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Abstract: PARP inhibitors are the first clinically approved drugs that were developed based on
synthetic lethality. PARP inhibitors have shown promising outcomes since their clinical applications
and have recently been approved as maintenance treatment for cancer patients with BRCA mutations.
PARP inhibitors also exhibit positive results even in patients without homologous recombination (HR)
deficiency. Therapeutic effects were successfully achieved; however, the development of resistance
was unavoidable. Approximately 40–70% of patients are likely to develop resistance. Here, we
describe the mechanisms of action of PARP inhibitors, the causes of resistance, and the various
efforts to overcome resistance. Particularly, we determined the survival probability of cancer patients
according to the expression patterns of genes associated with HR restoration, which are critical for
the development of PARP inhibitor resistance. Furthermore, we discuss the innovative attempts to
degrade PARP proteins by chemically modifying PARP inhibitors. These efforts would enhance the
efficacy of PARP inhibitors or expand the scope of their usage.

Keywords: PARP1; resistance to PARP inhibitor; homologous recombination (HR); synthetic lethality;
PROTAC; hydrophobic tagging

1. PARP Inhibitors for Cancer Treatment

Poly (ADP-ribose) polymerases (PARPs) are members of related enzymes that catalyze
the transfer of ADP-ribose to target proteins [1,2]. PARP1 and PARP2 are considered to play
an important role in maintaining genomic stability by mediating DNA repair processes.
Among the PARP families, PARP1 shows abundant expression compared to the others
and is responsible for most of the cellular PAR formation [3]; therefore, most studies
have focused on PARP1. In this review, we discuss the mechanism of action of PARP
inhibitors and the introduction of a new direction of therapeutic development utilizing
PARP inhibitors, one of the important targeted anticancer therapies.

1.1. Synthetic Lethality of PARP Inhibitors

DNA damage response (DDR) is pivotal for maintaining genome stability because
DNA is continually damaged by exogenous or endogenous genotoxic stress. It is estimated
that DNA damage occurs at approximately 10,000 events per cell per day [4]. If damaged
DNA is not swiftly recognized and properly corrected, genomic integrity is disrupted and
various diseases, such as cancer, can occur. The repair machinery is specifically recruited
according to the lesion of DNA damage; however, there is sufficient interactivity and
redundancy to displace if certain pathways are disturbed or inhibited.

PARPs recognize and bind to DNA damage and mediates poly(ADP-ribosyl)ation
(also known as PARylation) of several target proteins, including itself. Auto-PARylation
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of PARPs recruits DNA-repair systems, such as XRCC1 and DNA ligase, and PARPs are
dissociated from damaged DNA (Figure 1). PARPs are also involved in the base excision
repair (BER) pathway [5]. The BER pathway involves removal of damaged bases by
DNA glycosylase, cleavage of AP sites by AP endonuclease, replacement of the missing
nucleotides by DNA polymerase β (POLβ), and ligation of the nicks by DNA ligase I (LIG1)
or DNA ligase III (LIG3) [6]. Interestingly, PARPs are responsible for accelerating BER [7].
DNA double-strand breaks (DSB) are recognized by ATM or PARPs and are repaired
through HR or non-homologous recombination (NHEJ) [8]. HR is an error-free repair
process dependent upon the guidance of a homologous template, while NHEJ directly
ligates the two broken DNA ends and often causes an alteration in the DNA sequences
around the DSB sites. Persistent accumulation of incorrect repairs of DSBs destabilizes the
genome and eventually leads to cell death.
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Figure 1. Synthetic lethality: mechanism of action of PARP inhibitors. PARPs recognize dam-
aged DNA sites and recruit DNA repairing machineries through PARylation. Failure of repairing
single-stranded DNA breaks can lead to DSB, which can be precisely repaired by the homologous
recombination (HR) mechanism when the DNA repair system remains intact. However, cells with
BRCA1/2 mutations progress to apoptosis. Because BRCA1/2 proteins play a key role in HR, the
non-homologous end-joining (NHEJ) pathway is activated instead of HR in case of BRCA1/2 mutated
cells. Incorrect repair by NHEJ leads to genomic instability and eventually apoptosis.
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Although PARPs are important for DDR and repair systems, the PARP1 knockout
mouse model does not exhibit developmental defects or early onset of cancer. Continuous
SSBs of DNA caused by PARP1 knockout lead to DSB, thus triggering the HR DNA repair
system. In addition, induction of a compensatory DSB repair system or alternative role of
PARP2 may explain the normal susceptibility of PARP1 knockout mice to cancer [9]. PARP1
is required for cellular recovery from DNA damage; therefore, DNA-damaging reagents
can increase lethality when PARP1 is inhibited. Indeed, PARP1 knockout mice displayed
hypersensitivity to gamma irradiation and alkylating reagents [9]. This concept supports
combination therapy of PARP inhibitors.

BRCA1/2 proteins are involved in DNA DSB repair and plays an important role in
accurate DNA repair through HR process. BRCA1/2 proteins are considered to be tumor
suppressors. Numerous studies have revealed that mutations in BRCA1/2 result in genomic
instability and a high risk of developing ovarian and breast cancers; a breast cancer risk of
57% (95% confidence interval (CI), 0.47–0.66) for BRCA1 and 49% (95% CI, 0.40–0.57) for
BRCA2 mutation carriers; and ovarian cancer risk of 40% (95% CI, 0.35–0.46) for BRCA1
and 18% (95% CI, 0.13–0.23) for BRCA2 mutation carriers [10]. It has been reported that
approximately 5–10% of breast or ovarian cancer patients carry the BRCA1/2 mutations [11].
Therefore, genetic testing has been increasing in individuals with a family history of
breast or ovarian cancer. Prophylactic mastectomy and prophylactic oophorectomy are
occasionally performed in individuals who have been identified with a BRCA1/2 mutation
through genetic testing. Multiple cases have reported that preventive surgery significantly
reduces the risk of cancer [12,13].

Although inhibition of PARPs themselves does not significantly affect cell lethality,
it can be fatal to cell viability if cells do not proceed to an alternative DNA repair sys-
tem. Based on these findings, the idea of applying PARP inhibitors as a single agent to
cancer patients with HR deficiency, such as BRCA1/2 mutations, was derived. PARPs
inhibition induces severe genomic instability in BRCA1/2-mutated cells, rendering the cells
inviable [14,15], whereas PARPs inhibition does not affect normal cell viability. In other
words, PARPs inhibition induces apoptosis when HR is defective. Two individual DNA
repair pathways cooperate to maintain DNA integrity, and thus simultaneous inhibition of
both pathways results in cell death, termed synthetic lethality, whereas inhibition of either
pathway alone does not.

1.2. PARP Inhibitors from Bench to Bedside

Various attempts have been made to demonstrate the concept of a synthetic lethal
interaction between PARPs inhibition and BRCA1/2 mutations in clinical trials. As PARPs
use nicotinamide adenine dinucleotide (NAD+) as a substrate for processing PARylation,
small-molecule nicotinamide analogs that compete with NAD+ to occupy the PARPs
catalytic domain were initially used to prove the concept in preclinical assays [16].

Efforts to discover drugs have led to the development of clinically usable PARP in-
hibitors, including olaparib, veliparib, rucaparib, niraparib, talazoparib, and pamiparib
(Figure 2 and Table 1) [16]. These PARP inhibitors interact with the NAD+ binding site.
Enzymatic inactivation of PARPs and trapping of PARPs at damaged DNA are the mecha-
nisms of action of PARP inhibitors [17].

In 2014, olaparib (Lynparza; AstraZeneca) was approved for use as a single reagent
by the European Medicines Agency (EMA) in the European Union and by the USA Food
and Drug Administration (FDA). The FDA and EMA approved olaparib for the treatment
of patients with deleterious or suspected deleterious germline BRCA (gBRCA)-mutated
advanced ovarian cancer who have been treated with three or more prior lines of chemother-
apy [18]. Moreover, olaparib was approved for the maintenance treatment of adult patients
with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who had
a complete or partial response to platinum-based chemotherapy in 2017 [19]. In 2018,
olaparib was approved by the FDA for gBRCA mutated Her2-negative metastatic breast
cancer. Among the PARP inhibitors, olaparib was the first to be approved for breast can-
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cer treatment. In phase 3 clinical trials, the median progression-free survival (PFS) was
significantly longer in the olaparib group than in the standard therapy group (7.0 months
vs. 4.2 months; hazard ratio for disease progression or death, 0.58; 95% CI, 0.43–0.80)
(OlympiAD trial, NCT02000622) [20]. As such, the clinical applications of olaparib have
been increasing through various clinical trials and subsequent approvals. Notably, olaparib
gained FDA approval in 2019 for the indication of pancreatic cancer (NCT02184195) [21].
Metastatic pancreatic cancer patients have been waiting for a long time for new therapeutic
options. A phase 3 POLO trial (NCT02184195) showed that patients with a gBRCA muta-
tion and metastatic pancreatic cancer that had not progressed during first-line platinum-
based chemotherapy had significantly longer PFS with maintenance olaparib than with a
placebo [21].
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Rucaparib and niraparib (Zejula; GSK) have been approved for the treatment of ovar-
ian cancer associated with HR deficiency. In addition, rucaparib has been approved for the
treatment of patients with deleterious BRCA-mutated metastatic castrate-resistant prostate
cancer (NCT02952534) [22]. Interestingly, the indications for niraparib were later expanded
to patients with ovarian cancer regardless of their HR-deficient status. Significantly longer
progression-free survival (PFS) in clinical trials (NCT02655016) led to FDA approval of
niraparib as a maintenance therapy, regardless of biomarker status [23].

Veliparib (ABT-888; AbbVie) is undergoing phase 3 clinical trials as a combination
therapy for breast, ovarian, and lung cancers. Although veliparib is an effective PARPs cat-
alytic inhibitor with low IC50 values, its ability to trap PARPs is considered to be relatively
weak [17]. However, veliparib increases sensitivity to treatments with DNA-damaging
reagents, such as chemotherapy and radiation therapy [24]. A recent study reported that
the median PFS in patients with gBRCA mutated and Her2-negative breast cancer increased
when veliparib was added to carboplatine-paclitaxel treatment (veliparib: 16.6 months
(95% CI 13.4–18.7) vs. control: 13.1 months (95% CI 11.4–14.5); NCT02163694) [25,26]. In ad-
dition, the combination with veliparib showed benefits in ovarian and lung cancers [27,28].
Interestingly, veliparib significantly improved the PFS of ovarian cancer patients regardless
of the presence or absence of BRCA mutations or HR deficiency status, although the degree
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of benefit was higher in patients with HR deficiency [27]. Of note, this clinical trial included
patients with BRCA1/2 somatic mutations.

Talazoparib (BMN 673/Talzenna; Pfizer) was approved for advanced breast cancer
patients with gBRCA mutations [29]. Talazoparib is known to exhibit the most potent
PARPs trapping ability. It has a more rigid structure and is the largest in size among the
PARP inhibitors [24,30]. It is thought that the difference in chemical structure results in the
difference in the PARPs trapping ability. Of note, the PARPs trapping mechanism is con-
troversial. The mere inhibition of catalytic activity, which inhibits PARylation-dependent
dissociation, might stabilize PARPs on DNA [31]. Because the efficacy of the preclinical
data may not always translate directly into clinical effectiveness, efficacy comparisons
between PARP inhibitors in clinics are required in the future.

Table 1. Notable phase 3 and 4 clinical trials that have results.

NCT
Identifier Drug Setting Conditions With Chemo Efficacy (Ref.)

Breast cancer

NCT02163694 Veliparib Her2-negative advanced breast cancer;
Germline BRCA1/2 mutated

Yes; Combination with
carboplatin + paclitaxel

Increase in PFS compared with placebo
in a germline BRCA1/2 mutation [25,26]

NCT02000622 Olaparib Her2-negative metastatic breast cancer
patients; Germline BRCA 1/2 mutated No Benefit over standard chemotherapy in

PFS [20,32]

NCT01945775 Talazoparib Advanced or metastatic breast cancer;
Germline BRCA mutated No

Benefit over standard chemotherapy in
PFS [29,33]

Approved by U.S. FDA in 2019

NCT01905592 Niraparib Advanced or metastatic breast cancer No
No significant differences between

niparparib and standard chemotherapy
in PFS and OS

Ovarian cancer

NCT01847274 Niraparib Ovarian cancer; platinum-based
chemotherapy sensitive No

Increase in PFS compared with placebo
regardless of the presence or absence of

HRD [23,34,35]

NCT02655016 Niraparib

Advanced ovarian cancer (Stage III or
IV); Patients with clinical complete

response or partial response following
completion of platinum-based

chemotherapy course.

No

Increase in PFS compared with placebo
regardless of the presence or absence of

HDR [36]
Approved by U.S. FDA in 2020 for the

maintenance treatment

NCT02470585 Veliparib Advanced ovarian cancer (Stage III or
IV); Patients after surgery

Yes; Combination with
first-line chemotherapy

Increase in PFS compared with placebo
regardless of the presence or absence of

HRD [27]

NCT01968213 Rucaparib

Ovarian, fallopian, peritoneal cancer;
Patients with clinical complete

response or partial response following
completion of platinum-based

chemotherapy course.

No

Increase in PFS, CFI, TFST, TSST, and
PSF2 compared with placebo in recurrent
ovarian cancer regardless of the presence

or absence of HDR [37–39]
Approved by U.S. FDA in 2018 for the

maintenance treatment

NCT01874353 Olaparib
Relapsed high grade serous ovarian

cancer; platinum-based chemotherapy
sensitive; BRCA1/2 mutated

No

Increase in PFS and OS compared with
placebo [40–43]

Approved by U.S. FDA in 2017 for the
maintenance treatment

NCT01844986 Olaparib

Advanced Ovarian Cancer (Stage III,
IV); BRCA1/2 mutated; Patients with
clinical complete response or partial

response following completion of
platinum-based chemotherapy course.

No

Increase in PFS compared with placebo
regardless of the presence or absence of

HRD [44,45]

Lung cancer

NCT02106546 Veliparib Advanced or metastatic squamous
non-small cell lung cancer (NSCLC);

Yes; Combination with
carboplatin + paclitaxel

Favorable OS in the 52-gene expression
histology classifier (LP52)-positive

population by veliparib; Favorable OS in
the LP52-negative population by placebo

[28]
Pancreatic cancer

NCT02184195 Olaparib

Metastatic pancreatic cancer; Germline
BRCA1/2 mutated; No progression

during first-line platinum-based
chemotherapy

No

Increase in PFS compared to placebo
with a germline BRCA1/2 mutation [21]
Approved by U.S. FDA in 2019 for the

maintenance treatment
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2. PARP Inhibitors: Back to the Bench: PARPi Resistance
2.1. Reversion Mutations of HR Genes

Clinical trials have shown promising response rates in patients receiving PARP in-
hibitors; however, 40–70% of patients show a tendency to develop resistance over time. The
molecular basis of acquired resistance has been increasingly elucidated. The most readily
conceivable mechanism of PARP inhibitor resistance is the reversion mutation of BRCA1/2.
In 2008, two independent research groups discovered BRCA reverse mutations that cause
PARP inhibitor resistance [46,47]. Continuous exposure to PARP inhibitors or cisplatin
ultimately resulted in resistance. Interestingly, it was confirmed that the protein-truncating
c.6174delT frameshift mutation of BRCA2 in cancer cells was converted to restore the
open reading frame (ORF). Functional recovery of BRCA2 proteins caused resistance to
PARP inhibitors. BRCA2 functionality was restored only by acquiring certain functional
domains, even if it was not fully converted to the wild type (WT). Therefore, mapping the
consequences of reversion mutations on BRCA proteins can reveal which protein domains
are functionally important in conferring resistance to treatment. In patients, the primary
BRCA genes mutations are mostly insertions or deletions subsequent to frameshifts and
stop codon acquisitions. BRCA1 primary mutations are predominantly located in the RING
or BRCT domains [48], and BRCA2 primary mutations are located in BRC repeats or the
N-terminus [48]. Secondary reversion mutations occur where the primary mutation causes
a frameshift and restores the ORF through new mutations. It is known that the BRCA1
RING domain functions as an E3 ligase when bound to BARD1, and the BRCT domain is
critical for binding with phosphorylated proteins. Additionally, the BRCT domain is critical
for the stabilization and nuclear localization of the BRCA1 protein [49]. BRCA2 binds with
RAD51 recombinase, which is important for HR repair, through BRC repeats. Intriguingly,
there have been no reports on reversion mutations in which all BRC repeats have been
completely eliminated, suggesting that minimal BRC is required to restore resistance in
conferring BRCA2 function [48]. However, some cancers without BRCA mutations are
still sensitive to PARP inhibitors [50–52], suggesting that various other components are
intricately involved in the HR process.

In addition to BRCA reversion, secondary mutations of RAD51C and RAD51D were
identified in patients administered rucaparib [53]. Interestingly, these mutations restored
the function of RAD51 and increased resistance to PARP inhibitors [53]. These secondary
mutations also cause clinical resistance to platinum-based chemotherapy.

2.2. Restoration of HR via Inactivation of Non-Homologous End Joining Proteins

Although both BRCA1/2 reversion mutations have been identified in patients, BRCA2
reversions are more frequently reported; approximately four times as many reversion
mutations in BRCA2 have been reported in clinics [48]. This suggests that in the case of
the BRCA1 mutation, there may be other mechanisms for inducing resistance to PARP
inhibitors. BRCA1 is a pleiotropic DNA damage-responsive protein that is involved in
both DNA repair and checkpoint activation, whereas BRCA2 is a mediator of the core
mechanism of HR [54]. BRCA1 is responsible for multiple DDR steps—from the DNA
damage sensor to the mediator, and finally to the repair effector. BRCA1 is phosphorylated
by various checkpoint kinases, such as ATM, ATR, and CHK2, which regulate cell cycle
checkpoints or facilitate DNA damage repair. In particular, BRCA1 functions upstream
of BRCA2 in the BRCA1–BRCA2-mediated HR pathway [54]. Together, HR recovery and
subsequent resistance induction in BRCA1-mutated cancers might be an outcome that
bypasses multiple BRCA1-associated pathways.

BRCA1 is responsible for removing NHEJ proteins, such as p53-binding protein 1
(53BP1), from DSBs to prevent aberrant end-joining and to drive HR. Interestingly, in the
absence of BRCA1, 53BP1 suppresses HR by limiting DNA end resection, which is critical
for excessive NHEJ and subsequent apoptosis [55,56]. Therefore, it is exceedingly likely that
53BP1 inactivation affects the choice between NHEJ and HR, and, ultimately, the resistance.
Indeed, loss of 53BP1 partially restores HR in BRCA1-deficient cells and develops resistance
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to PARP inhibitors [57]. Since 53BP1 expression is frequently lost in BRCA1/2-mutated or
triple-negative breast cancers [58], it is thought that 53BP1 could be used as a biomarker for
predicting the response of BRCA-mutated cancers to PARP inhibitor therapy. Consistently,
53BP1-negative breast cancer patients showed a poorer survival rate [58]. Loss of 53BP1
also develops resistance to DNA-damaging reagents, such as cisplatin and doxorubicin [57].

Loss of REV7/MAD2L2 also leads to HR restoration and subsequent PARP inhibitor
resistance in BRCA1-deficient cells [59]. REV7/MAD2L2 is recruited to DNA damaged
sites as a downstream of 53BP1 and blocks DNA resection to promote NHEJ [59]. Therefore,
REV7/MAD2L2 depletion drives BRCA1-deficient cells to repair via HR pathways and
renders them resistant to PARP inhibitors. The correlation of survival rates according to the
degree of expression of REV7/MAD2L2 was investigated. The TCGA database was used to
construct gene-specific survival probability panels for three types of cancers (pancreatic
cancer, ovarian cancer, and breast cancer) where PARP inhibitors are predominantly used
for treatment. High expression of REV7/MAD2L2 shows higher survival probabilities in
pancreatic cancer (Figure 3A), ovarian cancer (Figure 3B), and breast cancer (Figure 3C),
whereas low expression of REV7/MAD2L2 exhibits an unfavorable outcome (Figure 3).
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were compared by log-rank tests. To choose the best fragments per kilobase of exon per million
(FPKM) cut-offs for grouping the most significant patients, all FPKM values from the 20th to 80th
percentiles were used to group the patients, significant differences in the survival outcomes of the
groups were examined, and the value yielding the lowest log-rank p value selected. Genes with
log-rank p values less than 0.001 were defined as prognostic genes.

2.3. Restoration of Replication Fork Stability

Timely and faithful duplication of the genome should be performed for genomic
stability. Occasionally, impediments to the replication progress, such as DNA lesions or
collisions with transcription machineries, lead to fork slowdown and/or stalling known as
replication stress. PARP and BRCA play key roles in DNA replication, particularly for fork
protection [60]. Multiple fork protection mechanisms, consisting of stabilization, repair, and
restart processes, minimize genomic instability [60]. Paradoxically, these mechanisms are
also active in cancer cells; however, they only serve to compromise the cytotoxicity caused
by therapeutic agents. PARP inhibitors appear to increase replication fork speed and induce
accumulated single-strand DNA damage and subsequent DSB [61]. These replication
barriers caused by PARP inhibitors lead to fork stalling. BRCA proteins prevent the
degradation of nascent DNA after replication stress; therefore, nascent DNA generated from
stalled forks is degraded by MRE11 nuclease in BRCA-deficient cells, resulting in excessive
genomic instability and apoptosis; that is, restoring fork stabilization in BRCA-deficient
cells may be responsible for triggering PAPR inhibitor resistance, and a comprehensive
understanding of how cells protect stalled forks could lead to the establishment of strategies
to combat PARP inhibitor resistance in cancer treatment [55,60,62–64].
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Interestingly, numerous studies have reported that restoring fork stabilization can
render resistance to PARP inhibitors (Figure 4). Through impairment of MRE11 nucle-
ase recruitment by MLL3/4 depletion, PTIP restores fork stability and drives resistance
to PARP inhibitors [63]. Inactivation of SNF2-family fork remodelers, including SMAR-
CAL1, ZRANB3, and HLTF, which are critical for fork reversal, reduces replication stress
and genomic instability, and provides PARP inhibitor resistance [64]. RADX (CXorf57),
a single-stranded DNA-binding protein, regulates RAD51 activity. RADX depletion re-
stores fork protection in BRCA mutant cells and induces PARP inhibitor resistance [65].
Consistently, studies using BRCA-mutated cells with low expression of PTIP, RADX, and
SMARCAL-1 showed poorer survival outcomes in a xenograft mouse model [60,63–65].
We also constructed survival probability panels for these genes using the TCGA database.
In pancreatic cancer, similar to REV7/MAD2L2, low expression of ZRANB3 and HLTF
shows poorer survival probabilities than those with high expression (Figure 5A,B). In
ovarian cancer, low expression of SMARCAL-1 and PTIP exhibits an unfavorable outcome
(Figure 5C,D). PTIP also shows similar survival probabilities in breast cancer (Figure 5E).
FANCD2 overexpression confers resistance to PARP inhibitors through fork stabilization,
suggesting that FANCD2 can be used as a biomarker for PARP inhibitors sensitivity [62].
Indeed, high expression of FANCD2 shows a lower survival probability in pancreatic
cancer (Figure 5F). Surprisingly, stalled fork stabilization conferred resistance to PARP
inhibitors and to chemotherapy such as cisplatin. As mentioned above, HR restoration
also conferred resistance to chemotherapy. Taken together, these results suggest that re-
sistance can be acquired through alteration of the DNA repair system in the case of DNA
damage-related therapeutics.
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2.4. PARP Mutations

PARP inhibitors target PARP proteins; therefore, the alteration of the PARP protein
itself might lead to resistance. Mutation or depletion of target proteins can affect resistance
to PARP inhibitors. PARP1 knockout cells were highly resistant to olaparib treatment [17],
suggesting that PARP1 loss might lead to resistance. Genome-wide CRISPR–Cas9 mutage-
nesis screening identified several mutations in PARP1 that are related to PARP inhibitor
resistance [66]. PARP1 mutations located in the DNA-binding ZnF domain failed to be
recruited to the DNA damage site and did not produce PAR at damaged sites. Interestingly,
ovarian cancer patients with the PARP1 p.R591C mutation (c.1771C>T) showed de novo
resistance to olaparib, suggesting that this is partly validated in clinics as a mechanism of
resistance to PARP inhibitors. Although the p.R591C mutation is not located in the ZnF
domain, the dissociation rate from the damage sites is more rapid than that of WT.
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Figure 5. Kaplan–Meier plots for the ZRANB3 in pancreatic cancer (A), HLTF in pancreatic cancer (B),
SMARCAL-1 in ovarian cancer (C), PTIP in ovarian cancer (D) or breast cancer (E), and FANCD2
in pancreatic cancer (F) mRNA level separation from the TCGA and HPA cohorts. The log-rank
p values are shown in the lower left corner of each Kaplan–Meier plot. The prognosis of each group
of patients was examined by Kaplan–Meier survival estimators, and the survival outcomes of the
two groups were compared by log-rank tests. To choose the best fragments per kilobase of exon per
million (FPKM) cut-offs for grouping the most significant patients, all FPKM values from the 20th to
80th percentiles were used to group the patients, significant differences in the survival outcomes of
the groups were examined, and the value yielding the lowest log-rank p value selected. Genes with a
log-rank p values less than 0.001 were defined as prognostic genes.

3. Lessons from Bench: How Can We Overcome Resistance to PARPi or Expand the
Use of PARPi?
3.1. PARPi Combination Approaches

Combination with inhibitors of particular cell cycle checkpoint kinases can enhance
PAPR inhibitor sensitivity. Replication stress activates multiple cell cycle checkpoint
kinases. The kinase ATR primarily recognizes a stalled replication fork and phosphorylates
downstream signaling cascades, including BRCA1, Mec1, and 53BP1. Activated ATR
induces a shutdown of origin firing and lowers fork speed through the activation of
CHK1 and inactivation of CDK1/2 [67–69]. WEE1 kinases phosphorylate CDK1/2 to
maintain their inactivation [70]. In other words, activation of ATM and WEE1 contributes
to the maintenance of genomic stability in normal cells. ATR kinase plays a unique role
in PARP inhibitor-resistant cells [55]. In PARP inhibitor-resistant BRCA1-deficient cells,
ATR regulates both BRCA1-independent HR and fork protection by promoting RAD51
recruitment to DSBs and stalled forks [55]. These results indicate that PARP inhibitor
resistance in BRCA1-deficient cancers might be overcome by co-treatment with an ATR
inhibitor. Based on these results, phase 2 clinical trials of combination therapy with an ATR
inhibitor (AZD6738) and olaparib for solid cancers, such as renal, pancreatic, and breast
cancers (NCT03682289, NCT03330847), are ongoing. In a similar context, WEE1 inhibitors
have emerged as promising alternatives, and various clinical trials are underway to evaluate
their efficacy. Among them, phase 1 clinical trials are recruiting advanced solid cancer
patients with selective mutations (BRCA1, BRCA2, BRIP1, FANCA, PALB2, or non-DDR
gene markers) and PARP resistance (NCT04197713, STAR study). We anticipate that the
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results of overcoming PARP inhibitor resistance by WEE1 inhibitor (adavosertib/AZD1775)
will be reproduced in a clinical setting.

Blocking CTLA4, PD-1, and PD-L1 immune checkpoints have emerged as new targets
in cancer therapy, and these therapies have shown remarkable positive clinical effects.
Interestingly, PARP inhibitor treatment upregulated PD-L1 expression in breast cancer cells,
which weakened the efficacy of PARP inhibitors in terms of anti-cancer immunity [71]. An
in vivo study showed that the combination of PARP inhibitors and anti-PD-L1 therapy
significantly increased the therapeutic efficacy [71]. Currently, phase 2 clinical trials using
olaparib and anti-PD-L1 (durvalumab or atezolizumab) combination for ovarian, breast,
and gastric cancers (NCT02734004, NCT02849496) are ongoing.

Combination with inhibitors against restoration of PARylation can enhance PAPR
inhibitor sensitivity. It has been reported that PARP1 phosphorylation at Tyr907 by c-
Met increases PARylation activity of PARP1 and renders cancer cells resistant to PARP
inhibitor [72]; that is, pY907 PARP1 might be a predictive marker for PARP inhibitor
resistance. Indeed, the combination of c-Met and PARP1 inhibitors reduced tumor growth
compared to either inhibitor alone. Loss of PAR glycohydrolase (PARG) is also related to
restoration of PARylation. PARG degrades PAR by hydrolyzing the ribose–ribose bonds
in poly(ADP-ribose) [73]. PARG knockdown partially restored PARylation despite PARP
inhibitor treatment and resulted in PARP inhibitor resistance [50]. Interestingly, alteration
of PAR signaling by downregulation of PARG increases the sensitivity to IR [50,52]. These
studies suggest that assessment of PARG or c-Met activation is required to establish an
appropriate therapeutic strategy.

Together, combination therapies to overcome PARP inhibitor resistance and enhance
PARP inhibitor sensitivity are still in their infancy and have a long way to go. An increasing
number of studies are required to investigate its feasibility in clinical settings.

3.2. Chemical Modifications of PARP Inhibitors

Researchers have attempted to develop more potent and broadly useful PARP in-
hibitors. Recently, chemically mediated targeted protein degradation has emerged as
a promising and innovative technology for the development of new therapeutic drugs.
Removal of targeted protein degradation through the ubiquitin proteasome system or
autophagy generally provides a more potent inhibitory ability. The most well-known mod-
ulation methods are proteolysis-targeting chimeras (PROTAC) and hydrophobic tagging.
PROTAC has the advantage of being easy to target intracellularly. Furthermore, it can be
used to develop a therapeutic agent for intractable diseases because it can remove disease
proteins that conventional antibody therapeutics have not been able to access.

Recently, the clinical application of the PROTAC method for cancer treatment has been
attempted in various ways. In the second half of 2020, three PROTAC-related companies
were listed in the US, with Arvinas announcing the positive results of their phase 1 clinical
pipeline in December 2020, raising interest in PROTAC-related anticancer drugs [74].
In 2019, clinical trials were sequentially initiated for ARV-110, a metastatic castration-
resistant prostate cancer treatment, and ARV-471, a locally advanced or metastatic ER-
positive/HER2-negative breast cancer treatment. In addition, in October 2019, the initial
safety and pharmacokinetic data of ARV-110 and ARV-471 were published (NCT03888612,
NCT04072952). Recently, Arvinas announced the interim results of a phase 1 clinical trial
and reported that the safety and tolerability problems of PROTAC were solved to a certain
extent. However, it is still in the early stages of clinical research; therefore, it is necessary to
broaden the scope of applied research, such as targeting PARP and PARP inhibitors.

To develop PARP-targeting PROTAC, a PARP inhibitor was connected to the E3 ubiq-
uitin ligase ligand through a flexible linker (Figure 6). This bivalent molecule brings the E3
ligase and PARPs into close proximity, where PARPs are ubiquitinated and subsequently
degraded through the proteasome pathway. Although more than 600 E3 ligases are ex-
pressed in mammalian cells, only limited E3 ligases (e.g., MDM2, cIAP1, cereblon [CRBN],
VHL, RNF4, RNF14, and DCAF16) are used for PROTAC [75]. The choice of pairing E3
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and PARP binders appears to be critical for the successful degradation of target proteins
by PROTAC. In addition, the linker length should be optimized to allow ternary complex
formation between E3 ligase and target proteins [76]. PROTACs using olaparib, ruca-
parib, and niraparib derivatives were developed and tested in cancer and non-cancer cells
(Table 2). They showed superior cytotoxicity compared to that of conventional inhibitors
and a wider range of uses beyond BRCA mutant cancers [77–79]. Among them, PROTAC
using niraparib and MDM2 ligand exhibited PARP1 degradation and also increased PARP
cleavage in MDA-MB-231 breast cancer cells. An interesting study was conducted to un-
couple PARP1 catalytic inhibition and PARP1 trapping through the development of PARP
PROTAC [80,81]. As mentioned above, PARP inhibitors can inhibit catalytic activity and
induce PARPs trapping. PROTAC using rucaparib and CRBN ligand (iRucaparib-AP6)
selectively degraded PARP1 and inhibited PARylation-mediated signaling events [81]. In-
terestingly, iRucaparib-AP6 did not induce PARP1 trapping or cell death in cardiomyocytes.
Non-trapping PARP degraders are expected to be useful for the treatment of diseases
associated with PARP activation (e.g., ischemia–reperfusion injury or neurodegenerative
disease) because it does not induce genotoxicity or cell death.

Table 2. PROTAC or hydrophobic-tagged PARP inhibitors.

PROTAC

PARP Binder E3 Ligase Binder Tested Cell Note Ref.

Olaparib CRBN ligand
MDA-MB-436 (BRCA1 mutated breast cancer
cells), Capan-1 (BRCA2 mutated pancreatic

cancer cells), SW620 (colon cancer cell)

Inhibition of tumor growth,
Xenograft assay [77]

Rucaparib CRBN ligand Primary rat neonatal cardiomyocytes, C2C12
(myoblast)

PARP1 non-trapping, No
genotoxic induced cell death [81]

Olaparib CRBN ligand SW620 Increased apoptosis [78]

Niraparib MDM2 ligand MDA-MB-231 (TNBC) Induction of PARP1 cleavage,
increased apoptosis [79]

Hydrophobic Tagging

PARP Binder Hydrophobic
Moiety Tested Cell Note Ref.

Olaparib Fluorene MDA-MB-231, MDA-MB-468 (TNBC),
HCC1937 (BRCA1 mutated breast cancer cells) Increased apoptosis and ER stress [82]

Hydrophobic-tagging technology consists of a hydrophobic fragment (e.g., adamantyl,
Boc3Arg, or fluorene) and a ligand for the targeted protein. Hydrophobic tagging mimics a
partially unfolded or misfolded protein state and induces protein destabilization, thereby
recruiting an endogenous chaperone protein to a hydrophobic-tagged protein and then
degrading the targeted protein by the proteasome (Figure 6). Hydrophobic-tagged olaparib
showed enhanced apoptosis in MBA-MB-231 cells, which are triple-negative breast cancer
cells and carry the BRCA WT [82]. Interestingly, hydrophobic-tagged olaparib triggered
the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress. Excessive
and irreversible UPR and ER stress-mediated apoptosis by hydrophobic tagging might be a
mechanism of action that has better antitumor effects than olaparib in TNBC cells.

Hybrid drugs (also known as single-molecule multiple targets) also provide synergistic
effects in treatment. Hybrid drugs are obtained by connecting two or more bioactive
molecules [83,84]. Hybrid drugs have been developed based on combination therapies that
overcome resistance or show improved outcomes, and their efficacy has been evaluated in
preclinical studies (Figure 7).
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As several BRCA1-related breast cancers are associated with activation of PI3K signal-
ing [85], dual inhibitors targeting PARP and PI3K can be a promising strategy for cancer
treatment. Based on this concept, dual inhibitors targeting PARP and PI3K were developed,
and a more enhanced dual targeting capability was observed in cell-based assays [86].
Interestingly, dual inhibitors were found to be more efficacious than single administration
of olaparib or BKM120 (PI3K inhibitor) and combined administration of olaparib and PI3K
inhibitor in xenograft mouse models [86]. As co-treatment with HDAC inhibitors and PARP
inhibitors exhibited synergistic effects in various cancer cells [87,88], researchers developed
drugs that can simultaneously target PARP and HDAC. Dual PARP and HDAC inhibitors
showed excellent inhibitory activities against PARP and HDAC and induced apoptosis
in breast cancer cells [89]. DNA topoisomerases are involved in resolving the topological
issues caused during replication or transcription [90]. Since both PARP inhibitors and
topoisomerase I/II inhibitors are involved in replication fork stabilization, combinatorial
inhibition of both target proteins may help overcoming resistance. Dual PARP and topoi-
somerase inhibitors showed significant anti-tumor activity without adverse toxicity in
xenograft mouse models [91]. Hybrid inhibitors of PARP and PD-L1 were also developed
by researchers. It has been reported that anti-tumor activity is improved when a PARP
inhibitor is combined with a PD-1 antibody (pembrolizumab). In addition, PARP inhibitor
treatment has been reported to upregulate PD-L1 expression in some cancer cells [92]. The
dual inhibitors not only showed anti-tumor activity but also attenuated PD-L1 expression
compared to the PARP inhibitor alone [93].

4. Concluding Remarks

Extensive efforts have been made to develop efficient PARP inhibitors, and drugs with
high efficacy and tolerable toxicity have been actively used in clinics. Indeed, PARPs are
undoubtedly an excellent drug target applicable to patients with BRCA mutations, and its
scope of application is currently being extended. However, the occurrence of resistance
is inevitable owing to the inherent limitations of targeted therapy. As seen above, except
for the reversion mutation of BRCA, it appears that certain clues have been identified that
show resistance can be overcome through preclinical assays, although clinical evidence is
still lacking.

Although combination approaches that identify the mechanism of resistance and
provide solutions are the forerunners, it is thought that the development of more creative
and newer concepts of PARP inhibitors is required to prepare for unexpected situations in
the future. The application of new technologies such as PROTAC or hydrophobic tagging to
existing inhibitors is an impressive endeavor, although it is still in its infancy. As degrader
technology continues to mature and be optimized, promising results are expected to be
achieved in the near future. The development of structurally diverse inhibitors may be
another option. To date, the majority of PARP inhibitors are NAD+ competitors, and
their mechanism of action is almost similar. A recent study suggested structurally new
non-NAD-like inhibitors and showed greater efficacy and potency than classical PARP
inhibitors [94]. If innovative explorations are continuously performed and accumulated,
potent drugs with new mechanisms are expected to be developed and used for patients.
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