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If replication forks are perturbed, a multifaceted response

including several DNA repair and cell cycle checkpoint

pathways is activated to ensure faithful DNA replication.

Here, we show that poly(ADP-ribose) polymerase 1

(PARP1) binds to and is activated by stalled replication

forks that contain small gaps. PARP1 collaborates with

Mre11 to promote replication fork restart after release from

replication blocks, most likely by recruiting Mre11 to the

replication fork to promote resection of DNA. Both PARP1

and PARP2 are required for hydroxyurea-induced homo-

logous recombination to promote cell survival after repli-

cation blocks. Together, our data suggest that PARP1 and

PARP2 detect disrupted replication forks and attract Mre11

for end processing that is required for subsequent recom-

bination repair and restart of replication forks.
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Introduction

Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant

nuclear protein that is activated by DNA-strand breaks;

activation of PARP1 leads to automodification and modifica-

tion of other acceptor proteins with poly(ADP-ribose) (PAR)

polymers (Satoh and Lindahl, 1992). PARP1 protects DNA

breaks and chromatin structure and recruits DNA repair and

checkpoint proteins to sites of damage (Allinson et al, 2003;

Ahel et al, 2008). Inhibition of PARP1 is synthetic lethal with

defects in homologous recombination (HR) and is currently

being tested as a monotherapy for heritable breast and

ovarian cancers deficient in the BRCA1 or BRCA2 genes

(Bryant et al, 2005; Farmer et al, 2005; Helleday et al,

2008). PARP2, another nuclear member of the PARP family

with largely unknown function, shares homology with PARP1

and is also activated by DNA breaks (Ame et al, 1999).

Embryonic knockout of either PARP1 or PARP2 is well

tolerated; however, double knockout is embryonic lethal

(Menissier de Murcia et al, 2003) suggesting that PARP1 and

PARP2 can compensate for some of each other’s functions.

PARP activity has been found to be enhanced in replicating

cells (Lehmann et al, 1974), in the vicinity of replication

forks (Jump et al, 1979) and in newly replicated chromatin

(Anachkova et al, 1989). In addition, PARP1 has been shown

to interact with several DNA replication proteins, many of

which were poly(ADP-ribosyl)ated (Simbulan et al, 1993;

Simbulan-Rosenthal et al, 1996; Dantzer et al, 1998). It has,

therefore, been postulated that PARP1 might be involved in

mammalian DNA replication. After treatment with hydro-

xyurea (HU), which stalls replication forks by depleting

dNTP pools, PARP-1�/� cells have been shown to display

delayed progress from S into G2/M phase (Yang et al, 2004),

and although the underlying molecular mechanisms are not

yet clear, a role for PARP1 in the response to replication fork

stalling has been suggested. The PARP proteins are unique to

higher eukaryotes and there is no evidence of PARP activity in

Saccharomyces cerevisiae or prokaryotes.

Regulation of DNA replication has been recognised as an

important mechanism for preventing carcinogenesis, as im-

paired replication fork progression and increased replication-

dependent DNA damage were observed in early stages of

tumour development (Bartkova et al, 2006; Di Micco et al,

2006). In particular, the efficient reactivation of stalled repli-

cation forks is considered essential to maintain faithful

replication and genomic stability. In Escherichia coli, stalled

or collapsed replication forks are reactivated by recombina-

tion-dependent or -independent pathways, catalysed by the

RuvABC or PriA and PriC proteins, respectively (Heller and

Marians, 2006). These proteins are not conserved in eukar-

yotes, and eukaryotic mechanisms of replication fork reacti-

vation are not well characterised. In yeast, HU-induced fork

stalling is reversible and forks only collapse in certain back-

grounds, for example rad53 mutants (Lopes et al, 2001); it is

only in those backgrounds that HR is triggered for repair

(Meister et al, 2005). This is in contrast to higher eukaryotes,

in which HU triggers HR directly in wild-type mammalian

cells (Arnaudeau et al, 2001; Saintigny et al, 2001; Lundin

et al, 2002), suggesting that recombination-dependent repli-

cation restart mechanisms might be important in higher

eukaryotes. Stalled forks are likely to need processing before

HR medicated restart can take place, and this is supported by

the fact that the end-processing Mre11 protein relocates
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to stalled replication forks after replication inhibition

(Robison et al, 2004; Hanada et al, 2007). Here, we show

that PARP1 binds to and is activated at stalled replication

forks to mediate recruitment of Mre11 to initiate the end

processing required for replication restart and HR.

Results

PARP is activated on replication stalling and required

for survival

Several lines of evidence suggest that PARP is associated with

replication forks (Lehmann et al, 1974; Jump et al, 1979;

Anachkova et al, 1989; Simbulan et al, 1993; Simbulan-

Rosenthal et al, 1996; Dantzer et al, 1998; Yang et al, 2004).

Here, we wanted to test whether PARP1 itself is involved in

the response to stalled replication forks. We treated PARP1�/�

mouse embryonic fibroblasts (MEFs) or PARP-inhibited cells

with HU, which depletes dNTP pools and stalls replication

forks (Bianchi et al, 1986). We found that both PARP-inhib-

ited and PARP1�/� cells are sensitive to increasing doses

of HU as compared with wild-type cells (Figure 1A;

Supplementary Figure S1), showing that PARP is required

for survival of replication fork stalling and confirming the HU

sensitivity in PARP1�/� MEFs reported earlier (Yang et al,

2004). To further understand the role of PARP in promoting

survival to HU, we tested whether PARP activity is also

triggered by replication fork stalling, which would indicate

an active role for PARP in the response to stalled forks. We

found that the products of PARP activity, PAR polymers, are

formed in cells treated with HU (Figure 1B–D). It is well

established that PARP is activated by DNA single-strand

breaks (SSBs), produced directly or as a base excision repair

intermediate (Satoh and Lindahl, 1992), and that this attracts

SSB repair proteins for repair (El-Khamisy et al, 2003). When

investigating the kinetics of PARP activation, we found that

HU treatment triggers a much slower PARP response than

treatment with the alkylating agent methylmethane sulpho-

nate (MMS) (Figure 1E) and, this is likely to be because of the

low number of active forks that can be stalled by HU

treatment in an asynchronous cell population.

PARP binds to and is activated by stalled replication fork

structures in vitro

It is well established that the PARP1 zinc-finger domains bind

with high affinity to DNA double-strand ends as well as to

other DNA structures (D’Silva et al, 1999). It is likely that

PARP1 can bind to double-strand breaks (DSBs) formed when

A B Control HU (24 h, 0.5 mM)

0.1

1

P
A

R

0.01

S
u
rv

iv
a
l 
fr

a
c
ti
o
n

None

NAP

ISQ

NU1025

0.001
0

Hydroxyurea (mM) P
A

R
+

 D
N

A

C

90

100

D

0.8

1

HU (0.5 mM)

NAP (100 µM)

kDa

–

–

–

+

+

–

+

+ E

*

30

40

50

60

70

80

yd
ro

x
y
u

re
a

C
o
n
tr

o
l

y

0.2

0.4

0.6

F
re

e
 N

A
D

(P
)H

(%
 o

f 
c
o
n
tr

o
l)

Control
MMS (1 mM)
Hydroxyurea (0.5 mM)

PAR
188 -

98 -

0

10

20

%
 c

e
lls

 w
it
h
 >

1
0
 s

it
e
s
 o

f

P
A

R
P

 a
c
ti
v
it
y
 

H
y
d

ro
x
y
u

re
a

0
0 1 2 3 4 5

Time of treatment (h)
α-tubulin

PARP-1

0.30.20.1

Figure 1 PARP is activated at stalled replication forks and required for survival of HU-induced replication stalling. (A) Surviving fraction of
AA8 hamster cells treated for 10 days with increasing doses of HU in the presence or absence of PARP inhibitors NU1025 (100nM), 1,5-
dihydroxyisoquinoline (ISQ; 0.6mM) or 4-amino-1,8-NAP (100mM). (B) Immunofluorescence staining for PAR in AA8 hamster cells treated for
24 h with or without 0.5mM HU. DNA was counterstained with TO-PRO-3 iodide. Bar 10mm. (C) Quantification of immunofluorescence
staining above. Percentage of AA8 cells containing sites of PARP activity induced by a 24-h treatment with 0.5mM HU. Differences are
statistically significant (Student’s t-test, Po0.05). (D) Western blot analysis of PAR (top), PARP1 (middle) and a-tubulin (bottom) in myc-PARP-
expressing U2OS cells treated with combinations of 0.5mM HU and 100mM NAP. (E) PARP activity measured by the decrease of free NAD(P)H
over time during incubation with 0.5mM HU or 1mM MMS.
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replication forks collapse (Saintigny et al, 2001; Lundin et al,

2002). However, we wanted to test whether PARP1, in addi-

tion to its ability to bind DSBs, can bind to and is activated by

stalled replication forks without DSBs. To test whether PARP1

has the ability to bind a fork structure, an artificial stalled

fork substrate was designed and PARP1 binding determined

in an electrophoretic mobility shift assay (Figure 2A;

Supplementary Figure S2). The substrate contained sealed

ends to exclude the binding of PARP1 to double-stranded

DNA ends, which has been reported (D’Amours et al, 1999).

We found that the PARP1 protein binds to the stalled fork

substrate in a concentration-dependent manner (Figure 2D).

PARP1 binds specifically to the gap in the replication fork-like

region, as the binding was not competed for by a similar

substrate ligated to form a closed DNA structure (Figure 2B).

We also found that recombinant PARP1 is activated by the

same replication fork substrate (Figure 2E). To further under-

stand the DNA structure activating PARP1 at stalled forks, we

tested how different gap sizes influence PARP1 activation. We

found that a gap size of four nucleotides activated PARP1

equally effectively as the positive control (sonicated DNA)

and increased the activity 10-fold as compared with the

plasmid control suggesting that PARP1 is fully activated by

a short gap (Figure 2F and G). Increasing the gap size to eight

nucleotides dramatically decreased PARP1 activation, sug-

gesting that PARP1 only recognises fork structures without

extensive single-stranded DNA (ssDNA) regions.

We wanted to know whether naturally stalled replication

forks could also activate PARP1. To create such a replication

intermediate, a standard oriC DNA replication mixture was

used to initiate replication of the DNA plasmid pBROTB535

(Hiasa and Marians, 1994); however, topoisomerase was

omitted resulting in prevention of fork progression by posi-

tively supercoiled DNA and accumulation of an early replica-

tion intermediate (McGlynn et al, 2001) (Figure 2C). It has

been shown earlier that such stalled replication forks can

reverse into a chicken foot structure that includes a Holliday

Junction (Postow et al, 2001). We found that PARP1 is five-

fold more activated by the stalled plasmid as compared with

plasmid control (Figure 2E), suggesting that stalled replica-

tion forks are substrates for PARP1, at least in vitro.

In conclusion, we believe that PARP1 may bind to and be

activated in the absence of DSBs at stalled replication forks,

which contain short ssDNA regions.

PARP is activated at sites of stalled forks in mammalian

cells

It has been shown that ssDNA regions form at replication

forks stalled by HU and that this ssDNA is rapidly coated with

Replication Protein A (RPA) to activate the ATR kinase (Zou

and Elledge, 2003; Robison et al, 2004). In line with earlier

reports, we found that the RPA relocates into nuclear foci

after HU treatment (Robison et al, 2004). Here, we found that

the HU-induced RPA foci co-localise with HU-induced PAR

polymers, supporting the hypothesis that PARP is activated at

sites of stalled and collapsed replication forks in mammalian

cells (Figure 3A and B).
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Figure 2 PARP1 binds to and is activated by DNA fork structures in vitro. (A) Biotin-labelled stalled fork construct and (B) ligated construct,
containing sealed DNA ends. (C) Early replication intermediate of the plasmid pBROTB535, containing replication forks stalled in vitro by
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substrate and increasing concentrations of purified PARP1 protein with or without a 10-fold excess of non-labelled competitor stalled fork
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The PARP1 protein is highly abundant and does not form

foci on HU treatment (Schultz et al, 2003, data not shown).

Nevertheless, we wanted to investigate whether the PARP1

protein is present at stalled replication forks. For this experiment,

we labelled newly replicated DNA with chlorodeoxyuridine

(CldU) after HU stalling and investigated whether PARP1 co-

immunoprecipitated (co-IP) with CldU (i.e. restarted replication

forks). We found that PARP1 did co-IP with restarted replication

forks (Figure 3C). The amount of PARP1 present in the chromatin

(DNA) fraction and co-IP with CldU is increased after HU

treatment and was not affected by PARP inhibition, suggesting

that PARP1 is present at sites of stalled replication forks and that

this association with replication forks is independent of PARP

activity (Figure 3C). This is in line with earlier data showing that

PARP1 binding to DNA is independent of the enzyme activity

(Satoh and Lindahl, 1992). Interestingly, PARP1 co-IP with newly

replicated DNA in untreated as well as HU-treated cells, suggest-

ing that PARP is always bound to DNA or that it is involved in

overcoming spontaneously stalled replication forks.

PARP1 is required for replication restart of stalled

replication forks

As PARP1 binds to and is activated at stalled replication

forks and promotes survival after stalling, we wanted to

investigate how PARP influences the reactivation and repair

of stalled replication forks. To test this, we used a novel

method based on the principle that each replication fork

provides a pair of single-stranded DNA ends that serve as

starting points for DNA unwinding in alkaline solution

(Johansson et al, 2004). The cells are pulse labelled for

30min with 3H-thymidine and the speed of replication fork

elongation is monitored as the time required for the labelled

DNA to be progressed into the double-stranded DNA fraction

after alkaline unwinding (Figure 4A). This procedure only

measures elongation of replication forks present at the time

of labelling.

We found that addition of HU directly after the pulse

label inhibits replication elongation and inhibition of replica-

tion elongation is saturated at 2mM (Figure 4B). We then

investigated replication progression when PARP is inhibited.

A co-treatment with 2mM HU and PARP inhibitor did not

affect the HU-induced slowing of replication elongation

(Figure 4C). These data show that HU-induced stalling of

replication elongation is independent of PARP activity. We

also wanted to test the possibility that PARP is involved in

repair and reactivation of stalled replication forks. In this

experiment, we arrested replication elongation with HU for

2 h and then released the cells in fresh media with or without

inhibition of PARP. We found that cells released from HU

resumed replication elongation quickly after the HU treat-

ment. In contrast, cells released into media containing PARP

inhibitor showed a replication elongation delay (Figure 4C).
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These data suggest that PARP activity is required to resume

replication elongation at stalled forks.

Our replication elongation assay is unable to determine

whether the reduced replication elongation after PARP inhibi-

tion is due to a fraction of the replication forks being stalled

or whether the speed of replication elongation is globally

reduced. To address this, we used the DNA fibre assay

(Petermann et al, 2008); we incorporated 5-CldU, blocked

with HU and released into 5-iododeoxyuridine (IdU) in the

presence or absence of PARP inhibition; DNA spreads were

then analysed by immunofluorescence (Figure 5A). We found

that rather than globally slowing replication, PARP inhibition

increases the number of forks that do not resume replication

after release from HU (Figure 5B; see Supplementary Figure

S3 for a more detailed analysis). The same results were

observed after depletion of PARP1 using siRNA (Figure 5E;

Supplementary Figure S4), showing that it is not inactive

PARP protein trapped on DNA that prevents replication

restart. An alternative siRNA directed against a different

target sequence of PARP1 had the same effect (Figure 7).

This shows that PARP activity and PARP1 protein are required

to reactivate stalled replication forks. PARP inhibition or

depletion did not, however, significantly alter normal replica-

tion elongation rates, showing that PARP is not required for

replication elongation per se (Figure 5C and F).

PARP1 is required for Mre11 foci formation and efficient

ssDNA formation at stalled replication forks

Little is known about the mechanism for replication restart in

mammalian cells, but processing of DNA structures and HR

are likely to have a function. It has been shown earlier that

Mre11, part of the Mre11/RAD50/Nbs1 complex and involved

in DNA resection to promote HR (Sartori et al, 2007; Buis

et al, 2008), has a function in the restart of damaged replica-

tion forks (Trenz et al, 2006).

Here, we confirmed an interaction of PARP1 with Nbs1 and

Mre11 (Haince et al, 2008) that is resistant to ethidium

bromide, showing that the interaction is direct and not

DNA dependent (Figure 6A). The amount of co-IP Mre11

was reduced when PARP was inhibited, suggesting that PARP

activity is required to promote the interaction. Treatment

with HU causes Mre11 to re-localise into discrete foci. We

found that a portion of the Mre11 foci formed in response to

HU treatment co-localise with PAR polymers (Figure 6B and C),

reminiscent of the observation that the localisation of Mre11

to sites of DNA damage is dependent on PARP (Haince et al,

2008). In addition, the number of cells containing 420 HU-

induced Mre11 foci was reduced when PARP was inhibited

(Figure 6D). Mre11 is involved in resecting DNA ends

(Williams et al, 2008) and is critical for repair of collapsed

replication forks (Dolganov et al, 1996; Costanzo et al, 2001);

this resection is thought to be essential because it allows HR-

induced restart of forks. Our data, therefore, suggest that

PARP exerts an effect to attract or retain Mre11 at sites of

stalling, thus promoting resection, which could in turn allow

for HR-mediated restart. The portion of Mre11 foci not over-

lapping with PAR polymers may reflect sites of non-homo-

logous end joining, which can also repair HU-induced DSBs

(Saintigny et al, 2001; Lundin et al, 2002).

Using RPA foci as a marker of the amount of ssDNA

produced, we tested whether resection of DNA is dependent

on PARP. We found that fewer HU-induced RPA foci form in

PARP1�/� as compared with PARP1þ /þ MEFs and that PARP

inhibitor reduced the formation of HU-induced RPA foci in

wild-type cells (Figure 6E and F), suggesting that PARP1

activation is required for efficient formation of ssDNA regions

at stalled replication forks; this is consistent with a role for

PARP in recruitment of Mre11 for resection of DNA.

PARP1 and Mre11 work in the same pathway for restart

of stalled replication forks

Although PARP1 facilitates Mre11 recruitment to stalled forks

and promotes ssDNA formation, it is not clear whether this is

related to the role of PARP in replication restart. To investi-

gate the interplay between PARP1 and Mre11 during the

reactivation of stalled replication forks, we depleted Mre11

using siRNA (Figure 7A) and found that Mre11-depleted cells

showed a similar defect in replication restart as PARP1-

depleted cells (Figure 7B and C; see Supplementary Figure

S5 for a more detailed analysis). Moreover, we found that
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co-depletion of both PARP1 and Mre11-inhibited replication

restart to the same extent as depletion of either of the two

proteins alone (Figure 7C), suggesting that PARP1 and Mre11

exert an effect in the same pathway to restart replication

forks. PARP1 and/or Mre11 knockdown had no influence on

the speeds of restarting forks (Figure 7D).

PARP1 and PARP2 are required for HR induced at stalled

replication forks

It is well established that HR is involved in replication restart

in bacteria (Heller and Marians, 2006) and that agents that

stall or collapse replication forks such as HU, thymidine (dT)

and camptothecin (CPT) strongly induce HR in mammalian

cells (Arnaudeau et al, 2001; Lundin et al, 2002), indicating

that this method of restart may also be preserved in mam-

malian cells. Mre11 resection is required for HR (Buis et al,

2008), suggesting that PARP1 may promote recombination

induced at stalled replication forks through recruitment of

Mre11. Furthermore, the genetic (Menissier de Murcia et al,

2003) and physical (Figure 6A) interaction between PARP1

and PARP2 suggests that PARP2 may also mediate replication

restart. To test this directly, we measured HR between two

non-functional neoR genes in the human cell line SW480SN.3

(Saleh-Gohari and Helleday, 2004). We found that siRNA

depletion of either PARP1 and/or PARP2 abrogates HU-in-

duced recombination (Figure 8A), showing that both these

proteins collaborate to activate recombination at stalled

replication forks. These results are in contrast to recombina-

tion induced by a replication-independent DSB that does not

require PARP1 for completion (Schultz et al, 2003; Yang et al,

2004).

To further consolidate the role of PARP in HR, we made use

of the SPD8 cell line that carries an endogenous recombina-

tion substrate for HR in the hprt gene (Helleday et al,

1998). Using this recombination system, we found that HU-

induced recombination is decreased by inhibition of PARP

activity with the PARP inhibitors ISQ, 4-amino-1,8 napthali-

mide or NU1025 (Figure 8B), showing that PARP activity

is required to activate recombination repair at stalled

replication forks.

In agreement with these results, we found that depletion of

either PARP1 or PARP2 sensitises cells to HU, whereas

depletion of PARP3 had no effect (Supplementary Figure

S6). Depletion of PARP1 and PARP2 together did not further

enhance HU sensitivity, suggesting that they collaborate to

promote survival after HU treatment. We also found that

fewer cells contain HU-induced RAD51 foci when PARP is

inhibited (Figure 8C) or absent in the PARP�/� MEFs
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(Figure 8D), further supporting a requirement for PARP in the

activation of recombination at stalled replication forks.

Replication forks stalled with dT also trigger PAR

formation and require PARP1 and PARP2 for

survival and HR

Several DNA lesions are suggested to form at stalled replication

forks; the lesion formed is likely to depend on the agent used for

stalling, the length of time the fork is stalled for and the

sequence in which stalling occurs (Helleday, 2003). The data

presented here suggest that PARP is potentially activated at

replication forks directly or after collapse of replication forks

into DSBs. To test whether a different type of stalled replication

fork is sufficient to trigger PARP activity and repair, we inves-

tigated the response to excess dT. dT depletes cells only of dCTP

and as a result slows down replication fork progression sub-

stantially, but unlike HU, it does not completely stop fork

progression (Bjursell and Reichard, 1973). Replication forks

do not collapse after dT treatments, and although fewer than

four DSBs per cell are formed, even after prolonged dT treat-

ments, HR is activated (Lundin et al, 2002; Bolderson et al,

2004). Here, we find increased PARP activity after dT treatment

as indicated by the increased amount of PAR foci formation

(Figure 9A). Furthermore, dT activates PARP with similar

kinetics as HU (Figure 9B), suggesting that the activating

substrate is the same as after HU treatments. Survival assays

using PARP�/� MEFs show that PARP1 is required for survival

of dT treatment (Figure 9D). siRNA depletion of PARP1 and

PARP2 also showed that both proteins are required for survival

after dT treatment. There is no additional effect observed when

both PARP1 and PARP2 are depleted (Figure 9C), suggesting

that as is the case for HU treatment, PARP1 and PARP2

collaborate for survival after dT treatment. Furthermore both

PARP1 and PARP2 are required to activate HR in the SCneo

reporter construct after dT treatments (Figure 9F), which was

also confirmed using the hprt recombination assay using PARP

inhibitors as detailed above (Figure 9E). Altogether, these

results suggest that PARP is activated at stalled replication

forks, although we cannot exclude the possibility that PARP is

also activated at collapsed replication forks that include a DSB.
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Discussion

PARP1 facilitates DNA repair

Although PARP1-inhibited or knockout cells have a defect in

SSB repair, the PARP1 protein is not essential for the SSB

repair process itself. Instead, it coordinates and increases the

speed of repair, probably by detecting the lesions. This is

clear, as a complete defect in repairing the approximate

5�104 SSBs occurring in a human cell every day would not

be compatible with the survival seen in PARP1�/� mice. Here,

we show that PARP has a role at a subset of stalled replication

forks that likely do not include extensive ssDNA to facilitate

replication restart and HR. In analogy with the role of PARP1

in SSB repair, we suggest that it increases the speed of repair,

by detecting stalled forks, rather than participating in the

replication restart process itself.

PARP has a role in detecting stalled replication forks

Although there are numerous observations supporting a role

for PARP at replication forks (Lehmann et al, 1974; Jump

et al, 1979; Simbulan et al, 1993; Simbulan-Rosenthal et al,

1996; Dantzer et al, 1998; Yang et al, 2004), there is no

consensus as to its function. Here, we show for the first time,

using three different types of assay and two different types of

replication stress, that PARP1 is activated after replication

fork stress in mammalian cells (Figures 1 and 9). PARP1

efficiently binds DSBs (D’Silva et al, 1999). Hence, it is easy

to envisage that PARP1 binds DSBs formed at collapsed

replication forks. However, it is possible that PARP1 also

binds stalled replication forks. Here, we show that PARP1 can

bind stalled replication fork structures in vitro that contain

short gaps (Figure 2), which may be a consequence after

ssDNA annealing to stabilise stalled forks. We also find that

PARP1 is present at stalled replication forks in cells

(Figure 3). Furthermore, we show that PARP is also efficiently

activated after dT treatments that are not associated with

DSBs (Figure 9) (Lundin et al, 2002; Bolderson et al, 2004).

Together these data suggest that in addition to DSBs, PARP1 is

able to bind stalled replication forks in mammalian cells. The

molecular structures activating PARP at stalled forks are

likely to contain short gaps of ssDNA, which is likely only

a subset of stalled replication forks.

PARP attracts Mre11 to stalled replication forks and

promotes resection and replication restart

Mre11 is involved in the resection of DNA ends (Sartori et al,

2007; Buis et al, 2008) and it has been shown that HU induces

Mre11 foci that co-localise with RPA (Robison et al, 2004). It

was also shown that IR-induced RPA foci are dependent on

Mre11 function (Buis et al, 2008). We find a clear link
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between PARP1 and Mre11 in reactivating stalled replication

forks. HU-induced Mre11 foci are dependent on PARP activity

and co-localise with PAR foci (Figure 6). Furthermore, Mre11

resection seems dependent on PARP as the amount of ssDNA

(as measured by RPA foci) is lower in PARP1�/� cells. It is,

therefore, likely that PARP serves to recruit Mre11 to sites of

stalling in which it resects the DNA causing RPA foci to form.

These results are consistent with earlier reports suggesting that

localisation of Mre11 to laser-induced damage is dependent on

PARP activity (Haince et al, 2008). We find epistasis between

Mre11 and PARP1 in reactivating stalled replication forks,

suggesting that the two proteins exert an effect in the same

replication restart pathway. Interestingly, 30% of Mre11 foci did

not co-localise with PAR foci (Figure 6C) and approximately

one-third of Mre11 still relocated to foci in presence of a PARP

inhibitor (Figure 6D). This suggests that there is a portion of

Mre11 that is brought to stalled forks independently of PARP1.

Consistent with this, a portion of the RPA foci formed in

response to HU is independent of PARP1 (Figure 6E and F),

suggesting that some ssDNA formation at stalled forks is

independent of PARP activity. These ssDNA regions may

represent the uncoupling of replicative polymerase and heli-

case, which occurs at stalled forks and also generates ssDNA

(Walter and Newport, 2000; Byun et al, 2005), these may be

longer stretches of ssDNA, which we show do not activate

PARP and may, therefore, be sensed in some other way.

Earlier, it has been shown that PARP1�/� cells display

delayed progress from S into G2/M phase after HU arrest

(Yang et al, 2004), but a molecular explanation for these

observations has been missing. Using two separate methods,

we show here that PARP1 is directly involved in facilitating

restart of HU stalled replication forks (Figures 4 and 5). A

simple explanation for the results could be that inhibited

PARP is stuck on stalled replication forks preventing access of

the restart machinery. However, we see the same replication

restart defect in PARP1 siRNA-depleted cells (Figure 5E),

showing that PARP1 has an active role in replication restart.

It is clear that only a portion of stalled replication forks

require PARP activity for efficient restart (Figure 4C). This is

likely to be because in the absence of dNTPs after HU

treatment, some of the forks only stop temporarily and that

they can restart immediately when the dNTP supply is

restored. Other structural changes may occur in those forks

requiring PARP for reactivation.

The role of PARP in HR

The overall role of PARP1 in HR is complex. PARP-inhibited

or knockout cells show an increase in spontaneous SCE levels

(Oikawa et al, 1980), and increased spontaneous HR (Wang

et al, 1997; Simbulan-Rosenthal et al, 1999; Bryant and

Helleday, 2006). In contrast to this, the authors and others

earlier reported that the rate of gene conversion induced by
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the rare-cutting restriction endonuclease I-SceI is indepen-

dent of PARP1 (Schultz et al, 2003; Yang et al, 2004). The

reason for PARP-inhibited or -defective cells showing an

elevated level of spontaneous HR is their defect in SSB repair.

The increased amount of SSBs results in increased replication

fork collapse and conversion to DSBs. These one-ended DSBs

are then substrates for HR repair that results in SCE.

Consequently, increased SCE and recombination is a common

phenotype for cells defective in SSB repair (Oikawa et al,

1980; Thompson et al, 1982; Saleh-Gohari et al, 2005). In

contrast, recombination induced by the restriction endonu-

clease I-SceI produces a two-ended DSB, which is repaired by

synthesis-dependent-strand annealing and results in gene

conversion (Johnson and Jasin, 2000; Saleh-Gohari et al,

2005). In this case, recombination is not induced by the

increased number of SSBs and PARP1 is itself not essential

for the gene conversion event repairing these two-ended

DSBs (Schultz et al, 2003; Yang et al, 2004).

Here, we show, using two different HR assays and by

investigating RAD51 foci formation, that both PARP1 and

PARP2 are required for HR induced at stalled replication forks

by HU or dT (Figures 8 and 9). Our model is that PARP1 and

PARP2 are required to recruit Mre11 for resection and ssDNA

formation at stalled forks, this then allows RAD51 loading

and subsequent HR (Figure 10).

Concluding remarks

It is well established that PARP1 has an early role in detecting

SSBs and attracting proteins involved in the end-processing

part of the SSB repair machinery, which is then followed by

repair, using the intact DNA strand as a template (Figure 10)

(Caldecott, 2008). Similarly, we suggest that PARP1 and

PARP2 are important in detecting stalled or collapsed replica-

tion forks (with or without a DSB intermediate) to attract the

Mre11–Rad50–Nbs1 complex, which is required for end pro-

cessing (Figure 10). Subsequently, the resected DNA will be

coated with RPA, which is then replaced by RAD51, to initiate

HR to restart stalled replication forks (Figure 10). To support

this model here, we show that inhibition or loss of PARP

impairs all downstream steps in the model, that is Mre11

localisation to stalled forks, RPA and RAD51 foci formation,

HR and replication restart.

Materials and methods

Cell culture
The AA8, irs1SF and CXR3 cell lines were provided by Larry
Thompson (Livermore, CA). Malgorzata Z. Zdzienicka generously
provided the VC8, VC8#13 and VC8þB2 cell lines. The SW480SN.3
cell line contains a stably integrated single copy of the recombina-
tion reporter vector SCneo (Mohindra et al, 2002; Saleh-Gohari
et al, 2005). The A11 and A19 cell lines were a kind gift from
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Zhao-Qi Wang (Lyon, FRANCE), and U2OS cells were
obtained from ATCC. All cell lines in this study were grown in
Dulbecco’s modified Eagle’s Medium (DMEM) with 10% foetal
bovine serum and penicillin (100U/ml) and streptomycin sulphate
(100 mg/ml) at 371C under an atmosphere containing 5% CO2.
SW480.SN3 media was supplemented with hygromycin (0.05mM)
to maintain the SCneo vector. The SPD8 cell line was grown in the
presence of 5mg/ml 6-thioguanine to suppress spontaneous
recombination. All cells were routinely checked for mycoplasma
infection.

Immunofluorescence
Cells were plated onto coverslips and grown for 24 h in the
presence or absence of treatments as indicated. Coverslips
were rinsed in phosphate-buffered saline (PBS) at 371C and fixed
in 3% paraformaldehyde, 0.1% Triton X-100 for 20min at
room temperature. Coverslips were extensively washed (PBS,
0.1–0.3% Triton X-100, 0.15% BSA) before incubation with
primary antibody for 16 h at 41C. The coverslips were washed as
above followed by 1h incubation at room temperature with the
appropriate secondary antibody and washed again as above.
Coverslips were washed in PBS, DNA stained with 1mg/ml To Pro
(Molecular Probes) and mounted in SlowFade Antifade (Molecular
Probes).

Primary antibodies used were rabbit polyclonal antibodies
against PAR (Trevigen), Mre11 (Cell Signaling) and Rad51 (H-92,
Santa Cruz), mouse monoclonal anti-PAR (H10, BD Pharmingen),

goat polyclonal anti-Rad51 (C-20, Santa Cruz) and rat monoclonal
anti-RPA32 (4E4, Cell Signaling). The secondary antibodies were
Cy-3-conjugated goat anti-rabbit IgG antibody (Zymed), AlexaFluor
555 goat anti-rabbit F(ab0)2 IgG, AlexaFluor 546 donkey anti-goat
IgG and AlexaFluor 488 donkey anti-rabbit IgG (all Molecular
Probes). Antibodies were diluted in PBS containing 3% BSA.
Images were obtained with a Zeiss LSM 510 inverted confocal
microscope using a planapochromat 63X/NA 1.4 oil immersion
objective. Through focus maximum projection images were
acquired from optical sections 0.50mm apart and with a section
thickness of 1.0mm. Images were processed using Adobe PhotoShop
(Abacus Inc). The frequencies of cells containing foci were
determined in at least two separate experiments. At least 300
nuclei were counted on each slide.

In all co-localisation studies, cells were treated with 0.5mM of
HU for 24 h and subsequently stained as described above. For co-
localisation studies, between Mre11 and PAR foci U2OS cells with
410 Mre11 foci larger than 0.5mm in diameter in a single optical
section of 1.5 mm from the middle of the cell were tracked in the
microscope. The frequency of Mre11 foci that co-localised with PAR
foci were then determined in 22 cells from two separate experi-
ments. For co-localisation studies, between PAR and RPA foci A19
cells with 410 PAR foci larger than 1.0mm in diameter in a single
optical section of 1.5 mm from the middle of the cell were tracked in
the microscope. The frequency of PAR foci that co-localised with
RPA foci were then determined in 10 cells from two separate
experiments.

DNA single-strand break Stalled or collapsed replication fork

PARP1 PARP1, PARP2
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Figure 10 Model for PARP-mediated repair of DNA SSBs and stalled replication forks. PARP1 rapidly binds to nicked, gapped or broken DNA
regions, for example DNA SSB or stalled or collapsed replication forks, which activates the enzyme. The detection of stalled or collapsed
replication forks is likely to involve activation of both PARP1 and PARP2. The PNKP protein and Mre11–RAD50–Nbs1 (MRN) complex are
recruited to SSBs and stalled replication forks, respectively, to initiate end processing. Subsequent repair of SSBs includes XRCC1-ligase3,
polymerase b, aprataxin (APTX) and the additional factors PCNA, polymerases d/e, FEN1 and ligase 1 in the case of long patch repair
(Caldecott, 2008). The machinery involved in repair and replication restart in mammalian cells is poorly investigated, but likely to include the
RAD51 protein and HR to reactivate normal PCNA-mediated replication by polymerases d/e.
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Measurements of NAD(P)H levels
Awater-soluble tetrazolium salt (5mMWST-8) was used to monitor
the amount of NAD(P)H through its reduction to a yellow-coloured
formazan dye (Nakamura et al, 2003). A total of 5000 cells were
plated at least in triplicate into wells of a 96-well plate and cultured
in 100 ml normal growth media for 4 h at 371C. CK8 buffer (Dojindo
Molecular Technology), containing WST-8, was then added either
with or without treatment with DNA damaging agents at
concentrations indicated. Reduction of WST-8 in the presence of
NAD(P)H was determined by measuring visible absorbance (OD450)
every 30min. Between measurements, cells were incubated at 371C.
A medium blank was also prepared containing just media and CK8
buffer. Changes in NAD(P)H levels were calculated by comparing
the absorbance of wells containing cells treated with DNA
damaging agents to those treated with DMSO only. Alternately,
relative levels of NAD(P)H in different cells lines were calculated
after 4 h incubation in CK8 buffer.

Inhibitors
PARP inhibitors used were NU1025 and 1,8-naphthalimide, which
were generous gift from Dr Nicola Curtin (Newcastle, UK), and
1,5-dihydroxyisoquinoline and 4-amino-1,8-NAP, which were
purchased from Sigma.

siRNA treatment
siRNA against PARP1, PARP2 or PARP3 were designed in house as
described earlier (Bryant et al, 2005). Alternative PARP1 siRNA
directed against a different PARP1 target sequence is described in
Fisher et al (2007) and was used for the experiments in Figure 7.
siRNA against Mre11 was designed as described in Myers and
Cortez (2006). Scrambled siRNA was purchased from Dharmacon
and Qiagen. Cells were transfected with 100nM scrambled siRNA,
50 nM targeting þ 50 nM scrambled siRNA or 50nM of each
targeting siRNA for co-depletion experiments. For toxicity or
recombination assays, 10 000 cells grown in 6-well plates overnight
were transfected with 100 nM siRNA using Oligofectamine Reagent
(Invitrogen) according to manufacturer’s instructions. Cells were
then cultured in normal growth medium for 48 h before trypsinisa-
tion and replating. Depletion was confirmed by RT–PCR as
described earlier (Bryant et al, 2005). For the DNA fibre assay,
5000 cells grown in 6-well plates overnight were transfected using
Dharmafect 1 reagent (Dharmacon) according to manufacturer’s
instructions for HeLa cells. Cells were then cultured in normal
growth media for 48 or 72 h before DNA labelling and fibre
preparation. Depletion was confirmed by western blotting.

Toxicity assay
A total of 500 cells were plated in triplicate onto 100mm dishes or
200 cells were plated in triplicate into 6-well plates 4 h before the
addition of PARP inhibitors and increasing doses of HU as indicated.
Treatment was for 24 h, after which cells were washed in PBS and
fresh media added, or continuous, in which case the original
medium was left on cells; 7–12 days later, when colonies could be
observed, they were fixed and stained with methylene blue in
methanol (4 g/l). Colonies consisting of 450 cells were subse-
quently counted. Each colony was assumed to represent one cell
surviving from the original 500/200 and the surviving fraction for
each dose was calculated. When siRNA-depleted cells were used,
they were transfected as above for 48 h and, then replated in the
presence or absence of increasing doses of HU for 24 h.

Electrophoretic mobility shift assay
Oligonucleotides: Construct A 50-CGATAGAAGAACTATCGCAATG-
TATCGAGTCAAGCCGACTCGATACTGGACTGGAACAACCAGTCCA-30

with or without 30 biotin modification.
Construct B 50-CGATAGAAGAACTATCGCAATGTATCGAGTCAAG

CCGACTCGATACTGGACTGGAACAACCAGTCCAATTG-30 with 50

phosphate modification; this oligo was self-ligated using T4 ligase.
Before use, constructs were heated to 801C and then allowed to

cool slowly on the bench; 2.5 ng of labelled probe was then
incubated with/without increasing amounts of recombinant PARP1
in the presence or absence of various competitor DNAs in EMSA
buffer (40mM Tris, 1mM EDTA, 20mM NaCl, 20mg/ml BSA, 8%
glycerol) for 30min on ice. Reactions were then separated on a 6%
non-denaturing polyacrylamide gel, transferred to nylon membrane
and bands detected by using the ‘Lightshift Chemiluminescent
EMSA kit’ (Pierce Biotechnology, UK).

In vitro PARP activity assay
Stalled plasmid was produced as described earlier (McGlynn et al,
2001). A measure of 50ng of each DNA substrate DNA and 50ng
recombinant PARP (Alexis, UK) were incubated together for 10min
at room temperature in a final reaction volume of 25ml in activity
buffer (50mM Tris, 4mM MgCl, 200mM DTT, 0.1mg/ml BSA and
0.4mM NAD). The reaction mixture was then loaded on an 8%
SDS–PAGE gel, transferred to nitrocellulose and western blotted for
PARP and PAR.

Auto-ADP ribosylation of PARP1 was assayed using biotinylated
NADþ , 6-biotin-17-NADþ (Bio-NADþ , Trevigen); 5 nM of recom-
binant human PARP1 (Alexis) was incubated in PARP reaction
buffer (50mM Tris–HCl buffer, 2mM MgCl2) with 12.5mM Bio-
NADþ and 37.5 mM NAD in the presence of 200ng of various DNA
constructs. The reaction was terminated at indicated time points by
adding LDS sample buffer. The samples were separated on 4–12%
Bis–Tris NuPAGE Novex gels (Invitrogen) under denaturing condi-
tions, and the gels were blotted onto nitrocellulose membranes (GE
Healthcare). The blots were probed with anti-biotin antibody (Santa
Cruz, USA) followed by incubation with horseradish peroxidase-
conjugated secondary antibody (Thermo Scientific), and the bands
were visualised using SuperSignal West Femto chemiluminescence
substrate (Thermo Scientific). Quantification of PARP1 ADP
ribosylation was carried out using Adobe Photoshop CS2.

Recombination in SW480SN.3 cells
After siRNA treatments, cells were rinsed in PBS and left in fresh
non-selective media for 48 h. The cell plates were then rinsed in 2�
PBS, trypsinised and reseeded for cloning (2 plates with 500 cells/
plate), and for selection of recombinants in G418 (1mg/ml; 25
cells/mm2). After 12–14 days, the colonies obtained were stained
with methylene blue in methanol (4 g/l).

Recombination in SPD8 cells
A total of 1.5�106 cells were inoculated into 100mm dishes in
medium 4h before a 24-h treatment with drugs as indicated. After
treatments, the cells were rinsed three times with PBS and 10ml
medium added before allowing the cells to recover for 48 h. After
recovery, cells were released by trypsinisation and counted. HPRTþ

revertants were selected by plating 3�105 treated cells per dish in
the presence of HAsT (50mM hypoxanthine, 10mM L-azaserine and
5mM dT). To determine cloning efficiency, two dishes were plated
with 500 cells each. The colonies obtained were stained with
methylene blue in methanol (4 g/l), after 7 (in the case of cloning
efficiency) or 10 (for reversion) days of incubation.

Western blotting
Cells were lysed in RIPA buffer in the presence of 1� protease and
phosphatase inhibitor cocktails (Sigma). An aliquot of 50mg total
protein was run on an SDS–PAGE gel and transferred to Hybond
ECL membrane (Amersham Pharmacia). This membrane was
immunoblotted with rabbit polyclonal antibodies against PARP2
(Yuc Alexis Biochemicals), Mre11 (Cell Signaling), goat anti-NbsI
(C-19, Santa Cruz Biotechnology) or mouse monoclonal antibodies
against PARP1 (F2 Santa Cruz Biotechnology), PAR (10H, Trevigen)
and b-actin (Sigma) in 5% milk overnight. Immunoreactive
protein was visualised using ECL reagents (Amersham Pharmacia)
following manufacturer’s instructions.

PARP1 co-immunoprecipitation
The cDNA encoding myc-tagged PARP1 was cloned into the
pcDNA3.1 expression vector as described (Hassa et al, 2001). The
resulting myc-tagged PARP1 expression vector was transfected into
U2OS cells and a stably transfected cell line was selected by growing
the cells in the presence of 1mg/ml Geneticin (GIBCO). The myc-
PARP1 overexpressing cells were treated with 0.5mM HU, 10 mM
NAP or 0.5mM HU and 10mM NAP or left untreated. After a 24-h
treatment, the cells were washed twice with ice cold PBS. The cells
were lysed on ice for 10min using a whole-cell lysis buffer (HEPES
50mM, NaCl 150mM, EDTA 1mM, EGTA 1mM, Glycerol 10%,
Triton X-100 1%, complete protease inhibitor complex (Roche),
phospatase inhibitor complex 1 and phosphatase inhibitor complex
2 (SIGMA)) and the cell lysate was collected. The cell lysate was
cleared by centrifugation at 16 000 r.p.m. for 20min. The protein
concentration of the lysates was determined by using the
Coomassie Plus—The Better Bradford Assay (PIERCE).
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A total of 1.0mg whole-cell lysate was used for each co-
immunoprecipitation reaction. The lysate was precleared by
incubating the lysates with normal mouse IgG agarose conjugate
(Santa Cruz Biotechnology). The precleared lysates were collected
and incubated with mouse anti-myc agarose conjugate (9E10, Santa
Cruz Biotechnology) or normal mouse IgG agarose conjugate using
top over end rotation over night at 41C. To check whether the
interaction was dependent on chromatin, ethidium bromide (50 mg/
ml) was added to the lysate. The co-immunoprecipitation reaction
was washed four times with lysis buffer containing 0.3M NaCl and
the immunoprecipitated proteins were eluted by boiling in
SDS–PAGE reducing loading buffer. For SDS–PAGE followed by
western blot, 25% of the eluted material was loaded.

CldU co-immunoprecipitation of proteins present at stalled
replication forks
A total of 2�106 cells were treated with 1mM HU and/or 10mM
NAP for 3 h. HU was washed away and cells were labelled with
CldU (100 mM) for 40min. Cells were cross-linked in 1% formalde-
hyde for 15min R/Tand treated with 0.125M glycine for 15min RT.
Cells were harvested by scraping in cold PBS. Cytoplasmic proteins
were removed by incubation in hypotonic buffer (10mM HEPES
pH7, 50mM NaCl, 0.3M sucrose, 0.5% TX-100, protease inhibitors
(cocktail, Roche)) for 10min on ice and centrifugation at 1500 g for
5min. Nuclear-soluble fraction was removed by incubation with
nuclear buffer (10mM HEPES pH 7, 200mM NaCl, 1mM EDTA,
0.5% NP-40, protease inhibitors (cocktail, Roche)) for 10min on ice
and centrifugation at 13 000 r.p.m. for 2min. Pellets were
resuspended in lysis buffer (10mM HEPES pH 7, 500mM NaCl,
1mM EDTA, 1% NP-40, protease inhibitors (cocktail, Roche)),
sonicated, centrifuged for 30 s at 13 000 r.p.m. and the supernatant
collected. Protein concentration was measured by Bradford assay.

A measure of 150mg of total protein (from above fraction) was
used for IP reaction with 2mg of anti-CldU antibody (rat-anti-CldU,
AbD Serotec) and 20 ml of protein A/G-PLUS agarose (Santa Cruz
Biotechnology). The IP reaction was washed 2 times with nuclear
buffer, 2 times with washing buffer (10mM HEPES, 0.1mM EDTA
protease inhibitors (cocktail, Roche)), incubated in 2x sample
loading buffer (100mM Tris–HCl pH 6.8, 100mM DTT, 4% SDS,
0.2% bromphenol blue, 20% glycerol) for 30min at 901C and used
for western blot as described above.

Elongation at replication forks
Cells were seeded onto 24-well plates at a density of 2�105 per well
and grown for 24 h before pulse labelling of replication forks with
3H-TdR (37 kBq/ml) (for a period of 30min in DMEM at 371C under
5% CO2). HU and/or NAP, at the doses shown, were added to the
medium during the post-labelling period. In certain cases, after a 2-
h exposure to HU, cells were washed twice with PBS and fresh
medium with/without adding NAP. Inhibition of fork progression
by DNA lesions results in an elevated amount of labelled, ssDNA as
detected by alkaline unwinding (Johansson et al, 2004).

DNA fibre assay
Exponential cell cultures of U2OS cells were pulse labelled with
25 mM CldU for 20min, washed once with medium and pulse
labelled with 250mM IdU with 4-amino-1,8 napthalimide (100mM)
or equal volumes of DMSO for another 20min. For HU treatment,
cells were pulse labelled with 25mM CldU for 20min, washed thrice
with medium, and incubated in 2mM HU with 4-amino-1,8
napthalimide or equal volumes of DMSO for 2 h. Afterwards, cells
were washed thrice with medium and pulse labelled with 250mM
IdU for 1 h with 4-amino-1,8 napthalimide or equal volumes of
DMSO. For RNAi experiments, U2OS cells were treated with
scrambled siRNA or siRNA directed against PARP1, Mre11 or both
for 48 or 72 h, then pulse labelled with CldU, treated with HU and
released from HU into IdU as above. Labelled cells were harvested
and DNA fibre spreads prepared as described earlier (Henry-Mowatt
et al, 2003). For immunodetection of CldU-labelled tracts, acid-
treated fibre spreads were incubated with rat anti-BrdU monoclonal
antibody that recognises CldU, but not IdU AbD Serotec for 1 h at
room temperature. Slides were fixed with 4% paraformaldehyde
and incubated with an AlexaFluor 594-conjugated goat anti-rat IgG
(Molecular Probes) for 1.5 h at room temperature. IdU-labelled
patches were detected using a mouse anti-BrdU monoclonal
antibody that recognises IdU, but not CldU (Becton Dickinson)
over night at 41C, followed by an AlexaFluor 488-conjugated goat
anti-mouse F(ab0)2 fragment (Molecular Probes) for 1.5 h at room
temperature. Fibres were examined using a Leica SP2 confocal
microscope using a � 63 (1.3 NA) glycerol immersion objective.
The lengths of red (AF 594) or green (AF 488)-labelled patches were
measured using the ImageJ software (National Institutes of Health)
and arbitrary length values were converted into mm using the scale
bars created by the microscope. At least 100 replication tracks were
measured per experiment as described earlier (Merrick et al, 2004).
For quantification of replication structures, at least 250 structures
were counted per experiment.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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