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Abstract

Background: Several articles suggest that DNA methylation levels in blood relate to Parkinson’s disease (PD) but

there is a need for a large-scale study that involves suitable population based controls. The purposes of the study

were: (1) to study whether PD status is associated with DNA methylation levels in blood/saliva; (2) to study whether

observed associations relate to blood cell types; and (3) to characterize genome-wide significant markers (“CpGs”)

and clusters of CpGs (co-methylation modules) in terms of biological pathways.

Methods: In a population-based case control study of PD, we studied blood samples from 335 PD cases and 237

controls and saliva samples from another 128 cases and 131 controls. DNA methylation data were generated from

over 486,000 CpGs using the Illumina Infinium array. We identified modules of CpGs (clusters) using weighted

correlation network analysis (WGCNA).

Results: Our cross-sectional analysis of blood identified 82 genome-wide significant CpGs (including cg02489202 in

LARS2 p = 8.3 × 10–11 and cg04772575 in ABCB9 p = 4.3 × 10–10). Three out of six PD related co-methylation modules

in blood were significantly enriched with immune system related genes. Our analysis of saliva identified five

significant CpGs. PD-related CpGs are located near genes that relate to mitochondrial function, neuronal projection,

cytoskeleton organization, systemic immune response, and iron handling.

Conclusions: This study demonstrates that: (1) PD status has a profound association with DNA methylation levels in

blood and saliva; and (2) the most significant PD-related changes reflect changes in blood cell composition. Overall,

this study highlights the role of the immune system in PD etiology but future research will need to address the

causal structure of these relationships.

Keywords: DNA methylation, Epigenomics, Parkinson’s disease, Mitochondrial dysfunction, Immune system,
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Background

There is a growing interest in exploring the role of

DNA methylation in Parkinson’s disease (PD). Conflict-

ing evidence has been presented regarding the hypome-

thylation of intron 1 in the SNCA of PD patients [1–3].

A small epigenome-wide association study (EWAS) of

30 PD patients and 15 controls identified two loci,

FANCC cg14115740 and TNKS2 cg11963436, as hyper-

methylated in patients [4] and was able to replicate this

with bisulfite sequencing in a targeted analysis of 219

PD patients and 223 controls. While these results sug-

gest that PD status might be associated with changes in

DNA methylation levels in blood, there is a danger of

false-positive findings due to small sample sizes. In gen-

eral, DNA methylation studies are plagued by hidden

biases including systematic differences between cases

and controls in terms of DNA collection, DNA extrac-

tion, DNA storage, or bisulfite conversion. We have

previously shown that PD cases differ significantly from
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controls in terms of blood cell composition (notably

granulocytes [5]) which might confound the relation-

ship between PD status and DNA methylation levels.

There is a critical need for rigorous large-scale studies

that involve DNA samples from PD cases and suitable

controls that were collected and stored in an identical

fashion. Here we leverage our community-based case con-

trol study of PD to identify CpGs that relate to PD status

in blood or saliva. We also apply a systems biology data

analysis method (weighted correlation network analysis

[6, 7]) to identify PD related modules, i.e. clusters of

CpGs. WGCNA is a widely used method because: (1) it

circumvents the multiple comparison problem inherent

in large scale genomic data; and (2) it amplifies the

underlying biological signal in functional enrichment

studies [8].

Methods

Study population

Our study involved blood samples from 508 individuals

of European ancestry (289 PD patients and 219 con-

trols) and 64 individuals of Hispanic ancestry (46 PD

patients and 18 controls) who provided blood samples

for DNA extraction in the Parkinson’s Environment

and Genes (wave 1 known as PEG1) study we con-

ducted during 2000–2007 in central California. PEG2

study enrolment started in 2010 (ongoing) and 128 PD

patients and 131 controls provided saliva samples

(Additional file 1: Table S1). We selected saliva samples

from among PEG2 participants matched on age, sex,

and race for these methylation analyses. PD patients

enrolled in PEG1 were recently diagnosed (within three

years) and in PEG2 on average four years before they

were examined by UCLA movement disorder special-

ists. Movement disorder specialists (JB, YB) applied UK

Brain Bank and Gelb diagnostic criteria for diagnosing

idiopathic PD (iPD) and collected bio-samples [9–11].

In PEG1, eligible PD patients had to be residents of

Fresno, Kern, or Tulare Counties and lived in California

for at least five years; patients were identified by neu-

rologists, large medical groups, or public service an-

nouncements [12, 13]. In PEG2, PD patients were

identified through the California PD Registry operating

in the same counties [14]. Population controls were

identified using Medicare lists and residential tax asses-

sor records. Controls who provided saliva samples were

randomly selected from clusters of five neighboring

households study staff approached in person; one eligible

household member was allowed to enroll (see [12, 14] for

more recruitment details).

Demographic information, lifestyle factors, and medica-

tion use were collected in standardized interviews, includ-

ing lifetime information on cigarette smoking and coffee/

tea consumption, allowing us to calculate total pack-years

and average daily coffee/tea consumption. We also calcu-

lated levodopa equivalent doses at time of blood draw

based on patient reported PD medication histories [15].

DNA methylation profiling

DNA was extracted from peripheral whole blood and

saliva. We used the Illumina HumanMethylation450

BeadChip to determine methylation profiles from over

486,000 CpGs. The raw methylation data (beta values)

were preprocessed using the background normalization

method from the Genome Studio software. Sex concord-

ance was confirmed.

Statistical analysis

We regressed individual CpGs on potential confounding

variables (age, sex, and optionally blood cell counts) and

formed residuals. Replacing DNA methylation levels by

residuals is a widely used method for conditioning out

confounders (see e.g. [16, 17]). In our epigenome-wide

association analysis (EWAS), we related each CpG separ-

ately to PD status. Toward this end, we related the ad-

justed DNA methylation levels to PD status using the R

function “standardScreening” in the WGCNA R package.

The R function produces a t-test statistic and corre-

sponding two-sided p values. We also calculated empir-

ical p values by permuting associations between DNA

methylation levels in blood and PD status to strengthen

results. Abundance measures of blood cell types were es-

timated with the Houseman algorithm in the minfi R

package and the epigenetic clock software [18–20]. To

adjust for multiple comparisons (about 486,000 CpGs on

the Illumina array), we used the stringent Bonferroni

correction method resulting in a genome-wide signifi-

cance threshold of 0.05/500,000 = 10–7. The Bonferroni

correction method, which applies to independent hy-

pothesis tests, is highly conservative in light of the fact

that the CpGs tend to be highly correlated as can be

seen from our WGCNA analysis.

To investigate the biological function shared by genome-

wide significant (p < 10–7) CpGs, we assessed the func-

tional enrichment of genes that are located near the re-

spective CpGs according to the probe annotation table

from Illumina. Toward this end, we used the online

enrichment tool from the Database for Annotation,

Visualization and Integrated Discovery (DAVID v.6.7).

We also stratified by ethnicity since DNA methylation

levels can be associated with ethnicity [21]. To combine

the results from individuals of European and Hispanic

ancestry, we used Stouffer’s meta-analysis resulting in a Z

statistic, meta.Z, and a corresponding two-sided p value,

meta.P.

We used a systems biologic analysis approach based

on WGCNA [6, 7] to identify clusters of highly corre-

lated CpGs (co-methylation modules) in an unsupervised
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manner, i.e. agnostic of gene ontology. Toward this

end, we focused on the 250,000 CpGs with the highest

variance across individuals (ignoring PD status).

Modules were calculated using the blockwise module

function and a robust correlation measure (bi-weight

mid-correlation). The CpGs inside each module were

represented by a weighted average, the module eigengene

(ME), which is formally defined as the first principal com-

ponent. The MEs were correlated with PD status, chrono-

logical age, blood cell count estimates, and other sample

characteristics.

To gain insights into the biology underlying PD-related

modules, we carried out a pathway enrichment analysis of

genes using DAVID. For modules with more than 3000

CpGs, we focused on the 3000 CpGs with highest module

membership values.

Results

An overview of our statistical analysis is presented in

Fig. 1. Age, sex, and blood cell counts can have a pro-

found effect on DNA methylation levels. To adjust for

these possible confounders, we carried out two distinct

pre-processing steps that correspond to separate sets of

confounding variables. In our primary analysis, we only

adjusted for differences in age and sex because we hy-

pothesized that PD-related changes in DNA methylation

might reflect changes in blood cell composition and im-

mune system functioning [5]. In a secondary analysis,

we also adjusted DNA methylation levels for differences

in blood cell composition in order to find cell-intrinsic

changes associated with PD.

Epigenome-wide association study

DNA methylation in blood without adjustment for blood

cell composition

In our primary analysis, we related PD status with DNA

methylation levels that were adjusted for age and sex but

not for blood cell counts. We identified 82 genome-wide

significant CpGs (p < 10–7; Fig. 2a) in individuals of

European ancestry. A study of the chromosomal location

revealed that only 2% of the CpGs were located in a

CpG island compared to an expected proportion of

Fig. 1 Flowchart of analysis process. EWAS and WGCNA analyses in blood and saliva separately. aBonferroni, Benjamini corrected pvalues, and

FDR were also provided. bNo CpG with EWAS pvalues <10-7 was found; therefore, we relaxed the significance criteria
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31% (Fig. 2b). The most significant PD-related CpG,

cg02489202 (located in the mitochondrial gene LARS2),

tends to be hypomethylated in PD cases (p = 8.3 × 10–11;

Table 1). Similarly, hypomethylation in PD cases can be

observed for two highly significant CpGs in immune-

related genes cg04772575 in ABCB9 (p = 4.3 × 10–10) and

cg11334709 in C1orf200 (p = 7.5 × 10–10). Notably, results

among the remaining 79 CpGs include two CpGs in the

AZU1 gene, two Alzheimer’s disease (AD)-related genes,

CLSTN1 and CALM2, and a second mitochondria-related

gene, MIR1977.

We applied pathway enrichment analysis (based on

DAVID) to two sets of genes that are located near two

respective sets of PD-related CpGs: (1) 62 genes located

near the 82 genome-wide significant CpGs; and (2)

1177 genes located near the 2000 most significant

CpGs, respectively. Pathways and gene categories that

are significant after adjusting for multiple comparisons

can be found in Additional file 1: Table S2a. The set of

62 genes was significantly enriched with genes involved

in primary immunodeficiency (Additional file 1: Table

S2a). The set of 1177 genes was significantly enriched

with genes involved in both the adaptive and innate

immune response (the list of overlapping genes can be

found in Additional file 1: Table S2a), such as leukocyte

activation, cytokine production, antigen presentation,

and also in actin cytoskeleton organization. Sensitivity

analyses that excluded CpGs that co-located with SNPs

led to equivalent results (data not shown).

Our meta-analysis across individuals of European and

Hispanic ancestry revealed another highly significant CpG

cg00175838 in a mitochondrial gene DDAH2 (meta.P =

1.1 × 10–9) while maintaining high significance for both

cg02489202 in LARS2 (metaP = 4.7 × 10–11; Additional

file 1: Table S3) and cg27553947 in CLSTN1 (metaP

= 9.9 × 10–10).

DNA methylation in blood with adjustment for blood cell

composition

Our previous analysis identified several PD-related CpGs

that are located near immune-related genes. Since DNA

methylation levels differ greatly across blood cell types, it

is possible that these CpGs track PD-related changes in

cell composition. In a secondary analysis, we repeated our

EWAS analysis using DNA methylation levels that were

adjusted for blood cell count estimates. After adjustment,

Fig. 2 EWAS results for PD and blood-based DNA methylation analyses without cell composition adjustment. Differential methylation associated

with PD status in 508 PEG1 subjects of European ancestry adjusting for age and gender. a Manhattan plot of p values adjusted for age and gender

(red line: p value threshold of 10–7). b Distributions of CpGs relative to CpG island and gene regions for all 450,000 CpGs on the microarray and the 82

most significant coffee-associated CpGs listed in Table 1. c Distribution of DNA methylation levels for the top three most significant PD-associated CpGs

by PD status (1 = PD)
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Table 1 List of 82 PD-associated CpGs in blood-based analyses with blood cell composition adjustment

CpG Gene Chr. Position (bp) Relation to UCSC CpG island Gene region SNPs SNPs_10 cor p value

1 cg02489202 LARS2 3 45505334 Body −0.30 8.34E-11

2 cg04772575 ABCB9 12 123431865 Body rs73408862 −0.28 4.33E-10

3 cg11334709 C1orf200 1 9716019 S_Shelf TSS1500 −0.28 7.47E-10

4 cg17491368 1 211779938 −0.28 1.23E-09

5 cg16240816 2 65861662 rs80084148 0.28 1.25E-09

6 cg19879906 19 16392219 N_Shelf −0.28 1.40E-09

7 cg08704934 C3orf21 3 194826585 Body rs6799614 −0.27 2.64E-09

8 cg09993145 RUNX3 1 25291905 TSS1500 0.27 3.59E-09

9 cg01152726 LAMA3 18 21452844 TSS200 0.27 3.64E-09

10 cg09032544 CD247 1 167487295 Body 0.27 4.69E-09

11 cg10752406 AZU1 19 827776 TSS200 −0.27 4.96E-09

12 cg26341831 TMEM63A 1 226036279 Body 0.27 5.21E-09

13 cg01213231 ITGA5 12 54806218 Body −0.26 6.99E-09

14 cg16643542 AZU1 19 827843 1stExon rs34124897 −0.26 7.37E-09

15 cg21577598 CCDC57 17 80084751 N_Shore Body 0.26 8.11E-09

16 cg26793227 EPHA2 1 16483658 S_Shore TSS1500 rs57602506 −0.26 8.17E-09

17 cg16270399 LOC284276 18 74257894 Body −0.26 8.95E-09

18 cg22358291 WDR1 4 10101553 Body 0.26 1.38E-08

19 cg26681770 PMEPA1 20 56247302 Island 5′UTR rs36008751 −0.26 1.40E-08

20 cg01657758 SORL1 11 121349740 Body −0.26 1.46E-08

21 cg24168413 FXYD1 19 35630388 N_Shore 5′UTR rs77395635 −0.26 1.53E-08

22 cg26474124 2 70368457 N_Shore rs11685382 −0.26 1.66E-08

23 cg12792363 LGALS12 11 63274030 Body −0.26 1.79E-08

24 cg12500949 2 88357920 S_Shelf 0.26 1.81E-08

25 cg16580197 8 67841925 S_Shelf −0.26 2.20E-08

26 cg19709355 RARA 17 38504102 S_Shelf Body −0.26 2.27E-08

27 cg24339704 GNG7 19 2529022 S_Shelf 5′UTR rs740054 −0.26 2.32E-08

28 cg02600394 TXK 4 48136234 5′UTR 0.26 2.44E-08

29 cg23207054 CSF3 17 38171530 TSS200 −0.25 2.79E-08

30 cg14659511 DOCK9 13 99668433 Body 0.25 2.96E-08

31 cg19081101 CHI3L1 1 203156625 TSS1500 −0.25 3.05E-08

32 cg20357538 CHSY1 15 101777761 Body rs11855006 −0.25 3.31E-08

33 cg26279840 IKBKG X 153770418 TSS200 −0.25 3.35E-08

34 cg17879101 FAM53B 10 126329354 Body −0.25 3.37E-08

35 cg27640064 FOXK1 7 4752983 Body rs77026339 −0.25 3.50E-08

36 cg02505177 MGEA5 10 103574626 N_Shelf Body 0.25 3.55E-08

37 cg23189692 EIF4G1 3 184050393 N_Shelf Body −0.25 3.83E-08

38 cg15209885 CBX2 17 77753199 S_Shore Body rs72231015 −0.25 3.89E-08

39 cg19011001 ITPK1 14 93539613 Body −0.25 3.97E-08

40 cg17984638 TXK 4 48136452 TSS200 0.25 4.02E-08

41 cg17173442 RFXANK 19 19305340 S_Shore Body −0.25 4.10E-08

42 cg26489413 AMPD3 11 10476976 1stExon −0.25 4.15E-08

43 cg20720686 POR 7 75582881 5′UTR rs41295375 −0.25 4.16E-08

44 cg08069287 11 72868833 −0.25 4.42E-08
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none of the CpGs remained significant at a genome-wide

significance level in individuals of European ancestry

(Additional file 1: Figure S1a). However, 19 CpGs

remained significant at a suggestive significance level of

p < 5.0 × 10–6 (Additional file 1: Table S4). These 19

CpGs tended to be located in CpG islands (53% vs an ex-

pected proportion of 31%; Additional file 1: Figure S1b)

and not in gene bodies (11% vs 33%). The most significant

Table 1 List of 82 PD-associated CpGs in blood-based analyses with blood cell composition adjustment (Continued)

45 cg26963632 16 85558148 −0.25 4.49E-08

46 cg14023999 15 90543224 N_Shore −0.25 4.68E-08

47 cg02861056 PLEK 2 68592345 1stExon −0.25 4.86E-08

48 cg24185397 17 25659609 N_Shore −0.25 4.90E-08

49 cg13060970 PLEK 2 68592349 1stExon −0.25 4.93E-08

50 cg21252105 9 139459307 −0.25 5.07E-08

51 cg01752594 DLEU2 13 50696070 N_Shore Body −0.25 5.09E-08

52 cg14642045 UNG 12 109538736 S_Shelf Body rs3219221 −0.25 5.17E-08

53 cg08400494 CARS2 13 111318490 Body −0.25 5.34E-08

54 cg09298313 14 55569959 −0.25 5.36E-08

55 cg15961455 1 23590501 −0.25 5.38E-08

56 cg16000989 DCAF4L1 4 41983716 N_Shore 5′UTR −0.25 5.54E-08

57 cg14001486 PRKCH 14 61801201 Body 0.25 5.92E-08

58 cg12810837 CLEC2D 12 9822287 TSS200 0.25 5.93E-08

59 cg04182865 RNF14 5 141346431 N_Shelf TSS200 −0.25 5.99E-08

60 cg14004161 SNX22 15 64442561 N_Shore TSS1500 −0.25 6.84E-08

61 cg27553947 CLSTN1 1 9819767 N_Shelf Body rs76639688 −0.25 7.17E-08

62 cg05163268 5 180116385 rs11738824 0.25 7.20E-08

63 cg25416125 DGKA 12 56329615 Island 5′UTR 0.25 7.38E-08

64 cg21815704 GLRX2 1 193075249 S_Shore TSS1500 −0.25 7.41E-08

65 cg07196571 SNX22 15 64442578 N_Shore TSS1500 −0.25 7.46E-08

66 cg12007048 CTSD 11 1785701 S_Shore TSS1500 −0.25 7.47E-08

67 cg01554529 FBXO6 1 11722935 N_Shore TSS1500 −0.25 7.51E-08

68 cg27466532 RAPSN 11 47471400 TSS1500 −0.25 7.96E-08

69 cg16971827 CBL 11 119177430 N_Shelf 3′UTR 0.25 8.20E-08

70 cg18463607 EXOC1 4 56718320 N_Shore TSS1500 0.25 8.54E-08

71 cg13879047 GRB10 7 50774217 5′UTR −0.25 8.62E-08

72 cg19743406 LHFPL5 6 35771838 N_Shore TSS1500 rs59697285 −0.25 8.66E-08

73 cg08930843 ZNF438 10 31182298 5′UTR −0.25 8.76E-08

74 cg13451886 SLFN5 17 33568791 N_Shore TSS1500 0.24 8.89E-08

75 cg21495704 TYROBP 19 36399346 TSS200 rs56006731 −0.24 9.02E-08

76 cg09674502 GFI1 1 92953279 S_Shore TSS1500 −0.24 9.27E-08

77 cg27073431 CALM2 2 47404636 S_Shore TSS1500 −0.24 9.33E-08

78 cg21159128 SSBP3 1 54693933 Body −0.24 9.47E-08

79 cg04252203 3 194696866 −0.24 9.62E-08

80 cg13443575 SLFN13 17 33775961 N_Shore TSS200 −0.24 9.72E-08

81 cg05001044 MIR1977 1 567312 TSS1500 −0.24 9.74E-08

82 cg13716760 9 15371248 −0.24 9.95E-08

These are CpGs with p values < 10–7 for blood DNA methylation analyses in 508 PEG1 individuals of European ancestry adjusting for age and gender

Chr Chromosome, bp base pair, TSS transcription start site, TSS1500 within 1500 bps of a TSS, TSS200 within 200 bps of a TSS, UTR untranslated region, SNPs listing

dbSNP entries within a probe, SNPs_10 listing dbSNP entries within 10 bp of the CpG site
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CpG cg05001044 (p = 1.7 × 10–7) is hypomethylated in PD

cases. It is located within 1500 bps of a transcription

starting site for MIR1977, a site that was also implicated

in our EWAS analysis that did not adjust for blood cell

types (Table 1). Our gene/pathway enrichment analyses

based on the 2000 most significant CpGs (in 1434

genes) implicated gene sets involved in neuron differen-

tiation and the Wnt receptor signaling pathway (Add-

itional file 1: Table S5a). Accounting for the direction

of methylation changes did not change results. Our

meta-analyses across individuals of European and His-

panic ancestry led to three CpGs with a suggestive associ-

ation with PD (Additional file 1: Table S6): cg27191131 in

CEP63, the intergenic cg13322234, and cg00175838 in

DDAH2 (metaP = 7.7 × 10–6).

DNA methylation in saliva

It is of interest whether methylation differs by PD status

in other easily accessible sources of DNA. Thus, we ex-

amined DNA methylation levels in saliva-based analyses

for a second set of individuals, since saliva is easier and

cheaper to collect, store, and transport than blood and

would facilitate future large population-based studies of

methylation in PD.

In DNA-derived saliva samples from 259 individuals,

five CpGs were significantly associated with PD status

at the genome-wide level (Additional file 1: Figure S2a),

after adjusting for age, sex, and race. Two significant

CpGs which are hypomethylated in PD cases are lo-

cated near H-ferritin genes (cg15133963 p = 1.1 × 10–8

and cg11748881 p = 7.2 × 10–8, Table 2). Gene/pathway

enrichment analysis showed enrichment for gene sets re-

lated to neuron differentiation and projection (Additional

file 1: Table S7a).

An overview for methylation results in blood and saliva,

with and without adjustments, stratified by race, and the

meta-analysis results are presented in Additional file 1:

Table S8. While smoking affects DNA methylation levels,

the association results with PD were largely unchanged

after adjusting for smoking status. Also, empirical p values

for DNA methylation and PD were similar to p values de-

rived from t-test; therefore, empirical p values were not

shown in the tables.

Weighted correlation network analysis

DNA methylation in blood without adjustment for blood

cell composition

Adjusting for age only, WGCNA clustered the 250,000

CpGs into 76 co-methylation modules (Additional file 1:

Figure S3a–c). Of these, seven were significantly associ-

ated with PD at the Bonferroni threshold of p < 0.05/76

modules (approximately p < 5.0 × 10–4). These modules

were also significantly associated with sex and blood cell

composition, particularly granulocytes. We conducted

additional WGCNA, adjusting for both age and sex. This

approach generated 80 modules with six PD-associated

modules (p < 5.0 × 10–4; Fig. 3a–c), also significantly as-

sociated with estimated blood cell counts but not associ-

ated with other factors, such as smoking, coffee/tea

consumption, and levodopa medication use. Three of

the six PD-associated modules were enriched for genes

related to both the adaptive and the innate immune re-

sponse (Additional file 1: Table S2b) and the rest showed

enrichment in calcium ion binding, cell adhesion, and

transcriptional activity. Moreover, two modules also

showed enrichment of gene sets regulating actin cyto-

skeleton organization.

DNA methylation in blood with adjustment for blood cell

composition

After adjusting for blood cell composition, we generated

97 modules with only one significant PD-associated mod-

ule after Bonferroni correction and two modules with bor-

derline significance (Additional file 1: Figure S4a–d). One

module was enriched for genes related to calcium ion

binding (Additional file 1: Table S5b), another for genes

related to neuron differentiation and projection, whereas a

Table 2 List of the five PD-associated CpGs with p value < 10–7 for saliva-based DNA methylation analyses in 259 PEG2 individuals

adjusting for age, gender, and race

Relation to UCSC
CpG island

Caucasian and Hispanic (N = 259)

CpG Gene Chr. Position (bp) Gene region SNPs SNPs_10 cor p value

1 cg15133963 FTHL3 2 27616316 Island Body −0.35 1.05E-08

2 cg01820192 C21orf125 21 44869762 TSS200 −0.33 3.45E-08

3 cg22275276 6 33973531 −0.33 6.92E-08

4 cg11748881 FTH1 11 61734830 Island 1stExon rs11554886 −0.33 7.15E-08

5 cg24742912 MYBPH 1 203146346 TSS1500 rs7538338 −0.32 9.10E-08

Chr Chromosome, bp base pair, TSS transcription start site, TSS1500 within 1500 bps of a TSS, TSS200 within 200 bps of a TSS, SNPs listing dbSNP entries within a

probe, SNPs_10 listing dbSNP entries within 10 bp of the CpG site
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third showed enrichment related to the Wnt receptor sig-

naling pathways, especially through beta catenin.

Our systems biological analysis based on WGCNA

highlighted epigenetic differences in multiple pathways of

importance in PD etiology (Additional file 1: Figure S5).

We also conducted a WGCNA analysis without

adjusting for age in order to identify modules with

overlap for PD, age, and gender. We found one hyper-

methylated module (i.e. thistle) that is significantly as-

sociated with PD status, increasing age, and male gen-

der at the Bonferroni threshold of p < 5.0 × 10–4;

Additional file 1: Figure S6a–c). The thistle module is

enriched for developmental genes and related to neur-

onal differentiation processes, which further supports

Fig. 3 WGCNA results for PD and blood-based DNA methylation analyses without cell composition adjustment. Correlations of module

eigengenes (ME) with PD status and other traits in 508 PEG1 individuals of European ancestry adjusting for age and gender. The rows represent

ME and its color. The columns represent clinical traits. The Pearson’s correlation coefficients and the corresponding p values are shown for each

cell. Red indicates positive correlations while color indicates negative correlations. a ME 1-27. b ME 28-54. c ME 55-80
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our previously published results of age acceleration in

PD [5]. The correlations between each thistle module

CpG and PD status, age, and being male can be found

in Additional file 1: Table S9.

DNA methylation in saliva

Adjusting for age, sex, and race, we generated 48 modules

with ten modules significantly associated with PD (p <

0.05/48 modules ~ 10–3; Additional file 1: Figure S7a, b)

and also with blood cell types. Furthermore, these ten PD-

associated modules were enriched for genes related to

immune response (both adaptive and innate immunity),

neuron projection, the Wnt signaling pathway, transcrip-

tional activity, actin binding, and calcium-dependent cell–

cell adhesion (Additional file 1: Table S7b). Additionally,

two modules were borderline significant and enriched for

genes related to the mitochondrial envelope membrane.

Methylation levels of the three most significant PD-

associated CpGs in blood and saliva can be found in

Additional file 1: Table S10 and results of the association

between CpGs and PD status based on logistic regres-

sion are provided in Additional file 1: Table S11.

Attempt to replicate results from previous methylation

studies

We found one gene in Table 1, i.e. FOXK1, that posi-

tively regulates Wnt/beta-catenin signaling, for which

there is overlap with the brain PD EWAS study of 5 PD

and 6 control individuals that previously reported con-

cordant methylation changes in brain and blood for 30

genes [22]. However, we failed to replicate the previously

reported associations between PD and FANCC

cg14115740 (p = 0.24) and TNKS2 cg11963436 (p = 0.03)

from an EWAS study of 45 participants that used whole

blood DNA without adjustment for cell composition [4].

While previous targeted DNA methylation studies have

implicated SNCA, our large-scale study did not provide

evidence for epigenetic modifications in this gene in

blood and saliva. We also failed to replicate associations

between SNCA methylation and levodopa dosage re-

ported previously [23]. The previous study reported

methylation in opposite directions according to the pa-

tients’ sex (hyper vs hypo-methylation), yet sex had no

influence on those experiments in cultured monocytes.

The authors did not offer any explanation for the ob-

served sex-dependent differences.

Discussion

Our study is the first population-based study of PD that

leverages a large sample size and the highly robust Illu-

mina array platform. This rigorous and comprehensive

study demonstrates that PD is associated with DNA

methylation levels in blood and saliva. Many of our

genome-wide significant CpGs and co-methylation

modules correlate with changes in cell composition,

consistent with our previous results surrounding highly

significant associations between estimated blood cell

counts and PD status [5]. It is unlikely that the

genome-wide significant results represent false positives

because this is arguably the largest and most compre-

hensive DNA methylation study of PD to date. This

study stands out in terms of its careful matching of PD

cases with suitable population-based controls, the identi-

cal handling of DNA samples, its analysis of two distinct

sources of DNA (blood and saliva), its handling of poten-

tial confounders (e.g. blood counts, ethnicity, smoking),

and the rigorous control of false positives resulting from

multiple comparisons (using the Bonferroni correction

and employing WGCNA). During the recruitment period,

great attention was paid to “population” control selection

using Medicare enrollee lists and residential tax assessor

records in the three target counties. Also, every patient

was examined by UCLA movement disorder specialists at

least once and most multiple times over several years of

follow-up and the diagnosis of iPD was re-affirmed. An-

other strength is the fact that we carefully verified ethni-

city using 37 Ancestry Informative Markers (AIM) and we

stratified the analysis by ethnicity to eliminate confusion.

However, the information on coffee and tea consumption

is self-reported, which is a study limitation. It is unlikely

that PD status influenced the accuracy of reporting coffee/

tea consumption; thus, we would expect non-differential

misclassification that tends to bias estimates toward the

null. Moreover, we have published a coffee EWAS study

using the same samples [24], which was consistent with

the literature on coffee and PD. For example, the esti-

mated effect size for coffee consumption and PD risk for

three additional cups of coffee per day (odds ratio [OR]

0.73, 95% confidence interval [CI] 0.58–0.92) in our study

is consistent with the estimated effect size reported in a

meta-analysis of 13 coffee and PD studies (OR 0.75, 95%

CI 0.64–0.86) [25].

The fact that we could not reproduce many previous re-

sults from smaller studies raises serious concerns about

the findings from previous studies. DNA methylation

levels are subject to biases resulting from differences in

DNA storage, blood tubes, bisulfite conversion, and batch

effects. While the lack of replication of previous findings

could reflect quality issues in our own data, we believe

that it is unlikely because our large-scale DNA methyla-

tion data exhibited high quality according to a host of

metrics including inter-array correlations, age prediction,

sex prediction, and other quality metrics from the epigen-

etic clock software [5]. Further, our data lent themselves

for reproducing published CpGs from other contexts, e.g.

to study the effect of smoking (unreported findings). Yet,

for the SNCA gene it is possible that the most relevant

CpGs are not present on the Illumina 450 K array.
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A novel aspect of our study is the utilization of

WGCNA for genome-wide methylation data. This method

greatly reduced the multiple testing problem: instead of

relating 486,000 CpGs to PD status, we only considered

approximately 100 modules. The functional enrichment of

modules was more significant than that of our EWAS ana-

lysis which highlights that WGCNA is a biologically

meaningful data reduction method. WGCNA not only

strengthened our findings from the EWAS analysis, but

also implicated interesting pathways in the context of PD

such as cytoskeleton organization.

Caution must be exercised when it comes to interpret-

ing individual CpGs (or sets of CpGs) in terms of neigh-

boring genes because DNA methylation levels exhibit only

weak associations with neighboring gene expression levels

across individuals [16]. With all due caution, we discuss

our gene enrichment analysis results below.

Mitochondrial dysfunction

Mitochondrial dysfunction has long been considered im-

portant for PD etiology [26]. Landmark studies reported

loss of dopaminergic neurons from mitochondrial com-

plex I respiratory chain deficiency in the substantia nigra

[27]. We identified three CpGs located in mitochondria-

related genes (LARS2, MIR1977, and DDAH2) that were

significantly associated with PD status in blood-based ana-

lyses. While blood methylation patterns differed from

those in saliva, it is noteworthy that two PD-related co-

methylation modules in saliva were significantly enriched

with mitochondrial inner membrane genes. The LARS2-

encoded protein (mitochondrial Leucyl-tRNA Synthetase

2), which catalyzes the aminoacylation of mtRNALeu, has

been related to gene expression and nucleotide binding.

Interestingly, a small postmortem study analyzing gene

expression in dopaminergic neurons from the substantia

nigra region comparing iPD patients and controls found

hypo-expression of LARS2 among patients [28]. MIR1977

encodes a microRNA with sequences that map to the

mitochondrial genome; a role for mitochondrial DNA

gene regulation has been suggested. DDAH2 plays a role

in regulating nitric oxide (NO) generation [29]. Excessive

amounts of NO are neurotoxic and impair the function of

the mitochondrial respiratory chain [30]. DDAH2 regu-

lates levels of ADMA which inhibits nitric oxide synthase

(NOS) activity [31]. We recently reported that variants in

the gene NOS1 encoding an NO-producing enzyme modi-

fies PD risk in organophosphate pesticide exposed individ-

uals [32] and in a pesticide-induced mouse model of PD

the administration of a NOS inhibitor mitigated neuronal

death [33].

Cytoskeleton function

Dopamine transport involves microtubules and actin as

key components of the axonal cytoskeleton. Our meta-

analysis of blood-based DNA adjusted for blood cell

composition suggested CEP63 cg27191131 as a candi-

date for PD. CEP63 acts in the centrosome, the major

microtubule organizing center of cells. Notably, in PD,

parkin, a protein-ubiquitin E3 ligase responsible for

some types of familial PD, stabilizes microtubules, pro-

tects neurons, and also acts in the centrosome assisting

in ubiquitination and degradation of misfolded proteins

[34, 35]. Our saliva-based gene set enrichment analysis

further supported this finding with enrichment of genes

related to the microtubule organizing center among the

hypermethylated CpGs. Additionally, our EWAS and

WGCNA in blood without adjustment for blood cell

composition found PD-associated genes and modules

significantly enriched for actin cytoskeleton organization

as did a module derived from saliva. Actin is responsible

for cell movement in the nervous system including axon

and synapse formation [36] and, in fact, synaptic dysfunc-

tion resulting from vesicular transport disruption is a

hallmark of PD [37].

Systemic immune response

Reducing neuroinflammation may be important to pre-

vent PD [38]. Studies have recorded higher levels of in-

flammatory cytokines released by microglia in the

substantia nigra of PD patients [39]. In our blood-based

DNA EWAS without adjusting for cell compositions, we

identified CpGs in three immune-related genes (ABCB9,

C1orf200, AZU1) as significantly associated with PD.

The enrichment analysis strongly supported this path-

way. Further, WGCNA identified three PD-associated

modules enriched for immune response in blood-based

methylation) and one immune-associated module from

saliva-based methylation.

We recently reported that the DNA methylation age

of the immune system is significantly older in PD pa-

tients in the same samples and blood cell composition

of PD patients differed from controls [5]. PD patients’

peripheral blood contained more granulocytes but

fewer T helper cells and B cells. These findings were

replicated using WGCNA. Every PD-associated module

was also significantly associated with blood cell types,

most notably granulocyte count, supporting the notion

that systemic differences in immune response may play

a role in PD pathology and removing the contributions

of blood cell composition prior to methylation analyses

may result in over-adjustment. The fact that none of

the probes are significantly associated with PD after

correcting for blood cell counts might also reflect that

our Bonferroni corrected threshold of 1 × 10–7 is too

stringent given that many CpGs are highly correlated.

Note that the strong correlation pattern between CpGs

gives rise to large modules found by WGCNA. However,

the 24 CpGs inside our most significant gene LARS2
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(Table 1) exhibit relatively low pairwise correlations even

after adjusting for blood cell counts (Additional file 1:

Table S12).

The Wnt receptor signaling pathway

The Wnt receptor signaling pathway has been suggested

as a therapeutic target for PD [40]. Both the “classic”

(through β-catenin) and “non-classical” pathways play

roles in dopaminergic cell development and synaptic

function. PD-associated proteins encoded by PARK2

(protein: parkin) and LRRK2 have been shown to modify

classic Wnt signaling [41]. While our study did not find

evidence for epigenetic modifications in these PD genes,

we identified other genes (APC and AXIN1) involved in

classic Wnt signaling in enrichment analysis. Interest-

ingly, decreased Wnt signaling has also been reported in

AD [42]. CALM2, one of the AD-related genes we asso-

ciated in blood-based methylation analysis with PD sta-

tus, has a function in calcium ion binding which is

important in the non-classical pathway [43].

Brain iron and ferritin

Lastly, in our saliva-based DNA methylation EWAS, two

out of five significant PD-associated CpGs were located in

the H-ferritin genes. The H-chain of the iron-storage pro-

tein is responsible for iron uptake and iron oxidation in

the brain. Iron overload which leads to oxidative stress,

mitochondrial dysfunction, and alpha-synuclein aggrega-

tion may play a role in PD pathogenesis [44]. In PD pa-

tients, higher iron levels have been found in the substantia

nigra [45] and proliferation of ferritin-positive microglia

may be involved in dopaminergic neuron death [46].

Given that all analyses are conducted in blood and sal-

iva where neuronal differentiation cannot be assessed,

there is a need to replicate these findings for the Wnt

signaling pathway.

Conclusions
Our study provides the first evidence for epigenetic

differences related to five biological pathways in PD

(Additional file 1: Figure S5). Furthermore, our findings

suggest that adjusting for blood cell counts in blood

DNA methylation studies may “throw out the baby with

the bathwater” when it comes to detecting immune sys-

tem related pathways in PD.

Additional file

Additional file 1: Supplementary tables and figures that show the

following: characteristics of study participants, results of EWAS, WGCNA,

meta-analyses, and gene set enrichment analyses. (DOCX 8897 kb)
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