
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2015

parkITsmart: minimization of cruising for parking

Tsiaras, Christos ; Hobi, Livio ; Hofstetter, Fabian ; Liniger, Samuel ; Stiller, Burkhard

Abstract: Finding a parking space in urban areas is a daily challenge for drivers across the world, due
to the increasing amount of vehicles and the limited amount of parking spaces. Drivers who are looking
for a parking space in peak hours are often forced to drive around city blocks until they spot a free
parking space. This process is termed in literature “cruising for parking” and is proven to (a) cost a lot of
time and gas for drivers, (b) generate unnecessary traffic load, and (c) affect the environment negatively
due to increased vehicle emissions. This work proposes a Parking Monitoring and Management System
(PMMS) that collects, processes, and presents data about available parking spaces and their tariffs within
a geographical region. The end-user application of the PMMS, parkITsmart, delivers at drivers bird’s-eye
view concerning the parking availability. To facilitate this, the PMMS gathers data from drivers’, vehicles,
their mobile phones, and Parking Inspectors (PIs). This work shows that in the Internet-of-Things (IoT)
environment, “pairing” cars and drivers’ mobile phones, collecting data from their sensors, and from PIs
in a parking monitoring and management system, can decrease significantly cruising times for parking
and can increase the time demands of the parking controlling process.

DOI: https://doi.org/10.1109/ICCCN.2015.7288448

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-116549
Conference or Workshop Item
Accepted Version

Originally published at:
Tsiaras, Christos; Hobi, Livio; Hofstetter, Fabian; Liniger, Samuel; Stiller, Burkhard (2015). park-
ITsmart: minimization of cruising for parking. In: The 24th International Conference on Computer
Communications and Networks (ICCCN 2015), Las Vegas, Nevada, USA, 3 August 2015 - 6 August 2015.
IEEE, 1-8.
DOI: https://doi.org/10.1109/ICCCN.2015.7288448



parkITsmart: Minimization of Cruising for Parking

Christos Tsiaras, Livio Hobi, Fabian Hofstetter, Samuel Liniger, Burkhard Stiller

CSG@IfI, University of Zurich, Binzmühlestrasse 14, CH-8050 Zurich, Switzerland

Email: {tsiaras, stiller}@ifi.uzh.ch , {livio.hobi, fabian.hofstetter, samuel.liniger}@uzh.ch

Abstract—Finding a parking space in urban areas is a daily
challenge for drivers across the world, due to the increasing
amount of vehicles and the limited amount of parking spaces.
Drivers who are looking for a parking space in peak hours are
often forced to drive around city blocks until they spot a free
parking space. This process is termed in literature “cruising
for parking” and is proven to (a) cost a lot of time and gas
for drivers, (b) generate unnecessary traffic load, and (c) affect
the environment negatively due to increased vehicle emissions.
This work proposes a Parking Monitoring and Management
System (PMMS) that collects, processes, and presents data
about available parking spaces and their tariffs within a
geographical region. The end-user application of the PMMS,
parkITsmart, delivers at drivers bird’s-eye view concerning
the parking availability. To facilitate this, the PMMS gathers
data from drivers’, vehicles, their mobile phones, and Parking
Inspectors (PIs). This work shows that in the Internet-of-Things
(IoT) environment, “pairing” cars and drivers’ mobile phones,
collecting data from their sensors, and from PIs in a parking
monitoring and management system, can decrease significantly
cruising times for parking and can increase the time demands of
the parking controlling process.

Keywords—Cruising, parking, congestion, mobile application,
IoT, sensors, simulation

I. INTRODUCTION

Finding a parking space in urban areas is a daily challenge
for drivers across the world, due to the increasing amount
of vehicles. Among many different sorts of congestion
like the standard network flow congestion, there are also
many forms of parking-related congestion [5]. This causes
undesirable problems such as environmental issues, e.g., (1)
air pollution/noise increment, (2) energy consumption, and (3)
parking space shortage [28]. Studies conducted between 1927
and 2001 in the center of major business districts in eleven
cities on four continents came to the conclusion that up to
30% of vehicles in a traffic jam are looking for a parking
space and the average time to find space available is eight
minutes [30]. Given the increased number of cars since then,
this problem can only be larger. Thus, the process of finding
a parking space (a) costs a lot of time and gas for drivers,
(b) generates an unnecessary traffic load, and (c) affects the
environment negatively due to increased emissions.

Even a small amount of “cruising for parking” time per
vehicle creates a surprising amount of vehicle traffic. E.g.,
assume it takes eight minutes to find an available parking space
and each parking space is occupied on average by 5 vehicles
per day; each parking space generates 40 minutes of cruising
for parking time per day. If the average speed while looking
for a parking space is half of the maximum speed limit in
a city (15 kilometers per hour in Zurich), then each parking

space generates ten Vehicle Kilometers Traveled (VKT) per
day. Thus, in a year, this cruising for parking results to 3’650
VKT per parking space. Since this cruising is added to the
traffic that is already congested, it makes a bad situation even
worse.

This work describes the process of designing and
developing a prototype Parking Monitoring and Management
System (PMMS), that collects and processes data about
available parking places and their tariffs within a
geographically well-defined area. The PMMS follows a
crowdsourcing approach, where the system does require input
from driver’s smart phones, smart cars in the future, and
from parking providers. The key feature of the PMMS is
to deliver parking availability estimations on a geographical
map, based on the data provided by drivers via a mobile
application termed, parkITsmart. Other services, such as
payment solutions, parking-time extension, parking location
reminder, and parking expiration reminders are proposed to
provide an incentive to drivers to use such an application
and to contribute to the PMMS when parking availability
estimation is targeted.

parkITsmart is a platform-independent mobile application
developed in this work for the PMMS purposes. Thus, major
mobile Operating Systems (OS), such as Android and iOS,
are supported. Furthermore, parkITsmart can be used from
drivers that are not familiar with parking-related regulations
of an area. Therefore, parkITsmart is designed to handle
multilingual interfaces concerning the User Interface (UI) and
information about parking regulations for a given area. Finally,
parkITsmart has Parking Inspector (PI) accounts that will serve
parking monitoring purposes, such as parking controlling and
fine issuing if necessary. Those interfaces can be used by
authorities, such as the police or private companies that are
responsible to monitor parking areas.

The motivation for this work is the challenge the Swiss city
of Zurich faces to collect a reliable number of parking spaces
within the city. In 2011 no up-to-date data were available
[31]. However, the city faces problems with low availability
of parking spaces and wants to raise the price for an effective
utilization [32]. Nowadays, it is worth from a financial point
of view to search for a parking space on the street instead
of parking the vehicle in a carpark. Therefore, it is proposed
by the city of Zurich to raise the price of parking spaces to
the level of carparks to avoid cruising for parking. However,
according to [30] this approach would have an effect only,
if the price of parking spaces on the street would approach
the price of carparks. Thus, a suitable approach towards the
cruising for parking minimization in Zurich and possibly other
cities is needed.



The use of smartphones has increased in the last few years
[14], which opened many possibilities to assist humans in
every day life. Especially contracts for broadband access on
mobile devices increased significantly in the last five years
in Switzerland [6]. To overcome the parking problem, new
technologies such as smartphones interconnected with vehicles
in the scope of Internet-ofThings (IoT), can be used to show
parking availability and to guide drivers to free parking spaces.
The increase in broadband access on mobile devices brings up
new possibilities, such as displaying real-time parking data on
mobile Web maps, such as Google Maps [13].

There has already been put a lot of effort in this topic to
find possible solutions which solve the cruising for parking
problem. However, either these approaches are very expensive
due to investments in infrastructure [20],[26] or systems
suffered from a lack of use [12] and, therefore, did not work
because the data needed were not gathered. The key goal
of this paper is the increment of existing space’s utilization
without a cost-intensive solution, while using state-of-the-art
technologies. The PMMS presented here does not require
sensors to be deployed on each parking space. If vehicles are
marked as parked by parkITsmart users, unavailable parking
spaces can be displayed. Integrating this information with the
total number of parking spaces in a certain area generates
parking spaces availability information that is available to
drivers looking for a parking space. This helps to decrease
the cruising for parking, because drivers most likely will
avoid to look for a parking space in places where they
do not exist. To overcome the problem of not having a
sufficient amount of users to collect data, parking information
is gathered automatically from drivers’ smartphones using
methods presented in [34]. However, information is also
gathered from PIs, who control parked vehicles, and possibly
in the future by smart cars.

The remainder of this paper is structured as follows.
Related work is discussed in Section II, followed by the PMMS
architecture in Section III. Results of this work are presented
in Section IV. Section V presents future work and possible
extensions of the PMMS. Finally, Section VI summarizes this
paper and draws conclusions.

II. RELATED WORK

Today’s technologies make it possible to collect updated
real-time parking information, such as parking location,
capacity, parking fee, and current availability of different
parking facilities, which can be used for a more intelligent
parking guidance [28]. This can be summarized under
the term “smart parking” that is considered to be a
subgroup of “smart cities” [11]. There are two main paths
to gather availability information of parking spaces: (a)
Infrastructure-based solutions work with sensors on parking
spaces and mobile phones to collect availability information
and (b) crowdsourcing approaches, which gather information
through the user-base of the system.

A. Infrastructure-based Solutions

There are many Parking Guidance System (PGS)
approaches [1] which face the parking problem and
contribute to smart parking. They vary in costs and also in

necessary infrastructure. More infrastructure-based approaches
are applied in: (1) Deutsche Telekom is running a project in
the Italian city of Pisa together with Kiunsys [19], where
sensors are placed on the floor of each parking space at
the Piazza Carrara. These sensors detect whether spaces are
free or occupied. The information is sent to the city’s server
over the mobile network and displayed on indication panels
to guide drivers to free spaces. There exists also a mobile
application guiding drivers to free spaces, which can also be
used to pay for the parking space. (2) A similar approach with
the use of sensors is followed by SFpark in San Francisco
(SF), where parking spaces are equipped with occupancy
sensors. Additionally, the “parking space market” in SF is
regulated by demand-responsive pricing [26]. (3) ParkNet is
following an infrastructure-based approach, where vehicles
are equipped with ultrasonic sensors to monitor parking
availability when driving by [20]. All infrastructure-based PGS
solutions deliver accurate information. However, such solutions
have the major drawback of the high infrastructure deployment
and maintenance costs.

B. Crowdsourcing Approaches and Mobile Parking Platforms

A possible way to minimize the cost of gathering
parking availability information is via crowdsourcing-based
approaches. Drivers are contributing to the system by sharing
empty or occupied parking space information. The more
drivers use such a system, the more reliable the information it
delivers. There are different solutions applying this approach,
but none has been really successful by now. Google’s
open spot was launched in 2010 [12], but has not been
successful due to insufficient user participation, which are
needed to reach reliable data [27]. In Switzerland currently
two mobile parking-related platforms exist. (a) ParkU and
(b) parkit, showing parking spaces to drivers, following a
crowdsourcing-based approach.

ParkU [25] is a solution to find or rent free and cheap
parking spaces in the city. It consists of an online parking space
market, where individuals and companies can rent on-demand
private parking spaces for a fee. Available parking spaces are
displayed on the Web site or on the ParkU smartphone app for
iPhone and Android. The main features on the drivers’ side
encompass: (1) searching for parking spaces, (2) booking a
parking space in advance or on-demand, (3) paying without
coins or bills with the use of PayPal and credit cards,
(4) archiving previous bookings, (5) adding booked spaces
into the device calendar, (6) registering via Facebook or a
separate ParkU account, (7) extension possibility of the parking
duration if it is supported by the parking provider and (8)
canceling possibility of future reservations. Parking providers
can rent a parking space for a monetary compensation. The
pricing and parking space availability schedule is decided
on-demand by the parking provider.

Although ParkU is actively used by drivers, it suffers
from several weaknesses. The major weakness is that only
private spaces provided by companies and private persons are
presented to drivers. ParkU follows a free market approach.
Thus, the parking space owner can define the price of
the parking space. This leads to large price diversion for
parking spaces in the same area. Since the application
provides information only about privately owned parking



spaces, end-users sometimes face difficulties to locate the
space. Parking spaces presented in ParkU should be accessible
without requiring access to a building, such that the parking
space will be accessible by any potential driver wanting to
reserve it. Although the owner of the space is renting the
parking space, while assuming that the space is not illegally
occupied, it might happen that there will be another vehicle
illegally parked on the space once the user that had reserved
the space will arrive in that specific location. Parking space
owners can make profit by renting their property on-demand.
However, another important drawback of ParkU is that there
is no regulation, or taxation, for such income and this is the
main reason why some cities want to ban it. Finally, there is
no routing to the parking space integrated into the application,
which makes its usage harder.

Another parking platform similar to ParkU is parkit [23].
In parkit private persons, or parking providers can register to
offer parking spaces. These parking spaces can be reserved
for time slots with a mobile application. End-users can filter
the availability of parking spaces with address and price
preferences. parkit provides a navigation feature from the
driver’s current position to the parking space.

C. Hybrid Solution

[34] presents a crowdsourcing approach where drivers use
an application using sensors to detect when a vehicle is
parked. The mobile application (PhonePark) suggests to use (1)
GPS, (2) the accelerometer, (3) pairing connections between
the driver’s mobile phone and the car’s on-board Bluetooth,
and (4) information from pay-by-phone parking services, to
identify when a car is parked. Although PhonePark proposes
a novel solution, the application is not available on-line and
there are no energy-consumption-related information provided
supporting its usability in a real-life scenario. PhonePark is
rather a mechanism that is running on the mobile phone, while
the PMMS here proposes (1) a complete parking management
and monitoring solution, and (2) an extension to the PhonePark
car pairing mechanism with iBeacons [2], and/or On-board
Diagnostic (OBD) modules [22]. Last but not least, the
frequent parking availability information proposed in this paper
here by the PIs, can improve PhonePark’s historical availability
profile construction algorithm.

D. The Delta of parkITsmart

On the one hand, estimating availability of parking spaces
is equivalent to collect information about unavailable parking
spaces. Thus, a parking availability estimation system should
know about the arrival and departure times of a vehicle.
Thereafter, parkITsmart in addition to PhonePark shows: (1)
unavailable parking spaces, (2) possible available parking
spaces, and (3) availability in carparks. On the other hand,
ParkU and parkit represent a fragment of all parking spaces in
a city, since they cover private parking spaces only. Therefore,
ParkU and parkit can be considered as partial solutions to the
cruising for parking problem, which still remains unsolved. In
contrast, parkITsmart supports in addition to parking detection
techniques as of [34] the aggregation of data originating
from different sources, such as parking providers and vehicle
drivers, and integrates them into a single system to provide
to drivers an overall view of the parking situation in a given

area. Thus, parkITsmart identifies available parking spaces on
streets, collects unavailability on those spaces, and summarizes
availability in carparks. The data collection is done following
a crowdsourcing approach. To overcome the problem of not
having a large end-user-base providing data and no data
concerning unavailability, parkITsmart uses the input from
parking providers who have an incentive to control parking.
Parking spaces are inspected frequently by parking controllers.
Therefore, the occupied spaces detected during the controlling
process can be integrated and used to present the unavailability
of parking spaces. parkITsmart does neither require any costly
infrastructure, nor demands sensor deployment on parking
spaces.

III. PMMS

Delivering reliable parking availability information
allowing end-users to park their vehicles with minimum
cost, while respecting local regulations, demands data
availability in two domains. Firstly, a database of the
location of available parking spaces is needed, containing
several information concerning a parking space, such as
(a) geographic coordinates, (b) parking space’s surface, (c)
orientation, (d) regulations, and (e) pricing. Secondly, the
status of the availability of a parking space is needed. Such
information can be retrieved (1) by drivers that park and
use their mobile phones to pay the fee for parking, (2) by
parking controllers inspecting parked vehicles, and (3) from
any possibly available sensors. Driven by the high-level
architecture’s design of PMMS a formal definition of the
chosen architecture and an overview of the architecture and its
implemented system. Additionally, front-end components and
frameworks used, the back-end architecture and database, and
how different parts communicate with each other is discussed.

A. The PMMS Architecture

The PMMS uses a centralized client-server architecture
consistsing of three layers. The (1) User Interface (UI), (2)
end-users’ and PIs’ mobile applications, and (3) database layer.
Clients act on the UI layer and request information from the
application server. The application server provides services
for the client and if necessary accesses the database layer to
retrieve data requested.

PMMS consists of four different parts (cf. Figure 1).
Two front-end mobile applications, the Web server, and
the database. The front-end mobile applications access the
database through the Web server, and provide access for users
to the features of parkITsmart. Therefore, the front-end mobile
applications provide the connection between the user and the
back-end of the PMMS. There are two different user groups
parkITsmart has to serve. First, the driver’s group including
end-users seeking for available parking spaces. Second, PIs
being responsible to control parked vehicles in a city. To serve
the needs of those two user groups, two mobile applications
were designed and implemented. On one hand, the end-user’s
application for drivers’ needs, and on the other hand, the
controllers’ application to satisfy requirements of PIs.

The evaluation of the technology to implement these
front-end applications was divided into four steps:
requirements elicitation, platform-framework selection,



Figure 1. Overall Architecture of the PMMS

jQuery mobileUI-Framework JS, HTML5, CSS

Web-Framework JS, HTML5, CSS

Platform-Framework
Java, Objective-C, 

...

Device-APIs

Figure 2. The Technology Stack of the Used Frameworks for parkITsmart

Figure 3. The Build Process of parkITsmart

UI-framework selection, and critical requirements testing.
This procedure was chosen to ensure (a) reliable parking
availability informations and (b) that the framework and
platform chosen do not influence negatively the quality of
parkITsmart. This four-step evaluation process leads to the
combination of Apache Cordova, jQuery, and jQuery mobile
to develop the front-end applications (cf. Figure 2). Apache
Cordova [3] is a mobile development framework allowing
access to device-specific functions and sensors with JavaScript
code. Cordova supports Application Programming Interfaces
(API) for major mobile platforms, such as iOS, Android,
Windows mobile, and Blackberry. Thus, Cordova offers the
possibility to build, update, and maintain applications with
JavaScript, HyperText Markup Language five (HTML5), and
Cascading Style Sheets (CSS) for multiple platforms with
only one source code. The Cordova framework builds for
every selected mobile platform a native application from the
JavaScript, HTML5 and CSS source code (cf. Figure 3). The
resulting application presents an internal Web view of the
source code enriched with the functionality of device-specific
APIs. This internal Web view is basically the device browser
showing the Web page. However, the usage of the Web
view is on some mobile platforms restricted and may lead
to lower performance on demanding tasks compared to
native applications [8]. To overcome this problem, jQuery
[16] is a lightweight JavaScript library, which enables the

developer to fast and easily traverse and manipulate HTML
documents, supports JavaScript event handling, and simplifies
Ajax communication. The library supports the vast majority
of mobile as well as desktop browsers. The jQuery mobile
[17] framework is a HTML5 user-interface framework to
build responsive applications and Web sites mainly for
mobile phones and tablets. It is based on the jQuery library
and enables the developer to build responsive designs for
multi-platform applications.

The back-end consists of two main components: the Web
server and the database. The Web server provides services
to the end-user applications and accesses the database when
needed. The PMMS uses an Apache Tomcat [4] for Web
services. Apache Tomcat is an open-source Web server, which
supports Java Servlets [15]. Java Servlets provide a simple way
to add Java-written Web services on top of the Tomcat server.
The server runs two different Java Servlet applications, one
for the controller and one for the driver’s application. To store
data, the system uses a MySQL database [21]. MySQL is a
very popular, well supported, and easily usable open-source
database management system.

The communication between the different components
of the PMMS is a key feature of the entire system. The
communication is designed to be fast, simple, secure, and
reliable, to ensure fast communication and achieve good
end-user experience. Furthermore, the driver’s and the PI’s
application transmit sensitive user-related data, such as the
address of a driver, vehicle details, such as license plates
number, vehicle’s parked position and details of payment
instruments. Thus, the client-server communication uses
the Secure Hypertext Transfer Protocol (HTTPS). Since
the end-user applications are designed to be used on
mobile devices and transfer data over mobile networks,
the communication overhead must be small, because data
communication costs battery and data transfer over Mobile
Network Operators (MNO) might be costly. Thus, the
communication between the different components is done
by JavaScript Object Notation Remote Procedure Calls
(JSON-RPC). JSON is a light-weight data-interchange format,
where data is accessible as JSON objects in the JavaScript code
[29]. The facts that this data format is very light-weight and
also easy to process determined the reasons why JSON-RPC
was chosen instead of any other possible communication
protocol like XML-RPC [33]. There are different frameworks
for JSON-RPC. Java and JavaScript are supported, due to the
fact that the communication is based on Java Servlets and
JavaScript. Thus, the framework of Ritwik Saikia [18] was
chosen.

B. parkITsmart Usage

The collection of data concerning parked vehicles is
achieved by two data sources. (1) Drivers can use the
parkITsmart application (cf. Figure 4) to find a parking space.
Once a driver decides where to park, the local regulations are
fetched and according to the driver’s profile the maximum
amount of parking time is registered to the nearest parking
space of the driver’s location. A reminder with the parking
expiration time and the vehicle’s location is created. (2) An
Near Field Communication (NFC) tag and a Quick Response
(QR) code storing information concerning the vehicle are



Figure 4. The parkITsmart Driver’s UI [24].

integrated on the vehicle’s parking permit that is visible from
PIs. The PI scans each vehicle parked in an area with his
mobile application and checks, if the vehicle is legally parked.
The parking space closest to the parked vehicle is marked
as occupied for the maximum time allowed according to
regulations applicable at this location.

IV. RESULTS

The PMMS was evaluated in a simulated environment in
terms of (a) cruising for parking minimization and (b) parking
controlling time efficiency improvement.

A. Cruising for Parking Minimization

An improvement of the cruising for parking minimization
is beneficial for (a) the user who saves time, (b) the
environment due to reduced vehicle emissions, (c) parking
providers that increase the utilization of parking spaces, and
(d) authorities, which achieve a lower traffic congestion rate.
To model and evaluate the influence of parkITsmart in real
life, this work compares a random routing time needed for a
driver of a vehicle to reach a parking space, with the routing
time needed when availability information is provided. It is
assumed that a driver having no information about available
parking spaces in a target area drives randomly until an
available parking space is found. In contrast, a driver holding
information about the closest available parking space will
directly head to it.

The simulation models a part of a city using a grid, where
every square of the grid represents one parking space, either

Table I. SCENARIO 1: ONE SQUARE KILOMETER IN THE CITY CENTER

OF ZURICH AT NOON

Parameter Value

Vehicle speed 30 km/h

Percentage of available parking spaces 20%

Number of total parking spaces 100

Number of vehicles 10

Table II. SCENARIO 2: ONE SQUARE KILOMETER ON A CITY’S

SUBURB AT 10:00 O’CLOCK IN THE MORNING

Parameter Value

Vehicle speed 50 km/h

Percentage of available parking spaces 70%

Number of total parking spaces 100

Number of vehicles 5

available, or occupied. The squares of the grid correspond
to a free parking space with a certain probability, which is
parametrizable. Multiple vehicles start at random positions and
head to random destinations. Vehicles move in a turn-based
fashion from one square to an adjacent square. For simplicity
reasons diagonal movements are not allowed. Two parameters
model the total time (ttot) needed to reach a destination
(parking space). Equation 1 calculates the total duration by
adding the time needed by a vehicle (tveh) and on foot (tfoot).
In this realistic simulation two vehicles heading to the same
free space results in the first arriving vehicle is able to park
there, the second vehicle has to look for another parking space.

ttot = tveh + tfoot (1)

Two scenarios have been simulated to examine the cruising
for parking total time with and without parking availability
information: (1) Cruising for parking in the city center and
(2) cruising for parking in the city’s suburb. Both scenarios
share two common parameters, the grid size and the duration
it takes to move from one location to a neighboring location
on foot. However, these scenarios differ in the three following
parameters:

• The average speed of vehicles
• The percentage of available parking spaces
• The amount of vehicles seeking for a parking space

Scenario (1) represents a typical situation in a city center,
where vehicles are driven slowly, only a few parking spaces
are available, and the amount of vehicles looking for a
parking space is high. Table I shows the scenario of one
square kilometer in the city center of Zurich at noon. These
parameters are selected based on assumptions and information
gained from the analysis of the historic data concerning
carparks’ availability of Zurich.

In contrast, scenario (2) covers a situation outside the city
center in the morning, where vehicles may drive faster, the
amount of free spaces is larger compared to (1) and the number
of vehicles seeking for a parking space is lower than (1). Table
II shows those parameters for the second scenario in the city’s
suburb at ten o’clock in the morning.

To increase the confidence of results the simulation of
each scenario was executed 100 times. Over all iterations
the average time to reach destinations was computed. Every
iteration uses a new random grid, where every square has a
parking space available based on the probability of available



parking spaces. The starting and destination positions are also
selected randomly. Within each scenario parameters as stated
in Table I and II were the same for every iteration.

For the simulation the following general and
scenario-specific assumptions were made.

1) General Assumptions:

• The size of the grid is 10x10 squares, where one
square equals 100 meters.

• The speed of vehicles is higher outside of the city
center.

• The percentage of available parking spaces is lower in
the city center.

• There are more vehicles looking for a parking space
in the city center.

• The duration to walk to an adjacent square is 1.5 time
units (assuming that a person walks 4 km/h by foot
or 1.5 minutes for 100 meters).

2) Random Routing Assumptions:

• Vehicles are driving randomly without any
information.

• If an available parking space is found the vehicle is
parked and the remaining distance is walked.

3) Routing with Information Assumptions:

• The vehicle drives directly to the closest space to
the destination and the driver walks the remaining
distance.

• If the closest space to the goal of a driver gets
occupied upon the approach, the vehicle heads to the
next closest one.

Figure 5 illustrates an example instantiation of the
simulation with two vehicles, where the vehicle at Start 1
heads to destination 1 (Dest. 1), the vehicle at Start 2 heads
to destination 2 (Dest. 2) and both know where there are free
spaces. Initially, both vehicles want to park at the available
parking space between the two destinations, since it is the
nearest one for both of them. After five moves vehicle two is
at position 1 (Pos. 1) and vehicle one has parked at the nearest
position. Vehicle two realizes this and, therefore, looks again
for the closest parking space to its destination. This example
shows how multiple vehicles may influence the average time of
all vehicles to reach their destinations. Thus, the simulation’s
assumptions are close to the reality.

The results of this simulation can be seen in Table III. The
ratio determines the benefit on cruising for parking between the
approach with and without parking availability information. It
is shown that cruising for parking with information about the
availability of parking spaces is around 3.5 to 7.7 times lower
than random cruising. This shows that the initial assumption
that parking availability information reduces cruising for
parking is valid. In the random approach each vehicle parks
at the first free space and the driver walks for the rest of the
distance. In the approach with parking availability information
each vehicle seeks for the closest available parking space and
parks there, if it is still available at the time of arrival. In the
city center scenario the difference between the two approaches

1 2 3 4 5 6 7 8 9 10

1 Start 2

2

3 Dest. 1

4

5 Pos. 1

6

7 Dest. 2

8

9 Start 1

10

Occupied Space Free Space

Figure 5. Example Simulation with Two Vehicles

Table III. THE RESULT OF THE SIMULATION

Scenario
Mean Time Units Mean Time Units

Ratio
Random With Availability Information

City center 11.12 3.2 3.48

Suburb 9.89 1.29 7.67

is not as high as in the second scenario one, since the number
of free spaces is relatively small.

The PMMS has shown to be able to save time, fuel,
and minimize vehicle emissions using information about
availability of parking spaces. Simulation (1) and (2) results
show a remarkable difference between the two approaches.
However, this is not very surprising considering that a random
routing is compared to a routing with parking availability
information. The random routing assumes that drivers park on
the first free parking space they encounter. This is, however,
not very realistic, if they know that there are a lot of free spaces
closer to the goal (like in scenario two). The result even in this
simplified simulation shows that there are many opportunities
to decrease cruising for parking using information about the
availability of parking spaces.

B. Control Parking Efficiency Improvement

The second goal of parkITsmart, to increase the
productivity of a Parking Inspector (PI), thus, needing less
time for a PI to control a vehicle leads to the more vehicles
being controlled in the time interval. This results in a revenue
increase for the city, either because more illegally parked
vehicles can be spotted or because fewer PIs are needed to
perform the same task.

An estimation of the parking controlling process with the
use of parkITsmart controller application leads to the following
scenario (3) to be assumed. A PI in Zurich, Switzerland,
controls a 100 meter long part of a street, which is occupied
by vehicles. The average parking space length in Zurich is
measured to be five meters long, and it is assumed that there
is a total number of N = 20 vehicles that need to be controlled.
The PI walks with an average speed of 4 km/h and it will cost
tw = 1.5 minutes to walk these 100 meters. Checking whether
a vehicle is legally parked with the PIs application takes
approximately tc = 3 s, while using NFC tags or QR-codes.
An ordinary check would demand the PI to check manually
the arrival time of a vehicle by reading the time on a clock
that marks the vehicle’s arrival time in a location. This process
approximately takes 5 s. If 10% of vehicles are parked illegally,



there are I = 2 illegally parked vehicles. Sending a fine with
the parkITsmart controller applications has been measured to
take at most tf = 30 s, while it is observed that a PI in
Zurich takes at most two minutes to register a fine without
the parkITsmart application. Thus, the total vehicle controlling
time ttotal is ttotal = tw + (ts · N) + (I · tf ).

The time used to control 20 vehicles with 10% illegally
parked vehicles rate without the PIs application:

t
WithoutApplication
total = 90 s + (5 s · 20) + (120 s · 2) = 430 s

The time used to control 20 vehicles with 10% illegally parked
vehicles rate with the PIs application is:

t
WithApplication
total = 90 s + (3 s · 20) + (30 s · 2) = 210 s

This estimation shows that using the parkITsmart
controlling application saves half of the controlling time.
Walking takes a crucial amount of time, which has not been
improved yet. Once there is a sufficient amount of data in the
PMMS, a more sophisticated routing of PIs will save further
time. Additionally, errors due to the human factor, such as
wrong noting of license plates or issuing a fine to a vehicle,
which is legally parked, will be minimized with parkITsmart.
Eventually, this will increase the credibility of the parking
controlling process.

V. FUTURE WORK

Sensors placed on the ground, can detect accurately the
position of parked vehicles [1]. However, such solutions are
costly to deploy and maintain. Furthermore, to minimize
cruising for parking, it is shown that the total number of the
parked vehicles on the streets, if also the number of available
parking spaces is known, is sufficient. The precise location of
a parking space is not mandatory to find an available space
on a location (e.g., a street or a block). Thus, this work
extends the sensor-less approach by introducing a solution to
count parked vehicles with the use of a mobile application. In
the future, the accuracy of parkITsmart will be improved by
bluetooth beacons (e.g., iBeacons) or smart OBD connectors
(e.g., Freematics [10]) that will be placed in vehicles and paired
with drivers’ mobile phones. However, any placement of radio
transmitting devices raises privacy-related issues, since driver’s
historic location data could be collected. Thus, the transmitting
radius of such devices has to be selected to be small to cover
only a small area around the vehicle.

Figure 6 shows a parking area next to the University of
Zurich premises in Oerlikon with approximately 108 parking
spaces in total. Figure 7 shows the same location at a different
time, when approximately 56 vehicles are parked. On one
hand, for a driver looking for a parking space in one area, a
precise information of where each parked vehicle is parked is
not needed. On the other hand, the number of remaining spaces
(108−56 = 52) is a useful information. iBeacons have (a) low
cost and (b) low power demands. Assuming that each vehicle
in the future will be equipped with an iBeacon transmitter,
which transmits only when the vehicle is parked, the total
number of vehicles can be collected by a moving iBeacon
receiver, such as a parking controller’s device or other moving
vehicles. Deducting the number of parked vehicles from the
total number of parking spaces available in an area can deliver

Figure 6. Parking Area with Approximately 108 Unoccupied Parking Spaces
[13].

Figure 7. Parking Area with Approximately 56 Occupied Parking Spaces
[13].

an accurate estimation of unoccupied parking spaces in that
given area. The more frequent this information is updated,
the closer to the real-time situation this information will be.
Provided that the location of the iBeacon receiver is known,
it is possible to use triangulation techniques [7][9] to estimate
the location of parked vehicles.

Finally, the usability of parkITsmart can be improved in a
next iteration, by choosing a native implementation for each
platform. Moreover, a standardized approach to add additional
parking regulations from additional cities and communities
will increase the end-user-base. Last but not least, adding
additional data concerning parking spaces in Zurich and other
cities will improve significantly the parking space availability
estimation.

VI. SUMMARY AND CONCLUSION

The outcome of this work is a prototype PMMS. The
key feature is the delivery of a bird’s-eye view of parking
availability on a map, based on the data gathered by drivers,
their smart-phones’ and PIs. The prototype PMMS developed
consists of two front-end applications and a back-end system.
The drivers’ application (parkITsmart) is publicly available
in the Google Play Store for Android and in the Apple
AppStore for iOS for the Swiss market [24]. The multilingual
end-user application shows unavailable parking spaces on a



map, preesents local parking regulations, and lets drivers mark
their vehicles as parked. The controller application is able to
check, if a vehicle is parked legally by scanning an NFC-tag,
QR-code, or by entering the vehicle’s license plate manually.
If the vehicle is illegally parked, the PI may issue a fine
to the registered holder of the vehicle, which can be sent
automatically to the driver by email, including multimedia files
(such as a picture) proving the parking regulation violation.

The development of the parkITsmart prototype had
to overcome a scalability-related challenge. The limited
performance of the Cordova framework upon handling a
lot of data points on a map requires several iterations and
optimization steps to enable an acceptable user experience
when searching for a parking space. The key to speed up the
map functionality was to present clusters of parking spaces
and not each parking space separately.

A simulation is used to assess the system developed
and evaluate the primary goal of it to minimize cruising
for parking. Results of this simulation showed that cruising
for parking with such a system estimating parking space
availability means approximately 3.5 to 7.7 times less
cruising for parking to final destination time than without
such information. With respect to the increment of PI’s
productivity and based on reasonable assumptions the PI
with the controlling application checks the same amount of
vehicles in about approximately 50% of the time of the entire
vehicle controlling process. Thus, the PMMS shows that the
key stakeholders, drivers, authorities, and parking providers,
benefit in multiple domains.

ACKNOWLEDGMENT

This work was supported partially by the FLAMINGO
project, funded by the EU FP7 Program under Contract
No. FP7-2012-ICT-318488. Special thanks to our friends
and colleagues Bénédict Birrer, Julia Breddermann, Mark
Fishel, Elisabeth Hammer, Sarina Hobi, Lisa Kristiana,
Tomas Ludrovan, Vanessa de Azevedo Machado, Guilherme
Sperb Machado, Aleksei Mazhelis, Rania Nikolopoulou,
Mirja Pulkkinen, Nicoletta Salmeri, Marina Josipovic, Andrei
Vancea, Marja Weisskopf, Michael Weisskopf, and Chen
Zhongheng for helping us to translate the parkITsmart
application in 14 languages. Last but not least, special thanks
are addressed to our colleagues Andri Lareida and Thomas
Bocek for their priceless help during the testing period.

REFERENCES

[1] D. Burgstahler, F. Knapp, S. Zoller, T. Ruckelt, R. Steinmetz,Where
is that Car Parked? A Wireless Sensor Network-based Approach to
Detect Car Positions, IEEE 39th Conference on Local Computer
Networks Workshops (LCN Workshops), pp. 514-522, Edmonton,
Canada, September 2014.

[2] A. Cavalini, iBeacons Bible 1.0, URL: http://tiny.uzh.ch/dx, Visited in
November 2014.

[3] Apache Cordova, URL: https://cordova.apache.org, Visited in
September 2014.

[4] Apache Tomcat, URL: http://tomcat.apache.org/, Visited in October
2014.

[5] R. Arnott, T. Rave, R. Schöb, Alleviating Urban Traffic Congestion,
MIT Press Books, 2005.

[6] Bundesamt für Kommunikation BAKOM, Amtliche Fernmeldestatistik
2012, URL: http://tiny.uzh.ch/dt, Visited in September 2014.

[7] J. Castano, M. Svensson, M. Ekstrom, Local positioning for wireless
sensors based on BluetoothTM Radio and Wireless Conference, 2004
IEEE , pp. 195-198, 19-22 September 2004.

[8] S. Diwakar, Titanium vs Phonegap vs Native application development,
URL: http://tiny.uzh.ch/du, Visited in October 2014

[9] S. Feldmann, T. Hartmann, K. Kyamakya, An indoor Bluetooth-based
positioning system: concept, implementation and experimental
evaluation, ICWN’03, Las Vegas, USA, 2003.

[10] Freematics, URL: http://freematics.com/, Visited in April 2015.

[11] T. Giuffrè, S.M. Siniscalchi, G. Tesoriere, A novel architecture of
parking management for smart cities. Procedia - Soc. Behav. Sci. 53,
16-28, 2012

[12] A. Goodwin, Open Spot app helps Android users find parking, URL:
http://tiny.uzh.ch/dv, Visited in October 2014.

[13] Google Maps, URL: http://www.maps.google.com, Visited in
September 2014.

[14] IDC, Worldwide Mobile Phone Market Forecast to Grow 7.3%
in 2013 Driven by 1 Billion Smartphone Shipments, URL:
http://www.idc.com/getdoc.jsp?containerId=prUS24302813, Visited in
September 2014.

[15] Java Servlets, URL: http://tiny.uzh.ch/dy, Visited in October 2014.

[16] jQuery, URL: http://jquery.com/, Visited in October 2014.

[17] jQuery mobile, URL: http://jquerymobile.com/, Visited in October
2014.

[18] JsonRpc, URL: https://github.com/RitwikSaikia/jsonrpc, Visited in
October 2014.

[19] Kiunsys, URL: http://www.kiunsys.com/, Visited in November 2014.

[20] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M.
Gruteser, W. Trappe, Parknet: Drive-by Sensing of Road-side Parking
Statistics, ACM MobiSys, 2010.

[21] MySQL Database, URL: http://www.mysql.com/, Visited in October
2014.

[22] OBD, URL: http://www.obdii.com/, Visited in April 2014.

[23] Park it, URL: http://www.parkit.ch, Visited in September 2014.

[24] ParkITsmart Webpage, URL: http://parkitsmart.com/, Visited in October
2014.

[25] Parku, URL: http://www.parku.ch, Visited in September 2014.

[26] SFpark, URL: http://sfpark.org, Visited in October 2014.

[27] I. Sherwin, Google Labs’ Open Spot: A Useful Application That No One
Uses, URL: http://tiny.uzh.ch/dw, Visited in October 2014.

[28] J. Shin, H. Jun, A Study on Smart Parking Guidance Algorithm,
Transportation Research Part C: Emerging Technologies, 2014.

[29] S. Shin, Introduction to JSON (JavaScript Object Notation), URL:
http://www.cse.iitd.ac.in/ cs5090250/JSON.pdf, Visited in October
2014.

[30] D. Shoup, Cruising for Parking, Transport Policy, Vol. 13, no. 3, 2006.

[31] Stadt Zürich Tiefbau- und Entsorgungsdepartement, Wirtschaftliche
Bedeutung von Parkplätzen in der Stadt Zürich, Press Conference of 13.
May 2011, URL: http://tiny.uzh.ch/ds, Visited in November 2014.

[32] Weisung des Stadtrats von Zürich an den Gemeinderat, Motion von
Gian von Planta und Markus Knauss betreffend Strassenparkplätze in
der Innenstadt, Preiserhöhung für eine lenkungswirksame und effiziente
Nutzung, URL: http://tiny.uzh.ch/dr, Visited in November 2014.

[33] XML-RPC, URL: http://tiny.uzh.ch/dz, Visited in October 2014.

[34] B. Xu, O. Wolfson, J. Yang, L. Stenneth, P.S. Yu, P.C. Nelson,
Real-Time Street Parking Availability Estimation, 14th International
Conference on Mobile Data Management (MDM), Vol.1, pp.16-25, 3-6
June 2013.


