFS),

and sequential backward feature selection (SBS) [38].

In general, maximum relevance methods select features based on maximummutual infor-

mation by adding more features in the subset. However, they may often contain material that

is redundant in the selected subset. Minimum Redundancy Maximum Relevance (mRMR)

optimizes the relevance and minimizes the redundancy of selected features. MRMR compares

mutual information of two features and aims to choose the ones that affect the result the most

(maximum relevance) but they are still different enough (minimum redundancy) [37]. The

mRMR algorithm has been used in studies related to classifying pedestrian information [39],

identifying physical activities [40] and recognizing early PD from voice recordings [41] and

therefore, it could be suitable for assessing gait features of PD patients as well.

The mRMR selection calculates the best features based on the desired number of features

given as an input, and the optimal features are selected during the execution of the algorithm.

Hence, mRMRmust be run several times, each time specifying a desired number of features,

to determine the optimal set of features. This can make mRMR less efficient, as finding the

optimal number of features may involve running mRMR on every possible feature set size in

the feature space. The optimal feature set was found by looking 20 separate trials of mRMR,

with the number of features derived ranging from five to 100 in increments of five. These fea-

ture sets were tested by using the Support Vector Machine (SVM), logistic regression, and lin-

ear discriminant analysis (LDA). SVM has been referenced in earlier classification studies

related to PD [24, 42], and the other two classifiers were selected to study, whether the type of

classifier has a noticeable effect in the feature number selection.

Sequential feature selection is based on sequentially adding or discarding features, until the

preset criterion does not change, and the classification result is “optimal”. Sequential feature

selection may run either forward or backward direction. Forward selection (SFS) starts with

one feature and sequentially adds new features by evaluating, which feature improves the result

the most, whereas SBS starts with all features and discards them one by one as long as there is

an improvement in prediction. Feature selection was performed individually for each classifier

thus obtaining the best sets of features for that particular classifier based on the two methods.

Classification and validation

We applied nine different machine learning algorithms to classify the steps to PD or control

steps based on the features selected in the previous step. The classification algorithms were:

• Classification tree

• Gaussian Kernel

• Linear discriminant analysis (LDA)

• Ensemble
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• k Nearest neighbours (kNN, k = 49)

• Logistic regression

• Naive Bayes

• Support Vector Machine (SVM)

• Random Forest (RF)

We selected these methods, since they can be considered as basic supervised learning algo-

rithms. Most of them have been used in the existing literature: SVM [24, 42], neural network

[5], Naive Bayes [43], logistic regression [44], kNN [45], LDA [22, 23], and RF [26, 27]. These

methods were applied the feature sets selected using SFS, SBS, and mRMR.

Two classifiers, namely kNN and RF required some additional setting and methods before

they could be applied. In the kNNmethod, the square root of the training set size has been pro-

posed as the rule for selecting the value of k [46], and an odd number should be used in binary

classification to avoid a tied vote. Based on these principles, we selected k = 49 for this study.

Some studies have also suggested that k should be between 1–10 [45], but in our study the

selection of k = 49 provided better results. In general, the higher is the k, the more generaliz-

able is the model and less overfitting it contains. RF has been implemented in two ways: first

by utilizing all 201 features in the classification, and then by recalculating the classification

with 20 most important features selected by the RF classifier. In addition, mRMR features

were used for RF as well. As the RF inherently ranks the features in order, it is not sensible to

use the SFS or SBS feature selection methods with it.

The performance of the classifiers was evaluated using a leave-one-out cross validation for

each subject, where in each iteration the steps of all but one subject were used to train the clas-

sifier, and the remaining subject’s steps were used to test the classifier [47]. Eight of the classifi-

ers were used together with the three feature selection methods, and thus the feature selection

approaches were compared simultaneously. RF was used by repeating the leave-one-subject

out method 11 times for each subject, and the results were calculated as an average of the clas-

sifications. 11 repetitions ensured, that there can be no tied votes when classifying the steps

and that the effect of variability of the RF algorithm is minimized.

The performance of the methods was then tested by comparing the overall accuracy, as well

as the sensitivity and specificity of the classification. Accuracy is the ratio of correctly classified

steps to all steps. In this study, sensitivity means the accuracy of detecting true PD steps (the

ratio of correctly classified PD steps), and specificity means the accuracy of detecting true con-

trol steps (the ratio of correctly classified control steps in the testing data).

Additionally, the performance was evaluated subject by subject, by further classifying the

subject into PD or control group based on majority of the classified steps. Thus, if more than

50% of the steps were classified as PD steps, the whole subject is classified as a PD patient, and

vice versa. If misclassifications occurred, the collected health information of the subjects was

checked to identify and understand possible explanations for misclassification. The results of

this step are presented for the highest performing classifiers selected by the individual step

classification.

Statistical testing was performed to the classifiers to study the significance of the differences

in the results. Firstly, a non-parametric Cochran’s Q test was used to test the significance of a)

individual step classifications with nine different classifiers, and b) the overall classification of

the subjects (majority of the steps classified in the correct category). The null hypothesis is that

there is no statistical difference between the classifiers in the classification accuracy. The null
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hypothesis is rejected, if the p< 0.01. A post-hoc comparison of classifier pairs was performed

with an additional Dunn’s test.

Results

Feature selection

The optimal number and set of features found by the mRMR algorithm was tested as discussed

in the Methods section. The overall results between 5 to 100 features with SVM, logistic regres-

sion, and LDA are presented in Fig 6.

This comparison resulted in the best results between 5 and 20 features. The detailed values

for the classifiers and feature selection methods are illustrated in Table 2. With all three classi-

fiers, the accuracy started to decrease when more than 20 features were selected However, the

optimal number of features was not the same for all the classifiers or the performance metrics.

The changes were, however, rather small which can be seen in Table 2.

The highest overall accuracy was found for 15 features using SVM, 10 features using LDA,

and 10 or 15 features using logistic regression. Therefore, 15 was chosen as the final number of

selected features for mRMR for all the classifiers, and it was used further in this study. The

overall number of selected features in each method is summarized in Table 3.

Table 3 shows that in SFS the number of selected features is 4–8, whereas SBS selection has

selected more features, between 86–200. SBS calculation was computationally challenging. For

example, with SVM classifier the analysis took several weeks even with a high-performance

PC. This can be compared to mRMR, which lasted a few minutes, RF took only 8 hours when

Fig 6. Accuracy plotted for 5–100 features selected with the mRMR algorithm and using the Support Vector Machine classifier,
logistic regression and linear discriminant analysis. The highest result for each classifier is marked with an x.

https://doi.org/10.1371/journal.pone.0236258.g006
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using all the features, and SFS for all classifiers around 24 hours. Therefore, the computational

needs of these algorithms are very different.

In RF classification, the algorithm was first implemented with all 201 features. After the

first round, 20 most significant features decided by the algorithm were selected, and the classi-

fication was performed again. The algorithm was also tested with features selected with

mRMRmethod.

Classification methods

The results for nine different classifiers with three different feature selection methods are

shown in Table 4.

The highest accuracy was obtained using Naive Bayes classifier with SFS (75.3%), highest

sensitivity also with Naive Bayes using mRMR (87.8%), and highest specificity with kNN and

SFS (74.2%). Although Naive Bayes + SFS combination had the highest accuracy and sensitiv-

ity (of the SFS features), it had lower specificity than many other classifiers. The worst per-

forming classifier seems to be the Gaussian Kernel with SBS which had all three performance

metrics less than 50%.

The statistical significance of the comparison of classifiers was tested with Cochran’s Q

test. As Cochran’s Q test showed statistical significance (p<0.01), Dunn’s post-hoc test was

applied for pairwise comparison of the classifiers. The results of the post-hoc statistical test are

in Fig 7.

Fig 7 shows, that most of the pairwise comparisons have a p-value of p< 0.01, meaning

that the results of the classifier pairs are not statistically similar. Five classifiers with highest

accuracy have been highlighted with blue background, and from them we can notice that logis-

tic regression and LDA have high similarity (p-value = 0.903), as well as Naive Bayes and SVM

Table 2. Detailed classification results (accuracy) obtained with Support Vector Machine, logistic regression, and linear discriminant analysis for minimum Redun-
dancy MaximumRelevance sets between 5–20 features.

Number of features Support Vector Machine Linear Discriminant Analysis Logistic regression

5 66.0% 67.8% 68.2%

10 68.3% 70.0% 70.1%

15 70.5% 69.2% 70.1%

20 70.2% 67.2% 69.0%

https://doi.org/10.1371/journal.pone.0236258.t002

Table 3. Number of selected features with different classification and feature selection methods.

Number of features

Classifier mRMR Sequential FFS Sequential BFS

Linear discriminant analysis 15 8 169

Ensemble 15 6 187

Gaussian Kernel 15 5 199

K Nearest Neighbours 15 4 174

Logistic regression 15 7 200

Naive Bayes 15 7 143

Support Vector Machine 15 5

Classification tree /Decision tree 15 5 86

Random Forest (all features) 201

Random Forest (20 best features) 20

Random Forest (mRMR features) 15

https://doi.org/10.1371/journal.pone.0236258.t003
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Table 4. Classification of individual steps with nine classifiers and three feature selection methods.

Accuracy Sensitivity Specificity

Classifier mRMR SFS SBS mRMR SFS SBS mRMR SFS SBS��

Linear discriminant analysis 69.2% 75.0% 65.8% 74.8% 80.1% 66.0% 63.7% 69.8% 65.5%

Ensemble 68.2% 70.6% 64.1% 65.6% 68.1% 60.4% 70.8% 73.0% 67.8%

Gaussian Kernel 47.8% 71.7% 43.5% 49.0% 74.5% 46.2% 46.7% 68.9% 40.7%

K Nearest Neighbours 66.6% 75.1% 62.1% 65.6% 75.9% 58.2% 67.6% 74.2% 66.1%

Logistic regression 70.1% 74.6% 67.9% 72.9% 79.0% 72.3% 67.3% 70.2% 63.6%

Naive Bayes 71.3% 75.3% 66.3% 87.8% 83.7% 87.8% 54.8% 66.9% 44.8%

Support Vector Machine 70.5% 74.3% 69.3% 75.7% 83.2% 66.3% 65.3% 65.4% 72.2%

Classification tree /Decision tree 66.0% 66.7% 71.5% 63.4% 66.1% 64.1% 68.6% 67.3% 79.0%

Random Forest�:

Random Forest (all features) 67.9% 62.8% 72.9%

Random Forest (20 best features) 71.4% 68.2% 74.6%

Random Forest (mRMR features) 71.7% 70.4% 72.9%

� Random forest was calculated with all features, 20 best features and mRMR features. SFS and SBS were not used for it.
��Abbreviations: mRMR = minimum Reduncancy, Maximum Relevance.

SFS = Sequenctial Forward feature Selection.

SBS = Sequential Backward feature Selection.

https://doi.org/10.1371/journal.pone.0236258.t004

Fig 7. Statistical testing results for Cochran’s Q test and post-hoc test with pairwise comparison of individual step classification. P-values above 0.01 are marked
with green background, and the best five classifiers compared are marked with blue background and white text. The classifier names with the highest accuracy are also
bolded. The classifier pairs are placed in the order of the p-value.

https://doi.org/10.1371/journal.pone.0236258.g007
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(p-value = 0.714). However, kNN does not appear to be similar to any of the other high per-

forming classifiers.

In the next phase, the overall classification of subjects was performed by major voting prin-

ciple. Classifiers for this phase were selected from the classifiers having the highest accuracy.

Classifications were performed with feature sets selected with SFS method. The results of the

overall classification of the five best performing classifiers are shown in Table 5.

The highest accuracy of subject-wise classification was obtained with kNN (84.5% accu-

racy). LDA and logistic regression performed equally well (81% accuracy). The misclassifica-

tion rate for the kNN was 15.5%, and for the other two 19.0%. The last two classifiers

presented in Table 5 had lower accuracy and higher misclassification rate. Cochran’s Q test

showed, that there was no statistical difference between these classifiers in the overall classifica-

tions (p-value = 0.203).

Discussion

The best performing classifier in the overall classification was kNN achieving accuracy, sensi-

tivity and specificity of 84.5%, 88.5%, and 81.3%, respectively. The other classifiers from the

best five all obtained better results than what was achieved in an earlier study by Mehrang et al.

[28]. Although our walking tests were based on the same mPower protocol, in our case, the

physiotherapist controlled the sensors and calculated the steps instead of the subject them-

selves as in [28]. Also, excluding the mild stages of the disease (UPDRS score 1 and some of

1.5) might have an effect on the results.

Compared to the results received by Arora et al. [6], our larger dataset might have brought

more variation to the PD symptoms. They received an average accuracy of 98.5% and a speci-

ficity of 97.5%, by conducting multiple walking tests and posture tests daily and performed by

20 subjects, whereas we used only controlled walking tests. However, a collection of 20 subjects

is a rather small representation of the PD symptoms to be used in machine learning applica-

tions. It should also be noted, that while in Arora’s study [6] RF classifier provided significantly

better results than the other classifiers, this was not the case in our analysis.

The number of features obtained with different feature selection methods varied a lot. The

number of features selected by SFS method varied between 4–8, whereas with the features

selected by mRMRmethod, the best results were obtained with fifteen features. On the other

hand, SBS selected as many as 200 features. However, the best accuracy and sensitivity were

obtained with the 7 features selected by SFS and Naive Bayes classifier, and 4 features and kNN

classifier when considering the overall classification. Hence, using a small subset of features

kept the algorithm computationally efficient and provided the best classification results. Using

an excessive number of features would both slow the calculation and decrease the performance

due to model overfitting. We also noticed, that running the SBS algorithm was computation-

ally very demanding, and it did not provide more accurate results than mRMR or SFS. There-

fore, in this dataset, the use of SBS in further studies is not recommended.

Table 5. Overall classification of subjects based on classification of individual steps andmajority voting. Five highest performing classifiers were selected for compari-
son of overall classification. Columns on the right side present the number of subjects classified in each category.

Classifier Accuracy Sensitivity Specificity True positive True negative False positive False negative Sum

K-Nearest Neighbours (k = 49) 84.5% 88.5% 81.3% 23 26 6 3 58

Linear discriminant analysis 81.0% 78.1% 84.6% 25 22 4 7 58

Logistic regression 81.0% 78.1% 84.6% 25 22 4 7 58

Naive Bayes 77.6% 75.0% 80.8% 24 21 5 8 58

Support Vector Machine 74.1% 70.6% 79.2% 24 19 5 10 58

https://doi.org/10.1371/journal.pone.0236258.t005
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We did not interfere with the medication schedules or dosing for PD patients in this study.

Therefore, some misclassifications of PD patients may have occurred, if they took their medi-

cation just before the study. The amount of false negative overall classification was the lowest

with kNN classifier using SFS, in which three patients were classified as non-PD.

Three PD-patients and three control subjects were classified incorrectly with all three classi-

fiers with the highest overall accuracy (kNN, LDA, and logistic regression). Two of the control

subjects had gait affecting diagnoses, including arthritis, fibromyalgia, osteoporosis and an old

hip fracture. The third one had some diagnoses including orthostatic hypotension, but no

clear reason for misclassification. Regarding the misclassified PD patients, two out of three

were diagnosed only one year before the study, and the third one had taken the levodopa med-

ication only one hour before the study. Therefore, their misclassification could be due to these

findings.

The limitations of this study should be noted when interpreting these results. Since the

mean age of PD patients and controls was almost 70 and 60 years, respectively, both groups

had several additional health issues that might have had an effect in the walking tests. There-

fore, it is a challenge to identify which statistical features are describing PD, and which are

related to issues in movement in general. Higher age and additional diagnoses may also

increase the misclassification rate. However, misclassifications also happen in the traditional

process of diagnosing PD and separating the disease from similar conditions [7].

Another limitation or a challenge is to transfer the methods based on clinic data to record-

ings measured in a wild environment. The future aim of applying these methods is in the anal-

ysis of walking segments performed in free-living conditions at home. However, in order to

analyze relevant data, the walking segments need to be reliably detected. The current walking

detection algorithm suits well for clinic data, since we know that the 20 step walking tests only

contain walking or standing and thus, it is easy to extract the steps from the signal. However,

when we analyze the data collected from free-living environment, the signal may contain any

movement performed by the subject with or without an assistive device, such as a car, bicycle

or an elevator. Therefore, the walking recognition needs to be carefully designed and its reli-

ability verified.

Based on the results and literature discussed earlier in this work, the smartphone proves to

be a feasible device for measuring the symptoms of PD. It provides relevant accuracy for col-

lecting data with an inexpensive system, but it also allows the subject to move freely. Therefore,

it would be more convenient in remote studies compared to video systems or expensive wear-

ables. The results could be generalized to other datasets as well recorded with a smartphone

attached to the waist.

Further work with this dataset will include studying the classification of the PD patients

into several categories based on their UPDRS score. This classification could be used to detect

whether the patients are under the levodopa medication or not. When more control subjects

have been collected, we can also include the PD patients with scores 1 and 1.5 into the analysis.

The long-term aim is to build an automated analysis system for assessing the daily variations

of PD at home without disturbing the patient in their everyday life.

In the future, automated measurement systems could be used to monitor patients with

motor difficulties and provide an objective view to fast changing symptoms in free-living set-

tings. These traditional, computationally inexpensive classification approaches could for exam-

ple, enable the whole signal processing and data analysis chain being implemented into a

mobile device application thus providing an efficient tool for improving the quality of treat-

ment e.g. by better adjustment of medication. As healthcare service resources are limited, the

use of remote and mobile applications to store relevant information for planning effective care

is important.
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Conclusion

This study demonstrates the potential of using inertial sensors integrated in a smartphone

combined with machine learning classification methods to identify patients with PD. We com-

pared several methods in feature selection and classification phases of the machine learning

pipeline and obtained results that are with results found in prior literature.

The research question of this study was to determine, what are feasible ways of selecting the

features and classifying the walking tests performed at the clinic. The most feasible feature

selection method for this dataset was SFS that selected 4–8 features depending on the classifier

and resulted in the highest accuracy in classifying both individual steps and overall subjects.

Individual step classification was most accurate (75.3%) with Naive Bayes, but the overall clas-

sification was the most accurate (84.5%) with the kNN algorithm (with k = 49).

These accuracies are comparable to earlier studies found in the literature. The earlier litera-

ture has shown slightly higher accuracies for measurements performed at clinics or research

laboratories [22], and smaller datasets [6], but a lower accuracy for completely independent

home measurements [28]. Even though RF has been found very efficient in earlier studies [6],

it did not perform particularly well in our analysis. Evaluation of the methods found useful in

this study in further analyses of this dataset is therefore justified. Future work includes the

application of these methods into a free-living dataset, and the recognition of symptom

changes from walking. Also, relevant walking detection algorithms for free living data should

be investigated.
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31. Haladjian J, Haug J, Nüske S, Bruegge B. A wearable sensor system for lameness detection in dairy
cattle, Multimodal Technologies and Interaction. 2 (2018) 27.

32. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in
patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 62 (1997) 22–26.

33. Arias P, Cudeiro J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s dis-
ease patients, Experimental brain research. 186 (2008) 589–601. https://doi.org/10.1007/s00221-007-
1263-y PMID: 18214453

34. SuteerawattananonM, Morris GS, Etnyre BR, Jankovic J, Protas EJ. Effects of visual and auditory cues
on gait in individuals with Parkinson’s disease, J. Neurol. Sci. 219 (2004) 63–69. https://doi.org/10.
1016/j.jns.2003.12.007 PMID: 15050439

35. Zhu S, Ellis RJ, Schlaug G, Ng YS,Wang Y. Validating an iOS-based Rhythmic Auditory Cueing Evalu-
ation (iRACE) for Parkinson’s Disease, (2014) 487–496.

PLOS ONE Parkinson’s disease detection from 20-step walking tests using inertial sensors of a smartphone

PLOSONE | https://doi.org/10.1371/journal.pone.0236258 July 23, 2020 18 / 19

https://doi.org/10.1177/1545968313491004
http://www.ncbi.nlm.nih.gov/pubmed/23774124
https://doi.org/10.1016/j.gaitpost.2006.09.012
http://www.ncbi.nlm.nih.gov/pubmed/17101272
https://doi.org/10.1186/s12984-016-0154-5
http://www.ncbi.nlm.nih.gov/pubmed/27175731
https://doi.org/10.1371/journal.pone.0183989
https://doi.org/10.1371/journal.pone.0183989
http://www.ncbi.nlm.nih.gov/pubmed/29020012
https://doi.org/10.1371/journal.pone.0056956
https://doi.org/10.1371/journal.pone.0056956
http://www.ncbi.nlm.nih.gov/pubmed/23431395
https://doi.org/10.1007/s00415-016-8164-6
http://www.ncbi.nlm.nih.gov/pubmed/27216626
https://doi.org/10.1038/sdata.2016.11
https://doi.org/10.1038/sdata.2016.11
http://www.ncbi.nlm.nih.gov/pubmed/26938265
https://doi.org/10.2196/12808
https://doi.org/10.2196/12808
http://www.ncbi.nlm.nih.gov/pubmed/30916665
https://doi.org/10.1007/s00221-007-1263-y
https://doi.org/10.1007/s00221-007-1263-y
http://www.ncbi.nlm.nih.gov/pubmed/18214453
https://doi.org/10.1016/j.jns.2003.12.007
https://doi.org/10.1016/j.jns.2003.12.007
http://www.ncbi.nlm.nih.gov/pubmed/15050439
https://doi.org/10.1371/journal.pone.0236258


36. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR. Quantitative wearable sensors for objective
assessment of Parkinson’s disease, Movement Disorders. 28 (2013) 1628–1637. https://doi.org/10.
1002/mds.25628 PMID: 24030855

37. Peng Hanchuan, Long Fuhui, C. Ding. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and
Machine Intelligence. 27 (2005) 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID:
16119262

38. Aha DWRL Bankert. A comparative evaluation of sequential feature selection algorithms, Learning
from data, Springer, 1996, pp. 199–206.

39. Zaki MH, Sayed T. Using automated walking gait analysis for the identification of pedestrian attributes,
Transportation research part C: emerging technologies. 48 (2014) 16–36.

40. Jatoba LC, Grossmann U, Kunze C, Ottenbacher J, Stork W. Context-aware mobile health monitoring:
Evaluation of different pattern recognition methods for classification of physical activity, (2008) 5250–
5253.

41. Chen HL, Wang G, Ma C, Cai ZN, Liu WB,Wang SJ. An efficient hybrid kernel extreme learning
machine approach for early diagnosis of Parkinson׳ s disease, Neurocomputing. 183 (2016) 131–44.

42. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, et al. Monitoring motor fluctuations
in patients with Parkinson’s disease using wearable sensors, IEEE transactions on information technol-
ogy in biomedicine. 13 (2009) 864–873. https://doi.org/10.1109/TITB.2009.2033471 PMID: 19846382

43. Ghanad NK, Ahmadi S. Combination of PSO algorithm and naive Bayesian classification for Parkinson
disease diagnosis, Advances in Computer Science: an International Journal. 4 (2015) 119–125.

44. Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease, Expert Syst.
Appl. 37 (2010) 1568–1572.

45. Ma C, YangW, Cheng B. How the parameters of k-nearest neighbor algorithm impact on the best clas-
sification accuracy: In case of parkinson dataset, Journal of Applied Sciences. 14 (2014) 171.

46. Lall U, Sharma A. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources
Research. 1996Mar; 32(3):679–93.

47. Cawley GC, Talbot NL. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers,
Pattern Recognit. 36 (2003) 2585–2592.

PLOS ONE Parkinson’s disease detection from 20-step walking tests using inertial sensors of a smartphone

PLOSONE | https://doi.org/10.1371/journal.pone.0236258 July 23, 2020 19 / 19

https://doi.org/10.1002/mds.25628
https://doi.org/10.1002/mds.25628
http://www.ncbi.nlm.nih.gov/pubmed/24030855
https://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
https://doi.org/10.1109/TITB.2009.2033471
http://www.ncbi.nlm.nih.gov/pubmed/19846382
https://doi.org/10.1371/journal.pone.0236258

