
ARTICLE

Received 8 Dec 2015 | Accepted 29 Jun 2016 | Published 17 Aug 2016

PARP3 is a sensor of nicked nucleosomes and
monoribosylates histone H2BGlu2
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PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the

repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional

nuclear magnetic resonance experiments reveal that PARP3 employs a conserved

DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of

chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes

containing nicked DNA and which target PARP3 trans-ribosylation activity to a

single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation,

nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2.

These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for

the first time, the ribosylation of chromatin at a site-specific DNA single-strand break.
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C
hromosomal single-strand breaks (SSBs) are the most
common DNA lesions arising in cells, arising at a
frequency of tens-of-thousands per cell per day1,2. SSBs

can arise directly as a result of oxidative attack of deoxyribose or
indirectly as products of topoisomerase activity or DNA base
excision repair. The threat posed by unrepaired SSBs is illustrated
by the neurological dysfunction observed in individuals in which
SSB repair (SSBR) is attenuated1,3. The detection of at least a
subset of SSBs is accelerated by a family of enzymes known as
(ADP-ribosyl) transferases (ARTs) that catalyse mono- or
poly-ADP-ribosylation; a post-translational modification in
which proteins are covalently modified with single or multiple
units of ADP-ribose4,5. Two such enzymes are so far implicated
in SSB detection and repair; PARP1 (ADPRT1/ART1),
and PARP2 (ADPRT2/ART2). PARP1 is the archetypal SSB
sensor and is responsible for most of the cellular poly
(ADP-ribosylation) activity following DNA strand breakage6,7,
with PARP2 accounting for 5–15% of this activity and fulfilling a
partially overlapping role with PARP1 (refs 8,9). More recently
PARP3 (ADPRT3/ART3) was also implicated in SSB detection by
experiments in which nicked oligonucleotide substrates were
shown to stimulate PARP3 autoribosylation activity10–13.
However, it is not yet known whether PARP3 is involved in
sensing SSBs in cells and whether it plays a role in the repair of
these lesions. In addition, there is little or no understanding of
whether or how chromatin structure affects SSB detection and
signalling by ADPRT enzymes. For example, it was established
more than 30 years ago that all of the histones in chromatin are
ribosylated in permeabilised rat liver nuclei, with histones H1
and H2B the primary targets. However, the identity of the
ADPRT enzyme/s responsible for these modifications remains
unclear14,15. Here, we identify the importance, mechanism and
role of PARP3 at SSBs and identify for the first time the selective
ribosylation of a specific histone at a site-specific DNA break.

Results
PARP1 and PARP3 accelerate chromosomal SSBR in DT40 cells.
PARP3 is stimulated by DNA double-strand breaks (DSBs)
in vitro and accelerates the repair of chromosomal DSBs at early
times following g-irradiation by promoting the final step of DNA
ligation10,12. More recently, it was shown that PARP3 is also
stimulated by SSBs in vitro to a greater extent than DSBs16. Since
PARP1 is considered the primary SSB sensor protein, we wished
to examine whether PARP3 stimulation by SSBs is physiologically
relevant by examining the importance of PARP3 for
chromosomal SSBR in cells. To do this, we deleted PARP3 in
chicken DT40 cells by targeted gene disruption (Supplementary
Fig. 1a). PARP3� /� DT40 cells were hypersensitive to g-rays
and, similar to PARP1� /� cells, repaired ionizing radiation-
induced DNA-strand breaks more slowly than wild-type cells
(Fig. 1a,b). Importantly, both of these phenotypes were corrected
by expression of recombinant human PARP3 (Fig. 1a,c). Given
that 495% of g-rays induced DNA breaks are SSBs17 these
experiments suggest that SSBR is slower in the absence of PARP3.
Consistent with this, neither Ku70� /� or XRCC3� /� DSB
repair-defective DT40 cells18,19 exhibited significantly slower
DNA repair kinetics in alkaline comet assays, suggesting that the
level of DSBs induced by g-irradiation, relative to SSBs, is too low
to affect this assay under the conditions employed (Fig. 1d).
Collectively, these data suggest that both PARP1 and PARP3
accelerate chromosomal SSBR in avian DT40 cells.

To clarify their respective roles in SSB sensing, we first
compared PARP1 and PARP3 for autoribosylation activity in the
presence of plasmid substrates containing SSBs. Activation of
equimolar amounts of PARP1 and PARP3 by restriction

endonuclease-induced nicks was comparable under the condi-
tions employed, suggesting that PARP1 and PARP3 are equally
effective sensors of SSBs with canonical 50-phosphate (50-P) and
30-hydroxyl (30-OH) termini (Fig. 1e; top, lanes 3, 6 and 9).
However, consistent with a previous report16, PARP3 stimulation
was greatly reduced if the DNA nicks harboured 50-OH termini,
whereas PARP1 stimulation was not affected (Fig. 1e; bottom,
lanes 3, 6 and 9). Similarly, whereas PARP1 was stimulated by
micrococcal nuclease (MNase)-treated plasmid harbouring SSBs
and DSBs with non-canonical 30-P and 50-OH termini, PARP3
was stimulated only if the 50- and 30-termini were restored to
canonical 50-P and 30-OH moieties (Supplementary Fig. 1b).
Collectively, these data suggest that both PARP1 and PARP3 are
SSB sensors but that they differ in the types of DNA termini that
they can detect.

Mechanism of DNA break sensing by PARP3. Human PARP3
(Uniprot accession number Q9Y6F1) consists of three bioinfor-
matically defined regions; a unique N-terminal domain (NTD), a
central WGR domain and a C-terminal catalytic domain that
includes a helical subdomain (Fig. 2a). To investigate the
mechanism of DNA break sensing by PARP3 by nuclear magnetic
resonance (NMR), we employed chicken PARP3 (cPARP3;
Uniprot accession number, E1BSI0), which is highly similar to
hPARP3 in amino acid sequence but is more resistant to pro-
teolysis (Fig. 2a). Two-dimensional (2D) 1H–15N heteronuclear
single quantum coherence (HSQC) NMR spectra of a cPARP3
fragment comprised of the NTD and WGR domain (NTD-WGR:
residues 1–169) revealed that while the WGR domain is fully
folded, the NTD has poor chemical shift dispersion, suggesting
that it is predominantly disordered in solution (Fig. 2b).
Nevertheless, B160 individual peaks within the NTD-WGR
construct were assigned through a combination of standard triple
resonance approaches based on HN(CO)CBCA, HNCACB,
HNCO and HNCACO experiments. The majority of backbone
resonances for the WGR domain were also assigned, allowing us
to map in detail its interaction with DNA in detail.

We failed to detect any chemical shift perturbations for
residues in the NTD domain in the presence of 19-bp duplex
harbouring a 50-phosphorylated nick, suggesting that this region
is not directly involved in DNA binding (Supplementary Fig. 2).
Indeed, the majority of residues exhibiting a perturbed chemical
shift with nicked DNA mapped to one face of the WGR domain;
a conserved and highly basic surface patch that includes the
residues Tyr85, Arg104, Lys128 and Lys150 (Fig. 2d–f). Some
residues in this patch (for example, Try85 and Arg104) also
exhibited chemical shift changes in the presence of a substrate
lacking the discontinuous strand upstream of the nick, thus
possessing a 10-bp 30-overhang, suggesting that in the nicked
substrate these residues contact the continuous strand of the
duplex (Fig. 2d,f,g; red). Interestingly, this 30-overhang substrate
is a DSB of the type preferred by PARP3 and thus most likely
relevant to the role of PARP3 in NHEJ10,16. Indeed, some residues
(for example, Trp102) exhibited a shift only with the 30-overhang
DSB substrate (Fig. 2g; green). Conversely, a number of other
residues exhibited significant chemical shift changes only with the
nicked duplex (for example, Gln110, Ser111, Lys128, Lys150;
Fig. 2f, blue) suggesting that these amino acids interact with DNA
duplex on the 30 side of the nick and are important specifically for
SSB sensing. Together these data allowed the construction of
docked structural models for the WGR domain of cPARP3 bound
to a DNA break in which Tyr85 is located in a valley that contacts
continuous DNA backbone and Arg104 is positioned close to the
50-phosphorylated terminus, directly implicating this residue in
‘sensing’ the 50-phosphate. We did not detect any significant
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Figure 1 | PARP3 promotes chromosomal SSBR and is stimulated by SSBs with canonical termini. (a) Wild-type (WT) DT40 cells, PARP3� /� (PARP3

KO) DT40 cells, and PARP3� /� DT40 cells stably transfected with either empty vector (vector) or vector encoding human recombinant PARP3 (hPARP3)

were treated with the indicated doses of g-rays and survival calculated in clonogenic assays. Data are the mean (±s.e.m.) of three independent

experiments. Where not visible, error bars are smaller than the symbols. (b) WT, PARP1� /� , or PARP3� /� DT40 cells were treated on ice with g-rays

(20Gy) and incubated for the indicated times to allow repair. DNA strand breaks were quantified (tail moment) by alkaline comet assays. Data are the

average tail moment of 450 cells per sample and are the mean of three independent experiments (±s.e.m.). (c) WT, PARP3� /� , or derivatives of

PARP3� /� DT40 cells complemented with empty vector or hPARP3 were treated on ice with g-rays (20Gy) and incubated for the indicated times to allow

repair. DNA strand breaks were quantified as above. (d) WT, KU70� /� , or XRCC3� /� DT40 cells were treated on ice with g-rays (20Gy) and incubated

for the indicated times to allow repair. DNA strand breaks were quantified as above. ANOVA was employed to compare mutant DT40 for significant

differences with WT (**Po0.01. ‘ns’; not significant). Data are the mean (±s.e.m.) of three independent experiments. (e) hPARP1 and/or hPARP3 (50 nM)

was incubated with 12.5 mM biotin-NADþ and 200ng uncut or nicked plasmid (nicked with Nt.BsmA1; nick concentration of 32 nM) that was pretreated or

not as indicated with CIP to dephosphorylate 50-termini. Reaction products were separated by SDS–PAGE and blotted with streptavidin-HRP. (right)

Aliquots of uncut, nicked, and linear plasmid were analysed by agarose gel electrophoresis and staining with ethidium bromide. ANOVA, analysis of

variance; CIP, calf intestinal phosphatise; HRP, horseradish peroxidase
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Figure 2 | Mechanism of DNA break binding by the cPARP3 WGR domain. (a) Schematic representation of PARP3 domains with the human (top) and

chicken (bottom) amino acid positions indicated. The WGR domain is shown in expanded format below showing the HSQC perturbed residues of chicken

PARP3 (bottom) and the equivalent residues in human PARP3 (top). (b) Overlay of 1H–15N HSQC NMR full spectra for cPARP31–169 in the absence (blue) or

presence (red) of oligodeoxyribonucleotide duplex harbouring a 50-phosphorylated nick (protein:DNA ratios of 1:0 and 1:2, respectively). (c) Expanded view

of the small boxed region shown in b demonstrating the chemical shifts induced in cPARP31–169 by different concentrations of nicked DNA. Protein:DNA

ratios were 1:0 (that is, no DNA; blue), 5:1 (magenta), 1:1 (green) and 1:2 (red). (d) Map of significant chemical shifts induced in cPARP31–169 by DNA

duplex harbouring a 50-phosphorylated nick (40.1 p.p.m) or 10-bp 30-overhang with a recessed 50-phosphorylated terminus (40.04), surface modelled

using CS-Rosetta41. Residues with a significant chemical shift in the presence of either a nick (blue) or 30-overhang (green) or both (red) are indicated.

(e) Electrostatic surface of modelled cPARP31–169 with nicked DNA. (f) Model of cPARP31–169 with nicked DNA, depicting residues with significant

chemical shifts as above. (g) Model of cPARP31–169 with nicked DNA lacking the strand located upstream (50) of the nick (that is, harbouring a DSB with

10-bp 30-overhang). Residues exhibiting a significant chemical shift are indicated as above.
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perturbations in the cPARP3 WGR domain if the DNA substrates
lacked a 50-phosphate.

To test aspects of this model we mutated residues predicted to
be important for WGR function in chicken and human PARP3
and, after confirming they did not reduce protein stability

(Supplementary Fig. 3), examined their impact on PARP3
function. Consistent with its putative role in 50-phosphate
‘sensing’, mutation of Arg104 (R104N) greatly reduced or ablated
stimulation of chicken PARP3 (cPARP3) both by nicked duplex
and by the 30-overhang DSB substrate (Fig. 3a). In contrast,
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although mutation of Trp102 (W102L) prevented cPARP3
stimulation by the 30-overhang DSB substrate it only slowed
cPARP3 activity on the nicked duplex (Fig. 3a,b). This suggests
that the DNA contact made by W102 promotes but is not
essential for cPARP3 activity on nicked DNA because of
compensatory contacts with duplex DNA on the 30 side of the
nick. Tyr85 (Y85A) similarly prevented cPARP3 stimulation by
the 30-overhang substrate and had little impact on the nicked
substrate, suggesting that this residue is also more important for
the 30-overhang DSB substrate (Fig. 3a). In contrast, however, all
three of the WGR mutations prevented both detectable binding of
cPARP3 to nicked DNA in electrophoretic mobility shift assays
(EMSAs) and the accumulation of human PARP3 (hPARP3) at
sites of ultraviolet A (UVA)-laser damage in cells. This suggests
that some WGR mutations allow sufficient interaction with
nicked DNA duplex to slowly stimulate PARP3 activity but
insufficient interaction for stable DNA binding (Fig. 3c,d).
Consistent with this, all three of the WGR mutations greatly
reduced or ablated the ability of hPARP3 to correct the defects in
DNA-strand break repair and cell survival in PARP3� /� DT40
cells, following g-irradiation (Fig. 3e).

PARP3 preferentially monoribosylates H2B in nicked chromatin.
Given the ability of PARP3 to bind damaged chromatin we
examined whether chromatin is a target of PARP3 activity.
Indeed, whereas PARP3 efficiently autoribosylated itself in the
presence of nicked oligonucleotide DNA duplex it preferentially
transribosylated one or more core histones in the presence of
micrococcal nuclease (MNase)-treated chicken chromatin
(Fig. 4a). As expected this stimulation was largely dependent on
pre-treatment of the chromatin with T4 PNK, confirming that the
PARP3 preference for canonical termini observed in naked DNA
was retained in chromatin.

To identify the histone/s ribosylated by PARP3, we compared
the ribosylation product in chicken chromatin with that of
individual recombinant histones. In contrast to chicken chroma-
tin all four recombinant core histones were ribosylated by PARP3
in the presence of DSBs or DNA nicks, suggesting that chromatin
structure confers substrate specificity on PARP3 thereby targeting
the enzyme to a single-histone subunit (Fig. 4b, right).
A comparison of the electrophoretic mobility of the ribosylated
histone in chicken chromatin with that of recombinant histones
suggested that the former was either H2B or H3 (Fig. 4b, middle
and right). Indeed, subsequent fractionation of the ribosylated
chromatin proteins on triton-acid urea gels revealed a banding
pattern that closely resembled the banding pattern of ribosylated
H2B (Fig. 4c, red asterisks). It is currently unclear what the
different ribosylated isoforms of H2B represent but these data

clearly implicate H2B as the target of PARP3 ribosylation at DNA
breaks. In contrast, PARP1 preferentially transribosylated the
linker histones H1 and H5 in chicken chromatin, suggesting that
these two SSB sensor proteins differ in their chromatin protein
targets (Supplementary Fig. 4a). Importantly, the ADP-ribose
moiety on H2B was sensitive both to hydroxylamine and
MacroD1 (refs 20,21) but was insensitive to PARG, collectively
suggesting that this modification was mono (ADP-ribose) and
was located on an acidic amino acid (Supplementary Fig. 4b,c).
This contrasted with PARP1, which as expected generated poly
(ADP-ribose) products that were sensitive to PARG but not
MacroD1 (Supplementary Fig. 4d).

PARP3 binds mononucleosomes and ribosylates H2BE2. To
identify the ribosylation site on H2B the recombinant histone was
incubated with PARP3 and the modified tryptic peptides enriched
by boronate affinity chromatography. The affinity-enriched
peptides were then derivatized with hydroxylamine to convert
ribosylated glutamate/aspartate side chains to hydroxamic acid.
Mass spectrometric analysis detected the expected þ 15.0109Da
shift for the hydroxamic acid derivative on two peptides; PEPAK
and PEPAKSAPAPK (Fig. 5a), unequivocally identifying E2 as a
modified residue. This did not reflect nonspecific derivatization of
E2 because the modified peptide was highly enriched by boronate
affinity chromatography and was undetectable if H2B was not
pretreated with PARP3 (Supplementary Fig. 5a). This was in
contrast to E105 (LLLPGELAK), which was not enriched by
boronate chromatography and was derivatized independently of
pretreatment with PARP3 (Supplementary Fig. 5b). More
importantly, ribosylation of H2B by PARP3 was greatly reduced if
we employed recombinant H2B in which E2 was mutated to
alanine (H2BE2A), confirming this residue as the primary site of
ribosylation by PARP3 (Fig. 5b).

Next, we packaged intact DNA or DNA harbouring a
site-specific nick in recombinant mononucleosomes; the physio-
logically relevant structures in chromatin in which SSBs occur
(Fig. 5c, left). PARP3 bound nicked nucleosomes with much
greater affinity than intact nucleosomes as measured by indirect
immunogold labelling of PARP3 and electron microscopy with a
gold particle co-locating with 30 and 85% of intact and nicked
nucleosomes, respectively (Fig. 5c, right). That we observed only
single gold particles on nicked nucleosomes strongly suggests that
PARP3 bound as a monomer. To our knowledge, this is the first
demonstration of nucleosome binding by a PARP enzyme in
DNA strand break-specific manner. Moreover, in agreement
with our experiments using bulk chicken chromatin, PARP3
preferentially ribosylated a single-core histone in the nicked
nucleosomes (Fig. 5d, ‘lane 11’). This event was greatly reduced if

Figure 3 | The PARP3 DNA-binding interface is required for PARP3 stimulation and accumulation at chromosome DNA damage. (a) Wild-type or the

indicated mutant full-length cPARP3 (300nM) was incubated for 20min at room temp with biotin-NADþ (12.5mM) and 200nM of oligonucleotide duplex

harbouring either a 50-phosphorylated nick or 50-phosphorylated DSB with 30-overhang. Reaction products were separated by SDS–PAGE, blotted, and

detected with streptavidin-HRP. Autoribosylated cPARP3 was quantified and plotted relative to that generated in reactions containing nicked duplex and

wild type cPARP3. Data are the mean (±s.e.m.) from three independent experiments. (b) Time-course of wild-type or mutant cPARP3 incubated from 0 to

30min in the same conditions as above. (c) Recombinant wild-type or mutant cPARP3 (0–0.8 mM) was incubated with a 30-fluorescein isothiocyanate

(FITC)-labeled oligonucleotide duplex harbouring a 50-phosphorylated nick (100 nM), and protein-DNA complexes detected by EMSA. (d) Recruitment of

wild-type and mutant human PARP3-GFP to sites of UVA-laser DNA damage in human U2-OS cells. (left) Representative images of WT and mutant

PARP3-GFP before treatment (Unt) and 1min after laser damage. (top right) Quantification of GFP accumulation at sites of laser damage (% increase over

initial level). Data are the mean (±s.e.m.) of 25 or more cells per sample. The hPARP3 WGR mutations were Y83A, W101L and R103N and H384A/E514A

in the catalytic domain (denoted ‘CM’). (e, top) PARP3� /� DT40 cells stably transfected with either empty vector (vector) or vector encoding wild-type

hPARP3 (WT) or the mutant derivatives Y83A, W101L and R103N were treated on ice with g-rays (20Gy) and incubated for the indicated times to allow

repair. DNA strand breaks were quantified (tail moment) by alkaline comet assays. The inset is a western blot showing the expression level of wild type and

mutant hPARP3 in PARP3� /� DT40 cells. (bottom) The above DT40 cell lines were treated with the indicated doses of g-rays and survival quantified in

clonogenic assays. Data are the mean (±s.e.m.) of three independent experiments. Where not visible, error bars are smaller than the symbols. HRP,

horseradish peroxidase.
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we employed either intact nucleosomes lacking the site-specific
nick (Fig. 5d, ‘lane 9’) or nicked nucleosomes containing mutant
H2BE2A (Fig. 5d, ‘lane 12’), confirming both that PARP3
preferentially ribosylates H2BE2 in mononucleosomes and that
it does so in response to the site-specific SSB. We noted that a
small amount of ribosylated H2B was also present in intact
nucleosomes (Fig. 5d, lane 9, asterisk), presumably triggered by
weak stimulation of PARP3 by the DSB ends of the nucleosome
DNA. In contrast, PARP1 ribosylated mononucleosomes only
very weakly even in the presence of the site-specific SSB,
confirming the specificity of the ADP-ribosylation reaction by
PARP3 (Fig. 5d, ‘lanes 2–6’).

Discussion
Protein ADP-ribosylation is a post-translational modification that
regulates various biochemical processes and is catalysed by a
superfamily of proteins known as (ADP-ribosyl) transferases
(ADPRTs)5. To date, three ADPRTs are implicated in DNA
damage signalling; PARP1, PARP2 and PARP3 (ref. 22). These
enzymes detect DNA strand breaks by binding these lesions and
becoming catalytically activated or stimulated23 and thereby
ribosylating themselves (autoribosylation) and/or other proteins
(trans-ribosylation) including histones14,24–26. However, the
specificity of these modifications for a particular type of lesion
and/or a specific ADPRT is unclear. Here, we have identified
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H2BE2 as a specific target of PARP3 both in purified chicken
chromatin and in reconstituted recombinant nucleosomes in
response to SSBs. The targeting of H2B in both synthetic
nucleosomes and chicken chromatin suggests that this
ribosylation event occurs independently of the sequence context
or position of the nick. Indeed, we also observed H2B ribosylation
if we assembled nucleosomes on a 246-bp mouse rDNA
sequence, in which the nick was located at a different position
(Supplementary Fig. 6). It remains possible however that the
efficiency of the ADP-ribosylation reaction is affected by the
position of the nick.

While DNA nicks stimulate PARP3 to a greater extent than
DSBs, we noted that H2B ribosylation by PARP3 also occurred at
DSBs. This was suggested by the ribosylation of recombinant H2B
by PARP3 in the presence of non-nicked oligonucleotide duplexes
(see Fig. 4b) and by the small amount of H2B ribosylation
observed in reactions containing intact (that is, non-nicked)
nucleosomes, triggered most likely by the ends of the nucleosome
DNA sequence (see Fig. 5d). That H2B was ribosylated to a
greater extent by SSBs than DSBs is consistent with the relative
activity of PARP3 on these two types of DNA break. The NMR

experiments conducted here provide a model for binding of
PARP3 both to a DNA nick and to a 30-overhang; a type of DSB
favoured by this enzyme10. Mutation of key residues predicted by
NMR to be important for binding these DNA breaks reduced
PARP3 activity in vitro, to a greater or lesser extent, and
disrupted stable binding to DNA in EMSAs. In contrast to these
data, Langelier et al. did not detect an impact of the WGR residue
W101 on DNA binding by human PARP3, yet detected more of
an impact than us on activity (Fig. 3b and ref. 16). We believe
these discrepancies are due to the different techniques and ionic
conditions employed in the two studies. For example, the
fluorescence polarization assays employed by Langelier et al. are
less sensitive to defects in stable binding than are the EMSAs we
employed, but the lower ionic concentrations we employed allow
more activity. Finally, that the structural models predicted here
are physiologically relevant was suggested by our observation that
human PARP3 harbouring the WGR mutations was unable to
accumulate at sites of UVA-laser damage or to accelerate DNA
strand break repair following ionizing radiation.

H2BE2 was identified more than 30 years ago as monoribo-
sylated in rat liver nuclei in vitro, with B15% of total H2B
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ribosylated when such nuclei are incubated with [14C]NADþ

(ref. 14). However, the identity of the ADPRT responsible for this
modification has remained elusive, as has the molecular trigger
for this ADP-ribosylation event. Our data provide compelling
evidence that PARP3 is a major source of this modification,
particularly in response to SSBs, though whether PARP3 is the
only source of this modification remains to be determined.
Nevertheless, to our knowledge these data are the first report of a
site-specific chromatin modification by a PARP enzyme in
response to a specific DNA lesion.

The archetypal SSB sensor protein is PARP1 (refs 4,27).
However, both PARP1 and PARP3 accelerated the repair of g-ray
induced SSBs in chicken DT40 cells in our experiments. It will be
of interest to determine if this is also true in human cells, which
unlike DT40 cells additionally possess a PARP2 enzyme that
might functionally overlap with PARP3. Consistent with this
possibility, similar to PARP3, PARP2 is sensitive to the chemistry
of DNA termini16 and in our experiments overexpression of
PARP2 partially corrected the reduced DNA strand break repair
rate and resistance to g-rays observed in PARP3� /� DT40 cells
(Supplementary Fig. 7). PARP1 and PARP3 were both activated if
incubated together and did not inhibit each other even in the
presence of sub-stoichiometric amounts of nicked DNA raising
the possibility that both enzymes are activated by the same DNA
breaks. However, since PARP1 and PARP3 exhibit different DNA
termini specificities they most likely also fulfil spatially or
temporally distinct roles. For example, perhaps PARP1 and
PARP3 sense SSBs sequentially during SSBR, detecting the breaks
before and after canonical 30-hydroxyl and 50-phosphate have
been restored. Alternatively, perhaps PARP1 and PARP3 are
components of different SSBR processes, detecting SSBs in
different subcellular contexts.

In addition to being stimulated by different types of SSB,
PARP1 and PARP3 prefer different chromatin targets. PARP1
primarily ribosylates itself and histone H1 (refs 28,29), whereas
PARP3 preferentially modifies itself and histone H2BE2. The
structure of the modifications is also distinct with PARP1
synthesizing primarily poly (ADP-ribose) and PARP3 primarily
modifying proteins with mono (ADP-ribose). The role of
this modification is unknown but it is unlikely that mono
(ADP-ribose) significantly affects the structure of nucleosomes
directly. Indeed, ribosylated H2B co-fractionated with the
mononucleosomes during gel filtration suggesting that the
ribosylated nucleosomes were intact (Supplementary Fig. 8). It
will be of interest to determine whether PARP3 ribosylates only the
nucleosome in which the DNA break is located or whether it can
function in trans, thereby ribosylating distal nucleosomes. In our
experiments ribosylation of H2B was inefficient in intact nucleo-
some that were incubated with stoichiometric amounts of naked
nicked DNA, suggesting that ADP-ribosylation occurred in cis
under these experimental conditions, thereby marking the
site of the break (Supplementary Fig. 9). However, whether
ribosylation can also occur in trans if undamaged nucleosomes are
present in close proximity or at high concentration remains
to be determined. Nevertheless, irrespective of whether H2B
ribosylation occurs in cis and/or in trans, it will now be of interest
to identify the protein/s that detect mono ADP-ribosylated histone
H2B and translate this modification into a biological function.

In summary, we show here that PARP3 is stimulated by SSBs
in vitro and is required for normal rates of chromosomal SSBR in
chicken DT40 cells. PARP3 preferentially binds to and is
activated by nicked mononucleosomes, which target PARP3
trans-ribosylation activity to a single-histone substrate. Although
nicks in naked DNA stimulate PARP3 autoribosylation, nicks in
mononucleosomes promote preferential trans-ribosylation of
histone H2BGlu2. These data identify PARP3 as a molecular

sensor of nicked nucleosomes and demonstrate, for the first time,
the site-specific ribosylation of chromatin at a defined DNA
single-strand break.

Methods
DNA substrates. pEGFP (500 ng) was digested or not with Nt.BsmA1 (20U) and
then mock-treated or treated with 10U CIP (New England Biolabs). Following
purification (QIAquick spin column; Qiagen), the DNA was incubated with
different concentrations of micrococcal nuclease (MNase)(Worthington) in 50mM
Tris-HCl 7.5, 5mM CaCl2 and 0.1mgml� 1 bovine serum albumin for 30min at
room temperature. Reactions were stopped with EDTA (50mM final) and the
DNA purified as above. DNA from the MNase concentration that produced the
greatest SSB/DSB ratio (0.015U) was mock-treated or treated with T4 PNK in the
presence of 2mM ATP and 10U T4 PNK enzyme (wild-type or 30-phosphatase
dead; New England Biolabs). The synthetic oligonucleotide sequences (MWG or
Eurogentec) employed to generate duplex substrates are listed in Supplementary
Table 1.

Recombinant proteins. Untagged full-length human PARP1 (hPARP1) and
N-terminal His-tagged PARP3 (hPARP3) were expressed using baculovirus in
Sf9 cells and purified by 3-aminobenzamide and Ni-agarose affinity resins,
respectively10,30. Both proteins were further purified by gel filtration in 20mM
Tris-HCl, 0.3M NaCl, 5% (v/v) glycerol, 1mM DTT, and frozen in aliquots at
� 80 �C. PARG protein was obtained from AMS Biotech (Abingdon, UK).
A synthetic codon-optimized gene for expression in Escherichia coli, encoding
full-length Gallus gallus PARP3 (chicken PARP3; cPARP3) was purchased from
GenScript (Piscataway, NJ, USA). The cPARP3 open reading frame (ORF) was
amplified by PCR using the primers cPARP3-pNIC28-Fw and cPARP3-pNIC28-Rv
(for full-length cPARP3) or cPARP3-pNIC28-Fw and cPARP3-pNIC28-169Rv (for
cPARP31–169) and inserted into the vector pNIC28-Bsa4 by ligation-independent
cloning31 (Supplementary Table 1). Site-specific mutations were introduced using a
Quickchange site-directed mutagenesis kit (Stratagene) using the oligonucleotides
indicated in Supplementary Table 1. cPARP3 proteins were expressed in the E. coli
strain Rosetta2(DE3)pLysS (Merck Chemicals, Nottingham, UK) in Turbo-broth
(Molecular Dimensions, Newmarket, UK). Protein expression was induced by the
addition of 0.3mM IPTG at a culture OD600 of 2 and the growth temperature
reduced from 37 �C to 18 �C for induction overnight (22–24 h). For NMR
experiments, the protein was expressed in 3 l filter-sterilized Overnight Express
Autoinduction NMR Media (Merck-Millipore, Billerica, MA, USA) containing
50mM [15N] NH4Cl and 0.5% (w/v) [13C3] glycerol (CortecNet, Voisins-le-
Bretonneux, France) at a temperature of 25 �C for 24 h. The resulting cell pellets
were resuspended in 50ml Buffer A (50mM HEPES-HCl pH 7.5, 0.5M NaCl,
0.5mM TCEP) supplemented with protease inhibitors (Roche, Burgess Hill, UK),
lysed by sonication, and the clarified supernatant applied to a 5ml Talon (TaKaRa
Bio, Saint-Germain-en-Laye, France) affinity column by gravity flow in Buffer A.
After successive washes in Buffer A (20 CV), bound protein was eluted in Buffer B
(50mM HEPES-HCl pH 7.4, 0.5M NaCl, 0.5mM TCEP, 0.3M imidazole) and
eluted cPARP3 concentrated using Vivaspin 20 (30,000 MWCO) centrifugal
concentrators (Sartorius Stedim Biotech, Goettingen, Germany). cPARP3 was
diluted fivefold in Buffer C (50mM HEPES-HCl pH 7.5, 150mM NaCl, 0.5mM
TCEP) and further purified on a 5ml HiTrap Heparin HP column (GE Healthcare,
Little Chalfont, UK) using a linear salt gradient. Fractions containing cPARP3 were
pooled, concentrated, incubated (unless otherwise indicated) with TEV protease to
remove the His-tag, and finally applied to a HiLoad Superdex 200 size-exclusion
column (GE Healthcare) with a 1ml HisTrap HP column connected in-line in
Buffer D (20mM HEPES-HCl pH 7.5, 250mM NaCl, 0.5mM TCEP). Fractions
containing purified cPARP3 were again pooled, concentrated to 20mgml� 1, and
either stored at 4 �C for immediate use or flash-frozen in liquid nitrogen and stored
at � 80 �C until required. The human histone H1.2 ORF was subcloned from
IMAGE clone 3608862 into the NcoI and XhoI sites of pET16b and expressed in
BL21(DE3) cells. Inclusion bodies were solubilised in 6M guanidine HCl, 25mM
Tris-HCl pH 8.0, 1mM DTT for 1h at room temperature and then refolded by
dialysis in 10mM Tris-HCl pH 7.5, 2M NaCl, 1mM EDTA, 1mM DTT, and
purified by gel filtration in the above refolding buffer. IMAGE clone 3349763,
containing the MacroD1 cDNA was obtained from Source Bioscience
(Nottingham, UK), and the ORF was subcloned into the NdeI and XhoI sites of
pET16b. Protein was expressed in BL21 (DE3) overnight at 16 �C in the presence of
1mM IPTG, and soluble protein was purified by Ni-NTA affinity chromatography
and gel filtration (Superdex 200) in 20mM Tris-HCl pH 7.5, 0.3M NaCl, 5%
glycerol, 1mM DTT. Xenopus laevis H2A, H3 and H4 histones were expressed and
purified from E. coli as described32. Full length H2B was inserted into pET3a using
the primers H2BF, and H2BR (Supplementary Table 1). Alternatively, human H2B
expressed from pET28a-hH2B.1 (a gift from Joe Landry; Addgene plasmid #42630)
was employed (Fig. 5b,e and Supplementary Fig. 9) and the E2A mutant generated
by site-directed mutagenesis using pET28a-H2B-E2AF and pET28a-H2B-E2AR
(Supplementary Table 1).

Preparation of soluble chicken chromatin. Chicken blood was collected at
slaughter into an equal volume of PBS, 10mM sodium butyrate, 5mM EDTA,
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0.1mM phenylmethylsulphonyl fluoride (PMSF) and 0.1mM benzamidine, and
filtered through six layers of cotton gauze. Erythrocytes were pelleted (3,000g for
6min) and the buffy coat removed by pipetting. Erythrocytes were washed by
resuspension in collection buffer minus EDTA, re-pelleted as above, and stored at
� 80 �C until required. On thawing, one volume of cell lysis buffer (CLB; 80mM
NaCl, 10mM Tris-HCl pH7.4, 6mM MgCl2, 0.1% Triton X-100, 0.1mM PMSF
and 0.1mM benzamidine) was added and the suspension added to 2 l CLB buffer at
4 �C and stirred for 20min. Nuclei were pelleted by centrifugation 3,800g for
15min in a swing-out rotor (no brake). Pellets were washed again in NWB,
centrifuged as above, and resuspended in 35ml NWB in a 50ml Falcon tube. The
suspension was underlayed with 15ml 30% (w/v) sucrose containing 1� NWB
and immediately centrifuged (2,400g for 10min at 4 �C). The final nuclear pellet
was resuspended in a minimum volume of NWB, mixed with an equal volume of
80% glycerol, 1� NWB, frozen and stored at � 80 �C. Nuclear pellets (B40mg
DNA) were mixed with five volumes of digest buffer (DB; 10mM Tris-HCl pH7.4,
150mM NaCl, 0.25M sucrose, 0.3mM CaCl2, 0.1mM PMSF and 0.1mM
benzamidine) and pelleted by centrifugation (2,000g for 7min at 4 �C). The nuclear
pellets were resuspended in 15ml DB, re-pelleted as above, and finally resuspended
in 6ml DB to give a final DNA concentration of 6mgml� 1. 400Uml� 1

micrococcal nuclease (Worthington) was added to pre-warmed nuclei for 20 s at
37 �C and the reaction terminated by addition of EDTA to a final concentration of
10mM and cooled on ice. An equal volume of lysis buffer (LB; 10mM Tris-HCl
pH7.4, 150mM NaCl, 0.25M sucrose, 2mM EDTA, 0.1mM PMSF and 0.1mM
benzamidine) was added, and the supernatant (S1) containing the solubilized
chromatin clarified by centrifugation (2,000g for 7min). The pellet was
resuspended in a further 5ml LB and centrifuged as above to recover S2. This
process was repeated a further four times to recover supernatants S3 to S6. The
supernatants were then pooled and clarified a final time by centrifugation (25,000g
for 20min), and the chromatin fragments separated by centrifugation on 30ml
sucrose gradients in 20mM Tris-HCl pH7.4, 50mM NaCl, 0.1mM EDTA, 0.1mM
PMSF, 0.1mM benzamidine, and prepared using an exponential gradient maker, in
which the mixing chamber (25ml) contained 5% w/w sucrose and the reservoir
contained 40% sucrose. 3ml of solubilized chromatin was layered onto each
gradient and fractionated by centrifugation at 141,000g for 2 h at 4 �C in a Beckman
SW28 rotor. Gradients were fractionated by upward displacement using FC-43
(3M) in an Isco gradient fractionator collecting 1.4ml fractions. DNA size
distributions in the chromatin fractions were assessed by agarose gel electro-
phoresis and histone integrity by SDS–polyacrylamide gel electrophoresis
(SDS–PAGE). Chromatin fragments were stored at � 80 �C in sucrose
gradient buffer.

Nucleosome reconstitution. Following removal of DNA using hydroxyapatite,
histone octamers were assembled using equimolar amounts of recombinant
histones (denatured in 6M Guanidine HCl, 25mM Tris-HCl pH 8) by overnight
dialysis in 10mM Tris-HCl, 2M NaCl, 1mM EDTA, 1mM DTT and purified on
gel filtration using the same buffer. The 601.2 nucleosome positioning element33,34

was prepared from 0.1mg of pUC19-16x601.2 (023) (ref. 35) containing 16 copies
of 601.2, by overnight digestion with EcoRI and EcoRV (NEB). The gel-purified
fragment (181 bp, plus a 4 bp 50-overhang) was dephosphorylated with CIP and,
where appropriate, incubated with the nicking enzyme Nt.BsmAI to introduce a
single nick at nucleotide 45. Small-scale nucleosome assembly was performed
by mixing the DNA and histone octamer (1:1 molar ratio) and reducing the
concentration gradually by dialysis from 2M NaCl to 0.2M NaCl (ref. 32). The
quality of the nucleosome preparation (final conc, 100–300 nM) was assessed by
native gel electrophoresis (4.5% 37.5:1 acrylamide: bisacrylamide in 0.4X Tris
Boronate EDTA buffer) and staining with ethidium bromide. Where indicated,
we also assembled mononucleosomes on a 246-bp mouse 45 S rDNA-positioning
element, (Supplementary Fig. 6), prepared by PCR and gel purified36.

PARP assays. PARP autoribosylation assays were performed as described in the
figure legends with the indicated PARP1/PARP3 and DNA substrates in the
presence of 12.5 mM biotinylated NADþ (6-Biotin-17-NAD; AMS biotech) and in
50mM Tris-HCl pH 7.5, 50mM NaCl, 0.5% glycerol, 0.1mM DTT. PARP assays
containing chromatin (0.1mgml� 1) or recombinant histones (0.1mgml� 1) were
performed in chromatin storage buffer (20mM Tris-HCl pH7.4, 50mM NaCl,
0.1mM EDTA, 20% sucrose) to maintain chromatin structure. Assays containing
reconstituted nucleosomes were performed in 20mM Tris-HCl pH 7.5 and 0.2M
NaCl. Reactions were stopped with SDS-loading buffer and reaction products
fractionated on either 10% or 15% (for analysis of histones) Tris-glycine
SDS–PAGE gels or, in the case of reactions conducted with cPARP3, on NuPAGE
Novex 4–12% Bis-Tris SDS–PAGE Gels (Invitrogen, Waltham, Massachusetts,
USA). Where indicated, Triton-Acid Urea gels were also employed37. Note that in
our experiments, H4 migrated more slowly than H2B, most likely in part because
of the higher triton concentrations employed38. For quantification of PARP activity
fractionated proteins were transferred to nitrocellulose filters that were blocked in
2% bovine serum albumin/Tris Buffered Saline with Tween 20 (TBST) and probed
with streptavidin-HRP (Pierce; 1:30,000 dilution) in blocking solution. Gel bands
were quantified using LAS4000 and ImageQuantTL software (GE Healthcare).
Where indicated, 300 nM 32P-NAD (Perkin Elmer) was employed instead of

biotinylated NADþ and SDS–PAGE gels stained with Coomassie Blue before
drying and analysis on a phosphorimager.

Boronate affinity chromatography and mass spectrometry. Products of
ADP-ribosylation reactions containing 10 mg of protein were purified using
standard TCA precipitation and resuspended in PBA buffer (100mM HEPES
pH 8.5, 150mM NaCl, 2mM MgCl2). If required, cysteines were reduced in
10mM dithiotreitol for 30min at room temperature and alkylated with 10mM
iodoacetamide for 30min at room temperature in the dark. Proteins were
digested with 100 ng trypsin (Promega) overnight at 37 �C and peptides bound to
m-aminophenylboronic acid agarose beads (Sigma) for 1 h at 4 �C. The beads were
washed extensively with PBA buffer and the ADP-ribosylated peptides eluted with
1M hydroxylamine (Sigma) pH 7.0 overnight at room temperature. Eluates were
purified using C18 ZipTips (Millipore) according to manufacturer instructions and
analysed by nano-LC-MS (ThermoFisher U3000 nanoLC and Orbitrap XL mass
spectrometer)39. The raw mass spectrometry and tandem mass spectra were
converted to.mgf format using Compass39 and searched against the SwissProt
database using Mascot (Matrix Science). Search parameters employed a precursor
tolerance of 7 p.p.m. and a fragment ion tolerance of 0.8Da. Quantification of
precursor ions employed Skyline40. ADP-ribosylation sites were identified based on
a characteristic þ 15.0109Da shift on glutamate and aspartate residues41.

NMR resonance assignment. NMR spectra were recorded at 303 K on Bruker
DRX600 and DRX800 spectrometers equipped with cryo-probes. cPARP31–169 was
dissolved in 300 ml NMR buffer containing 20mM Tris-HCl, pH 7.0, 125mM
NaCl, 1mM TCEP and 10% D2O to a final concentration of B300 mM. The
chemical shifts of 1HN, 15N, 13Ca, 13Cb and 13CO cross-peaks were assigned
using CBCA(CO)NH, HNCACB, HNCO and HN(CA)CO experiments and data
were analysed using the program CCPNMR Analysis40. 93% of the amino acid side
chain atoms were assigned. A similar procedure was followed to assign chemical
shifts after formation of complexes between cPARP3 and DNA (oligonucleotides
detailed in Supplementary Table 2).

Nanogold labelling and electron microscopy. Full-length His-tagged cPARP3
was incubated for 30min with intact or nicked nucleosomes. Ni-NTA-conjugated
5 nm gold (Nanoprobes, NY) was added at a molar ratio of 1:10 (cPARP3-
Nucleosomes:Ni-gold). Samples were applied onto freshly glow-discharged
carbon-coated grids and negatively stained with 2% (w/v) uranyl acetate. Electron
micrographs were recorded at 30,000 nominal magnification on a camera GATAN
model ULTRASCAN 1000 CCD using a HITACHI 7100 electron microscope
operated at 100 kV.

DT40 cells. To generate PARP3� /� cells, genomic PARP3 sequences were PCR
amplified from DT40 genomic DNA (clone 18) to generate left and right arms for
the targeting construct using the primers cPARP3-LA For/Rev for the left arm and
cPARP3-RA (For/Rev) for the right arm. The PCR amplified products were
subcloned into pCR2.1-TOPO vector (Invitrogen) and confirmed by Sanger
sequencing. Fragments encoding the left arm (2.0 kb) and right arm (2.5 kb) were
recovered from the above pCR2.1-TOPO construct using KpnI/BamHI and
BamHI/EcoRI, respectively, and subcloned into pCR2.1-TOPO vector. A BamHI
fragment encoding the neomycin (Neo, 2.4 kb) or hygromycin (Hyg, 3.4 kb)
selection cassette was then inserted into the pCR2.1-TOPO construct at the BamH1
site separating the left and right arms, completing the Neo-selectable and
Hyg-selectable PARP3-targeting constructs. To generate PARP3� /� cells, 2� 107

wild-type DT40 cells (clone 18) were electroporated (Bio-Rad) with 30 mg of
NotI-linearized Neo-targeting or Hyg-targeting construct and transfected clones
selected for 8 days in the presence of medium containing 2.0mgml� 1 G418
(Sigma-Aldrich) and/or 2.5mgml� 1 hygromycin B (Sigma-Aldrich),
as appropriate. To detect successful targeting of PARP3 alleles, genomic DNA was
isolated from drug-resistant clones, digested with XbaI and BamHI, and subjected
to Southern blot analysis using a 0.35 kb probe amplified from DT40 genomic
DNA (clone 18) using the primers Probe-F & Probe-R (Supplementary Table 1).
Following two consecutive rounds of PARP3 gene targeting with constructs
encoding resistance to G418 and hygromycin, respectively, we recovered one
PARP3� /� clone (denoted clone 36), which was characterized as indicated.
For complementation experiments, the human PARP2 and PARP3 ORFs were
amplified by PCR and cloned into the vector pCI-puro-N-Myc using the restriction
sites XhoI/NotI and XhoI/MluI respectively. Point mutations in the WGR domain
were generated by site-directed mutagenesis. PARP3� /� cells (clone 36) were
transfected by electroporation with pCI-puro-Myc-hPARP2, pCI-puro-Myc-hPARP3
or empty vector. Transfectants were selected in medium containing 0.5 mgml� 1

puromycin (Invitrogen) for 6–8 days. hPARP2 and hPARP3 expression were
confirmed by western blot using anti-PARP2 (Active Motif cat. no. 39743; 1:1,000
dilution) or anti-PARP3 (rabbit #4699—a gift from Françoise Dantzer; 1:500
dilution).

Alkaline comet assays. DT40 cells were treated with g-rays (20Gy), on ice.
Where indicated, cells were subsequently incubated in drug-free complete media
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for the indicated repair periods. Cells were then suspended in pre-chilled PBS and
mixed with an equal volume of 1.2% low-gelling-temperature agarose (Sigma, type
VII) maintained at 42 �C. Cell suspension was immediately layered onto pre-chilled
frosted glass slides (Fisher) pre-coated with 0.6% agarose and maintained in the
dark at 4 �C until set, and for all further steps. Slides were immersed in pre-chilled
lysis buffer (2.5M NaCl, 10mM Tris-HCl, 100mM EDTA pH 8.0, 1% Triton
X-100, 1% DMSO; pH10) for 1 h, washed with pre-chilled distilled water
(2� 10min), and placed for 45min in pre-chilled alkaline electrophoresis buffer
(50mM NaOH, 1mM EDTA, 1% DMSO). Electrophoresis was then conducted at
1V/cm for 25min, followed by neutralization in 400mM Tris-HCl pH7.0 for 1 h.
Finally, DNA was stained with Sybr Green I (1:10,000 in PBS) for 30min. Average
tail moments from 50 cells/sample were measured using Comet Assay IV software
(Perceptive Instruments, UK). Data are the average±1 s.e.m. of three independent
experiments and were scored blind.

Cell survival assay. Clonogenic survival was determined by colony formation
assays. Briefly, DT40 cells were counted and plated in alpha-MEM medium
containing 1.5% methylcellulose (w/v Sigma-Aldrich), 10% FBS, 1% chicken serum
and 10mM beta-mercaptoethanol. Cells were treated with g-rays and after
incubation for 9 days colonies that were visible by eye were counted. Survival
was calculated by dividing the number of colonies in treated wells by those in
untreated wells.

UVA-laser micro-irradiation. ORFs encoding human PARP3-GFP and
PARP3CM-GFP were generated by PCR amplification of the human PARP3
ORF present in pCD2E-PARP3 and pCD2E-PARP3CM and subcloning into the
EcoRI/SalI sites of peGFP-N1. Point mutations in the WGR domain were generated
by site-directed mutagenesis. Osteosarcoma U2-OS cells were transfected with GFP
constructs 24 h before micro-irradiation, and incubated with 10 mgml� 1 Hoechst
34580 for 30min before irradiation. Cells were micro-irradiated with a 405 nm
UV-laser at a dose of 0.22 mJ mm� 2 (ref. 42), and time-lapse images recorded at
10 s intervals for a total of 3min per cell.

Data availability. NMR assignment data have been deposited into the Biological
Magnetic Resonance Data Bank with accession 26834. No other large data sets are
associated with this work. All other data are available from the authors on request.
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