
Statistical Science
1999, Vol. 14, No. 2, 206]213

Parrondo’s Paradox
G. P. Harmer and D. Abbott

Abstract. We introduce Parrondo’s paradox that involves games of
chance. We consider two fair gambling games, A and B, both of which
can be made to have a losing expectation by changing a biasing parame-
ter « . When the two games are played in any alternating order, a
winning expectation is produced, even though A and B are now losing
games when played individually. This strikingly counter-intuitive result
is a consequence of discrete-time Markov chains and we develop a
heuristic explanation of the phenomenon in terms of a Brownian ratchet
model. As well as having possible applications in electronic signal
processing, we suggest important applications in a wide range of physi-
cal processes, biological models, genetic models and sociological models.
Its impact on stock market models is also an interesting open question.
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1. INTRODUCTION

The study of probability dates back to the seven-
teenth century. It arises from games of chance,
originating from the ancient game of throwing
bones}the forerunners of dice. Strongly associated
with probability is gambling; from dice to actuarial
tables and risk-benefit analysis, gambling has al-
ways been at the forefront of expanding probability

Ž .theory Shlesinger, 1996 . This dates back to corre-
spondence between Pascal and Fermat in 1654
when a problem was posed to Pascal by a French
gambler. ‘‘Games of chance’’ can be considered a
process that consists of random events or random
variables. The erratic Brownian motion of dust par-
ticles or pollen grains in a liquid, due to collisions
with the liquid molecules, is the classic example
Ž .Hughes, 1995 . The motion of each grain is suffi-
ciently erratic that it can be considered to be ran-
dom, the simplest model being that of a random
walk.

Random motion or ‘‘noise’’ in physical systems is
usually considered to be a deleterious effect. How-
ever, the rapidly growing fields of stochastic reso-

Žnance Berdichevsky and Gitterman, 1998; Gam-
.maitoni, Hanggi, Jung and Marchesoni, 1998 and¨

Ž .Brownian ratchets Bier, 1997a have brought the
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increasing realization that random motion can play
a constructive role.

The apparent paradox that two losing games A
and B can produce a winning expectation, when
played in an alternating sequence, was devised
by Parrondo as a pedagogical illustration of the

Ž .Brownian ratchet Parrondo, 1997 . However, as
Parrondo’s games are remarkable and may have
important applications in areas such as electronics,
biology and economics, they require analysis in
their own right.

In this paper, we first introduce the concept of
the Brownian ratchet and then illustrate Parrondo’s
games. Graphical simulations of the outcomes of
Parrondo’s games are then explained in terms of
the Brownian ratchet model.

1.1 Brownian Ratchets

A ratchet and pawl device, shown in Figure 1,
was introduced in the last century as a proposed
perpetual motion machine: the aim was to try and
harness the thermal Brownian fluctuations of gas
molecules, by a process of rectification. The device
is considered to be of molecular scale and works in
the following manner. Let the temperature of the
thermal bath in the boxes be equal so T s T s T.1 2
Hence, the energy, which is directly related to the
temperature of the thermal baths, is also equal in
each bath. Due to the bombardments of gas
molecules on the vane, it oscillates and jiggles.
Since the wheel at the other end of the axle only
turns one way, motion in one direction will cause
the axle to turn while motion in the other direction
will not. Thus the wheel will turn slowly and may
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FIG. 1. The ratchet and pawl machine. There are two boxes with
a vane in one and a wheel that can only turn one way, a ratchet
and pawl, in the other. Each box is in a thermal bath of gas
molecules at equilibrium. The two boxes are connected mechani-
cally by a thermally insulated axle. The whole device is consid-
ered to be reduced to microscopic size so gas molecules can
randomly bombard the vane to produce motion.

even be able to lift some weight. This is a violation
of the Second Law of Thermodynamics. This creates
a paradox; the ratchet and pawl will apparently
work in perpetual motion when T s T . However,1 2
at equilibrium the effect of thermal noise is sym-
metric, even in an anisotropic medium. The Second
Law implies that structural forces alone cannot
bias Brownian motion as has been suggested with
the ratchet and pawl device.

The short answer to the paradox is that at equi-
librium when T s T , there is no net motion of the1 2
wheel because the spring loaded pawl must also
fluctuate with Brownian motion. This releases the
ratchet wheel to rotate in either direction. These
fluctuations and the bombardments of gas molecules
on the vane are dependent on the energy of the
thermal bath. These fluctuations are not defects in
the ratchet; the whole device can be constructed of
perfectly, ideal elastic parts. A longer answer to the
paradox can be found in The Feynman Lectures on

Ž .Physics Feynman, Leighton and Sands, 1963 ,
which gives a more complete explanation of the
workings of the ratchet and pawl machine. Since
there is no net movement at equilibrium, weight
can only be lifted when energy is put into the
system by maintaining T ) T .1 2

Ž .In 1912, Smoluchowski Smoluchowski, 1912 was
the first to find this correct explanation for the
ratchet and pawl device, which he called Zahnrad
mit einer Sperrklinke in German. This device was

Žlater revisited by Feynman Feynman, Leighton
.and Sands, 1963 . Even though, to this day, no one

has been able to successfully derive the equations
Žof detailed balance Abbott, Davis and Parrondo,

.1999 for this system and Feynman’s work has been
Ždisputed Parrondo and Espanol disagree with the˜

efficiency of the ratchet and pawl engine calculated
.by Feynman; Parrondo and Espanol, 1996 , it has˜

been the source of inspiration for the ‘‘Brownian
ratchet’’ concept.

The seminal paper for the Brownian ratchet was
Ž .in 1993 by Magnasco 1993 , where it was shown

that Brownian particles could have directed motion
in certain spatially asymmetric periodic energy po-
tential profiles.

The focus of recent research is to harness Brown-
ian motion and convert it to directed motion, or
more generally, a Brownian motor, without the use
of macroscopic forces or gradients. This research
was inspired by considering molecules in chemical

Žreactions, termed ‘‘molecular motors’’ Astumian
.and Bier, 1994 . The roots of these Brownian de-

vices trace back to Feynman’s exposition of the
ratchet and pawl system. By supplying energy from
external fluctuations or nonequilibrium chemical
reactions in the form of thermal or chemical gradi-
ents, directed motion is possible even in an isother-

Ž .mal system Astumian, 1997; Bier, 1997b . These
types of devices have been shown to work theoreti-

Ž .cally Astumian and Bier, 1994; Magnasco, 1993 ,
Ževen against a small macroscopic gradient Hanggi¨

.and Bartussek, 1996 . Recently, with the technol-
ogy available to build micrometer scale structures,
many manmade Brownian ratchet devices have

Žbeen constructed and actually work Astumian,
.1997; Bier, 1997a .

A striking example is when a tilted periodic po-
tential is toggled ‘‘on’’ and ‘‘off’’; by solving the
Fokker]Planck equation for this so-called ‘‘flashing
ratchet,’’ Brownian particles are shown to move

Ž .‘‘uphill’’ Doering, 1995 . If the potential is held in
either the ‘‘on’’ state or the ‘‘off’’ state, the particles
move ‘‘downhill.’’ This is the inspiration for Par-
rondo’s paradox: the individual states are said to be
like ‘‘losing’’ games and when they are alternated
we get uphill motion or a ‘‘winning’’ expectation.

1.2 Parrondo’s Games

Ž .Game A, which is described by 1 , is straightfor-
ward and can be thought of as tossing a weighted
coin or going on a biased random walk:

1w xGame A: P winning s y «2Ž .1
1w xP losing s q « .2

Since game A is well known, a solution can be
derived from the transition probabilities of winning
and losing by considering it as a one-dimensional
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Žrandom walk Grimmett and Stirzaker, 1982;
. � 4Hughes, 1995 . The states S s 0, "1, "2, . . . ,

which usually represent the displacement of the
walk, are defined as being the capital, negative
states indicating a loss. The transition probabilities
for game A are

p , if j s i q 1,¡~Ž .2 p s q s 1 y p , if j s i y 1,i j ¢
0, otherwise,

where p s 1r2 y « is the probability of winning
and accordingly q s 1r2 q « is the probability of
losing. The transition probability defined as p si j
Ž < .P X s j X s i is the probability of going fromnq1 n

state i to state j in one game and X is the randomn
variable that represents the amount of capital at
game n. The solution is

¡ n Žnqjyi.r2 Žnyjqi.r2p q ,1 Ž .n q j y iž /2~Ž . Ž .3 p n si j
if n q j y i is even,¢

0, otherwise,

Ž .where p n is the probability of ending at state ji j
after n games, given that we started at state i at
n s 0. The probability distribution from a fixed
starting position for a given number of games is a
binomial distribution; see the thick line curves in
Figure 2.

The random variable Y, which counts the num-
ber of success on n trials has a binomial distribu-

Ž . Ž .tion B n, p . This is approximately N np, npq in
the continuous limit. Considering the losses as well,

Ž .the change in capital is Y y n y Y s 2Y y n,
which is approximately

Ž . Ž Ž . .4 N n p y q , 4npq .

Game B is a little more complex and can be
generally described by the following statement. If
the present capital is a multiple of M, then the
chance of winning is p , if not, then the chance of1
winning is p . Substituting Parrondo’s original2
numbers for these variables, M s 3, p s 1r10 y «1
and p s 3r4 y « , gives game B as2

1w < xGame B: P winning capital mod 3 s 0 s y «10

9w < xP losing capital mod 3 s 0 s q «10Ž .5
3w < xP winning capital mod 3 / 0 s y «4

1w < xP losing capital mod 3 / 0 s q « .4

Ž .Using the derivation for game A in 3 and com-
puter simulations for both the games as described

Ž . Ž .in 1 and 5 , the probability distributions of the

FIG. 2. Three probability distribution functions of both games
w Ž .from simulations game A from 1 , dark shading, and game B

Ž . xfrom 5 , light shading with values for « of y0.1, 0 and 0.1.
The simulations played each game 100 times and averaged over
10,000 runs. The thick line shows the theoretical results for game

Ž .A given by 3 . The inset shows gain versus « after playing 100
games, the solid line for game A and dashed line for game B. All
curves are normalized to have unity area. The distributions with
value zero have been omitted.

two games are shown in Figure 2. We refer to
capital and gain as if anyone playing these games
is against a common opponent, the bank, for exam-
ple. The gain is based upon a one-unit capital where
negative gains indicate a loss; thus a gain of five is
equivalent to five units of capital. It is seen here
that the two games are fair and that they start
losing for « ) 0.

We will digress for a moment to discuss what
constitutes a fair game. The reason is that the
behavior of game B differs from game A as we are
likely to win or lose a small amount depending on
the starting capital. If the starting capital is a
multiple of 3, then we will lose a little and vice
versa. The deviations from different starting capi-
tals after 100 games are shown in Figure 7b. The
concept of what it means for a game to be winning,
losing or fair can be defined precisely in terms of
hitting probabilities and expected hitting times of
discrete-time Markov chains. In this paper we shall
be a little looser with this terminology. We shall
consider a game to be winning, losing or fair accord-
ing to whether the probability of moving up n
states is greater than, less than, or equal to the
probability of moving down n states as n becomes
large.

Using the above criterion, both game A and game
B are fair when « is set to zero. This is true of
game A because the probabilities of moving up and
down n states are equal for all n. It is also true of
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FIG. 3. The main plot shows the effect of playing A and B
individually and the effect of switching between games A
and B . The simulation was performed by playing
Ž a b .100r aqbŽ .A B 0 and averaged over 50,000 trails. The0.005 0.005

w xvalues of a and b are shown by the vectors a, b . The inset shows
the effect of the games’ performance when varying « by playing
the games individually and alternately. That is, the inset shows
the outcome after the 100th game is played.

game B even though the value of the starting capi-
tal influences the probability of going up and down
n states for small values of n. Although there is
some concern over whether game B is technically
fair, it is not important here, since when « ) 0 it
definitely loses. This is satisfactory since the only
prerequisite we have on games A and B is that they
lose when « ) 0.

2. RESULTS

It is clear now that both game A and game B lose
when « ) 0. Consider the scenario if we start
switching between the two losing games, play two
games of A, two games of B, two of A, and so on.
ŽThe act of playing a game can not be broken up;
that is, a game is either played in its entirety or not

.played at all. The result, which is quite counter
intuitive, is that we start winning. That is, we can
play the two losing games A and B in such a way as
to produce a winning expectation. Furthermore, de-
ciding which game to play by tossing a fair coin also
yields a winning expectation. Figure 3 shows the
progress when playing games A and B, as well is
the effect of switching periodically and randomly
between the games. The effect of varying the pa-
rameter « on the final capital is shown in the inset
of Figure 3. The amount that games A and B lose
by, when played individually, continues to increase
as « is increased. This also occurs with the alter-
nating games until a point is reached where they
no longer win.

When we consider the ratchet and pawl machine,
we can only get directed motion of the weight when
energy is added to the system. Similarly for a flash-
ing Brownian ratchet, energy is taken up by switch-
ing between two states to produce ‘‘uphill’’ motion
of Brownian particles. In the simulations of Par-
rondo’s games, from two losing games we can yield
a winning expectation. This creates a paradox,
‘‘money for free.’’ Where is the ‘‘energy’’ coming
from in Parrondo’s games? This is an unsolved
problem and remains an open question. Perhaps
the answer lies in the context in which Parrondo’s
games are applied. For instance, assuming they can
be applied to stock market models, the ‘‘switching
energy’’ can be thought of as the buying and selling
transaction cost. However, in the case of two indi-
viduals gaming, the interpretation of switching
energy becomes problematic; this appears truly
paradoxical.

At this point we introduce new notation to de-
scribe how the games are played. If the games A
and B are played with the bias parameter « , they
can be called A and B , respectively. Playing game« «

A n times is denoted by An. Alternating between«

games, playing game A a times, then game B b
times and so on, for example, is represented by
Ž a b.nA B . The starting capital can be shown in« «

Ž . Ž a b.nŽ .parentheses as A 0 or A B x . By omitting« « «

the starting capital, we can assume the games start
with zero capital.

Now it has been shown that a winning expecta-
tion can be produced by switching between games A
and B, the question is, does the sequence of this
switching influence the gain? A simulation that
varied the sequence at which the games were
switched was carried out. Figure 4 shows the varia-
tion of gain when changing the switching sequence;
each point corresponds to playing a total of 500
games of either A or B.

Changing the values of the parameters M, p1
and p for game B varies the performance of the2
switched games vastly. The variables were changed
by trial and error so that when « s 0, game B was
still fair. The first comparison was executed by
keeping M s 3 and changing p and p . The result1 2
is shown in Figure 5a. We note that as p ap-1
proaches 1r2 the gain approaches zero, since when
p s 1r2, game B is essentially the same as game1
A. The second comparison, shown in Figure 5b, was
carried out with p s 0.1 and varying M and p .1 2
As M is likely to affect the periodicity of game B,
several switching sequences were compared.

3. DISCUSSION

There are several mechanisms by which directed
ŽBrownian motion can be achieved Faucheux, Bour-
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FIG. 4. The effect of varying the sequence of switching between
games. The simulations were performed playing 500 games ac-

Ž a b.500r aqbŽ .cording to A B 0 and averaged over 1000 trials. The0 0
Ž 3 2 .100Ž .example point A B 0 indicates that game A was played0 0

three times, then game B two times, which was repeated 100
times to give the total number 500 of games played.

.dieu, Kaplan and Libchaber, 1995; Rousselet, 1994 .
We will now deal with a mechanism that may give
some insight into what is happening between our
two games. Consider a system where there exists
two one-dimensional potentials, U and U , ason off
shown in Figure 6. The asymmetry of the potential
U is determined by a , where 0 F a F 1. Havingon
a s 1r2 creates a triangular symmetric potential;
otherwise the potential is asymmetrical like U inon
Figure 6 where a - 1r2. Let there be Brownian
particles existing in the potential diffusing to a
position of least energy. In equilibrium, if the po-
tential height is larger than the thermal noise, the

FIG. 5. The effect of gain when the parameters of game B are
Ž .varied. Simulations were performed with « s 0. a Keeping M

Ž .constant. b Keeping p constant. Each value of p for each M1 2
Ž . Ž .or p was set to satisfy detailed balance « s 0 .1

particles are localized in a potential minima. How-
ever, time modulating the potential U for time ton on
and U for time t can induce motion. When theoff off
U is applied, the particles are trapped in theon
minima of the potential so the concentration of the
particles is peaked. Switching the potential off al-
lows the particles to diffuse freely, so the concentra-
tion at the end of time off t is a set of Gaussianoff
curves centered around the minima. When U ison
switched on again, there is a probability P thatfwd
is proportional to the darker shaded area of the
curve that some particles are to the right of aL.
These particles move forward to the minima located

Žat L. Similarly, there is a probability P lightlybck
. Žshaded that some particles are to the left of y 1 y

.a L and move to the left minima located at yL.
Since the potential is asymmetrical, as shown in
Figure 6 with a - 1r2, then P ) P and thefwd bck
net motion of the particles is to the right. We can
define the probability current as J s P y Pfwd bck
for a particle diffusing forward one step in the
potential.

Ž . Ž .FIG. 6. The mechanism of the ratchet potential. The diagrams on the left, a ] c , show when there is no macroscopic gradient present
Ž . Ž . Ž .and the net movement of particles is in the forward direction defined by arrow . The diagrams on the right, d ] f , have a slight

gradient present; this causes the particles to drift backwards while U is acting. Hence the net flow of particles in the forward directiono f f
is reduced.
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If we consider the ratchet potentials in Figure 6,
and the outcomes of the games in Figure 3, they
can be related. With « s 0 the games are fair, but
there is a maximum gain when the games are
alternated; similarly, when there is no macroscopic
gradient, there is a maximum movement of parti-
cles in the Brownian ratchet. As « is increased, the
gain falls until a critical value of « is reached. This

Ž .is about 0.012 see the inset of Figure 3 when
alternating the games no longer produces a win-
ning expectation. Similarly, the gradient can be

Ž .increased see Figure 6 until a value is reached
where there is no net movement of particles. There
is some similarity in the way that the two systems
behave as the parameter « is analogous to the
macroscopic gradient.

Observing that the two systems behave similarly,
an appropriate assumption would be that game B
has a potential associated with it, like that of the
ratchet. The problem is determining this potential,
if it exists. In the case of a real physical system, one
method of determination would be to uniformly
place particles on the potential, recording their
starting position, then leaving them until they
reached equilibrium and finding out where they
settled. For example, if there was an unknown

Ž .potential like the one shown in Figure 6 a , then
the result would look like Figure 7a. The trajectory
patterns of the particles are directly related to the
shape of the potential. For game B we can treat the
capital like the particles in the Brownian ratchet.
Thus, to find the potential of game B, we start with
different amounts of capital, play a number of
games until steady state is reached and record the
final capital. All the results are shown in Figure 7.

Ž .The movement of capital for game B is shown in b ,
which has a pattern that repeats itself when the
capital is a multiple of three. This is to be expected

Ž .from the rules given in 5 . The derived potential is
Ž .shown as the solid line in c . Where different val-

Žues of starting capital converge together e.g., a
.capital of 2.3 and 2.5 , narrow spikes are formed in

the resulting potential. By approximating the dis-
tributions on either side of the spikes as a single
distribution, the spikes can be removed to give a
clearer picture of the potential. The resulting po-
tential is shown as the dashed line in Figure 7c.
This consists of a symmetric and an asymmetric
potential, thus could be considered asymmetric over
the whole period.

So what we have are two systems that have very
similar potentials; thus we would expect the me-
chanics of the two systems to be similar. We notice
from the distribution with U in Figure 6b andoff
game A in Figure 2 that the distribution is the
same, namely, a normal distribution. Hence, we can

Ž .FIG. 7. The ratchet potential in a demonstrates where particles
will diffuse to if uniformly placed on the potential. Tracing the
particles from starting to finishing points gives an indication of

20 Ž .the potential. The simulations averaged 10,000 trails of B x0
� 4 Ž .with x s 0, . . . , 9 . b shows this technique applied to game B

with the potentials drawn in. By removing the narrow spikes, a
clearer picture of the potential is achieved as seen by the dashed

Ž .line in c .

consider the potential of game B to be analogous to
U . A brief explanation of how the potentials of theon
two games work follows. Assuming that we initially
start with game B, the capital is held at particular
values by the minima of the potential wells as
shown in Figure 8a. Switching to game A allows the
trapped capital to ‘‘diffuse’’ or randomly walk, re-

Ž .sulting in a normal distribution shown in b . The
longer game A is played, the broader the distribu-
tion becomes. When game B is played again, the
potential causes the capital to move to the appro-

Ž .priate well as seen in c . Increasing « has the
effect of causing the normal distribution when play-
ing game A to slide backwards similar to that for
the ratchet as shown in Figure 6.

Note that although the potentials are similar,
there is a major difference between Parrondo’s
ratchet and the Brownian ratchet. The latter is
continuous in time and space; that is, the particles
can exist at any real displacement along the poten-
tial, which can also be switched for any real times
t and t . This is different from Parrondo’son off
ratchet, which is discrete in both the analogous
time and space. The capital of the games is quan-
tized, and only integer numbers of games can be
played. The mode of analysis for the Brownian
ratchet is via continuous variables in the Fokker]

Ž .Planck equation FPE , whereas for the Parrondo
Ž .ratchet it is via discrete-time Markov chain DTMC

analysis.
Now that we have the game B potential, it is

interesting how it compares to playing the actual



G. P. HARMER AND D. ABBOTT212

FIG. 8. This shows how switching between game A and B causes an increase in capital. The asymmetry of the potential is due to the
Ž .rules of game B given in 5 . The net flow of capital is to the right, that is, in the forward direction.

games. Instead of playing the actual games to get
results, we can use the potentials of the games.
Game A is played using the normal distribution

Ž .pattern given by 4 , which enables the number of
times game A is played in a row to be varied via use
of the variance and mean. Game B is played using
the potential derived in Figure 7c. By playing
Ž a b.n � 4A B for b s 1, 2 and increasing a, we expect0 0
the gain to decrease as seen in Figure 9a. This

� 4agrees with Figure 4 when b s 1, 2 . Figure 9b
Žshows the probability current using J s P qffwdl

. Ž .P y P q P while increasing a; see Fig-fwdr bbckr bckl
ure 8b for probability definitions. The shape of the
resulting probability current is similar to those

Žpublished for Brownian ratchet systems Berdi-
chevsky and Gitterman, 1998; Faucheux et al., 1995;

.Magnasco, 1993 .
During the discussion of Parrondo’s paradox, we

have often compared the mechanics to that of the
Brownian ratchet by analogy. Table 1 shows the
relationships between some of the quantities used.

FIG. 9. This shows playing the games just using the potentials
Ž .derived from the games. a This plots the gain when playing

Ž a b.500r aqbŽ . � 4 Ž .A B 0 with b s 1, 2 while increasing a. b The0 0
probability currents: there is an optimal, nonzero value of a that
gives maximum movement of capital.

4. CONCLUSION

By switching between two states, a Brownian
ratchet can move particles ‘‘uphill’’ or up in poten-
tial, even if particles ordinarily move down in each
of the states. This is the so-called flashing ratchet.
Parrondo’s inspiration was to recognize that the
two states could be likened to two losing games A

TABLE 1
The relationship between quantities used for Parrondo’s paradox

and the Brownian ratchet

Quantity Brownian ratchet Parrondo’s paradox

Source of potential Electrostatic, gravity Rules of games
Duration Time Number of games played
Potential Potential field gradient Parameter «
Switching U and U applied Games A and B playedon off
Switching durations for t and t a and bon off
Measurementroutput Displacement x Capital or gain
External energy Switching U and U Alternating gameson off
Potential asymmetry Depends on a Branching of B to p or p1 2
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and B. When appropriate games are then alter-
nated, a winning expectation is attained. We have
developed this analogy further and have analyzed
the games by a number of simulations. A number of
characteristics of the resulting graphs were heuris-
tically explained by using the Brownian ratchet
model.

We introduced a novel method for tracing the
shape of a potential profile from the paths of the
particles. Using this technique, we were able to
determine the notional potentials for Parrondo’s
game; these proved invaluable for a qualitative
explanation of a number of observations.

Finally, we speculate that increased understand-
ing of Parrondo’s discrete ratchet may have appli-
cations in signal processing, biology and perhaps in
economics. A statistical interpretation of the cen-
tral result is that the birth and death processes An

«
n Ž a b.nand B tend to be decreasing, whereas A B is,« « «

surprisingly, increasing. This may also be a useful
type of model of interest in population genetics.
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