
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 20, 1–21.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-1867

Parrondo’s paradox via redistribution of wealth∗
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Abstract

In Toral’s games, at each turn one member of an ensemble of N ≥ 2 players is se-
lected at random to play. He plays either game A′, which involves transferring one
unit of capital to a second randomly chosen player, or game B, which is an asymmet-
ric game of chance whose rules depend on the player’s current capital, and which is
fair or losing. Game A′ is fair (with respect to the ensemble’s total profit), so the Par-
rondo effect is said to be present if the random mixture γA′+(1−γ)B (i.e., play game
A′ with probability γ and play game B otherwise) is winning. Toral demonstrated the
Parrondo effect for γ = 1/2 using computer simulation. We prove it, establishing a
strong law of large numbers and a central limit theorem for the sequence of profits
of the ensemble of players for each γ ∈ (0, 1). We do the same for the nonrandom
pattern of games (A′)rBs for all integers r, s ≥ 1. An unexpected relationship be-
tween the random-mixture case and the nonrandom-pattern case occurs in the limit
as N →∞.
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1 Introduction

In the broad sense, the Parrondo effect is said to appear if there is a reversal in
direction in some system parameter when two similar dynamics are combined. It was
first described by J. M. R. Parrondo in 1996 in the context of games of chance: He
showed that it is possible to combine two losing games to produce a winning one. In
the narrow sense then, the Parrondo effect appears when two losing or fair games are
combined via a random mixture or a nonrandom pattern to create a winning game. It
also appears when two winning or fair games are combined in the same way to create
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Parrondo’s paradox via redistribution of wealth

a losing game (though the latter is sometimes called an anti-Parrondo effect). In either
case the “system parameter” is mean profit per turn. This counterintuitive phenomenon
is known as Parrondo’s paradox.

Parrondo’s games were originally formulated as a pedagogical tool for understand-
ing the flashing Brownian ratchet of Ajdari and Prost [2], so much of the literature
on the subject has appeared in physics journals. It has also attracted the interest of
scientists in other fields [e.g., population genetics (Reed [12]), chemistry (Osipovitch,
Barratt, and Schwartz [10]), evolutionary biology (Xie et al. [16])]. See Harmer and
Abbott [8] and Abbott [1] for survey articles.

The original Parrondo games (Harmer and Abbott [7]) can be described in terms of
probabilities p := 1/2− ε and

p0 :=
1

10
− ε, p1 = p2 :=

3

4
− ε, (1.1)

where ε > 0 is a small bias parameter (less than 1/10, of course). In game A, the
player tosses a p-coin (i.e., p is the probability of heads). In game B, if the player’s
current capital is congruent to j (mod 3), he tosses a pj-coin. (Assume initial capital 0
for simplicity.) In both games, the player wins one unit with heads and loses one unit
with tails.

It can be shown that games A and B are both losing games (asymptotically), regard-
less of ε, whereas the random mixture (1/2)(A + B) (i.e., toss a fair coin to determine
which game to play) is a winning game for ε sufficiently small. Furthermore, certain
nonrandom patterns, including AAB, ABB, and AABB but excluding AB, are winning
as well, again for ε sufficiently small. These are the original examples of Parrondo’s
paradox.

It has been suggested that game A acts as “noise” to break up the losing cycles of
game B played alone (Harmer et al. [6]). Toral [14] proposed a stochastic model in
which a different type of noise appears to have a similar effect. The model assumes
an ensemble of N ≥ 2 players and replaces the noise effect of Parrondo’s game A by
a redistribution of capital among the players. A player i is selected at random to play.
With probability 1/2 he can either play Parrondo’s game B or game A′ consisting in that
player giving away one unit of his capital to a randomly selected (without replacement)
player j. Notice that this new game A′ is fair since it does not modify the total amount
of capital, it simply redistributes it randomly among the players.

Toral showed by computer simulation that the Parrondo effect is present in his
games. Our aim here is to prove this, establishing a strong law of large numbers and a
central limit theorem for the sequence of profits of the ensemble of N players. For this
we apply results of Ethier and Lee [4], but the application is not straightforward. For
example, the formulas for the mean and variance parameters in the central limit the-
orem depend on the unique stationary distribution of the underlying Markov chain as
well as on its fundamental matrix, both of which are too complicated to derive explicitly
except for small N . Nevertheless, we can evaluate the mean and variance parameters
for all N .

We generalize (1.1) to the parameterization of Ethier and Lee [4]:

p0 :=
ρ2

1 + ρ2
− ε, p1 = p2 :=

1

1 + ρ
− ε, (1.2)

where ρ > 0 (eq. (1.1) is the special case ρ = 1/3). The bias parameter is not important,
so we take ε = 0 in most of what follows, which makes game B fair (asymptotically).

Let us summarize our results. Just as it is conventional in the literature to denote the
nonrandom pattern (A′)rBs by [r, s], we will introduce the (slightly redundant) notation
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(γ, 1 − γ) for the random mixture γA′ + (1 − γ)B. We establish a strong law of large
numbers (SLLN) and a central limit theorem (CLT) for the sequence of profits of the
ensemble of N players in both settings (random mixture and nonrandom pattern). We
provide a formula for the random-mixture mean µ(N)

(γ,1−γ), which does not depend on N ,

as a function of γ ∈ (0, 1) and ρ > 0. The nonrandom-pattern mean µ
(N)
[r,s] does depend

on N and is rather more complicated; we provide a formula, as a function of N ≥ 2 and
ρ > 0, only for small r, s ≥ 1 but we determine its sign for all r, s ≥ 1, N ≥ 2, and ρ > 0,
thereby establishing necessary and sufficient conditions for the Parrondo effect to be
present. Finally we show that the random-mixture case and the nonrandom-pattern
case are connected by the unexpected relationship

µ
(N)
(r/(r+s),s/(r+s)) = lim

M→∞
µ

(M)
[r,s] , r, s ≥ 1, N ≥ 2, ρ > 0, (1.3)

and a simple formula for this common value is provided. To put this in perspective, the
corresponding identity for one-player Parrondo games appears to fail in all but one case
(r = 2, s = 1).

The variance parameter is considerably more complicated, so we assume that ρ =

1/3 (i.e., (1.1) holds with ε = 0) and γ = 1/2, obtaining a formula for (σ
(N)
(1/2,1/2))

2 as a

function of N ≥ 2. We do the same for (σ
(N)
[r,s])

2 for ρ = 1/3 and small r, s ≥ 1. It turns
out that the analogue of (1.3) fails for the variances. However, a different notion of
variance, the expected sample variance of the individual players’ capitals, which was
considered by Toral [14], does apparently satisfy a relationship nearly analogous to
(1.3). We can confirm this only in special cases, so it remains a conjecture.

Toral [14] also studied a model in which the capital-dependent games are replaced
by the history-dependent games of Parrondo, Harmer, and Abbott [11]. It seems likely
that most of the results of this paper can be extended to that setting, with the probable
exception of Theorem 6.2 below. Notice that neither of these models involves spatial
dependence, as do Toral’s [13] so-called cooperative Parrondo games. The advantage
of the nonspatial models, which we exploit in the present paper, is that the underlying
Markov chain has Markovian components. When this property fails, the theory is nec-
essarily less complete, as evidenced by the work of Mihailović and Rajković [9], Xie et
al. [15], and Ethier and Lee [5]. Finally, Toral [14] also considered a model with redistri-
bution of wealth from richer to poorer neighbors, which is too difficult to analyze other
than by simulation.

2 Mean profit for random mixtures

There are two natural ways to define the model. The simplest is to describe the
state of the system by an N -dimensional vector x = (x1, x2, . . . , xN ) in which xi denotes
the capital (mod 3) of player i. An alternative approach (adopted by Ethier [3]), which
makes the state space smaller but the one-step transition probabilities more compli-
cated, is to describe the state of the system, when it is in state x according to the
previous description, by (n0, n1, n2), where n0 (resp., n1, n2) is the number of 0s (resp.,
1s, 2s) among x1, x2, . . . , xN . Using the first approach, the state space is

ΣN := {x = (x1, x2, . . . , xN ) : xi ∈ {0, 1, 2} for i = 1, . . . , N} = {0, 1, 2}N ,

while using the second approach, the state space is

Σ̄N := {(n0, n1, n2) ∈ Z3
+ : n0 + n1 + n2 = N}.

We note that |ΣN | = 3N and |Σ̄N | =
(
N+2

2

)
.
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The one-step transition probabilities using the first approach depend on three prob-
abilities p0, p1, p2. If only game B is played, then they have the simple form

P
(N)
B (x,y) :=

{
N−1pxi if yi = xi + 1 (mod 3) and yj = xj for all j 6= i

N−1qxi if yi = xi − 1 (mod 3) and yj = xj for all j 6= i

for i = 1, 2, . . . , N , where qx := 1 − px for x = 0, 1, 2, and P
(N)
B (x,y) = 0 otherwise. We

adopt the parameterization (1.2) with ε = 0.
If only game A′ is played, then the one-step transition matrix is symmetric and of

the form

P
(N)
A′ (x,y) := [N(N − 1)]−1

if, for some i, j ∈ {1, 2, . . . , N} with i 6= j, we have yi = xi − 1 (mod 3), yj = xj + 1 (mod
3), and yk = xk for all k 6= i, j. Finally, if the two games are mixed, that is, game A′ is
played with probability γ ∈ (0, 1) and game B is played with probability 1− γ, then our

one-step transition matrix has the form P
(N)
(γ,1−γ) := γP

(N)
A′ + (1− γ)P

(N)
B .

The one-step transition probabilities using the second approach also depend on the
three probabilities p0, p1, p2 and are best summarized in the form of a table. See Table 1,
which is essentially from Ethier [3].

Table 1: One-step transitions using the second approach, for both game A′ and game
B. From state (n0, n1, n2), a transition is made to state (n′0, n

′
1, n
′
2).

type of
(n′0, n

′
1, n
′
2) type of game winner probability

player played / result

(n0 − 2, n1 + 1, n2 + 1) 0 A′ 0 [N(N − 1)]−1n0(n0 − 1)

(n0 − 1, n1 − 1, n2 + 2) 0 A′ 1 [N(N − 1)]−1n0n1

(n0, n1, n2) 0 A′ 2 [N(N − 1)]−1n0n2

(n0, n1, n2) 1 A′ 0 [N(N − 1)]−1n1n0

(n0 + 1, n1 − 2, n2 + 1) 1 A′ 1 [N(N − 1)]−1n1(n1 − 1)

(n0 + 2, n1 − 1, n2 − 1) 1 A′ 2 [N(N − 1)]−1n1n2

(n0 − 1, n1 + 2, n2 − 1) 2 A′ 0 [N(N − 1)]−1n2n0

(n0, n1, n2) 2 A′ 1 [N(N − 1)]−1n2n1

(n0 + 1, n1 + 1, n2 − 2) 2 A′ 2 [N(N − 1)]−1n2(n2 − 1)

(n0 − 1, n1 + 1, n2) 0 B win N−1n0p0

(n0 − 1, n1, n2 + 1) 0 B lose N−1n0q0

(n0, n1 − 1, n2 + 1) 1 B win N−1n1p1

(n0 + 1, n1 − 1, n2) 1 B lose N−1n1q1

(n0 + 1, n1, n2 − 1) 2 B win N−1n2p2

(n0, n1 + 1, n2 − 1) 2 B lose N−1n2q2

That the two approaches to the model are equivalent, at least in the stationary set-
ting, is a consequence of the following simple lemma, which is easily seen to be appli-
cable to P (N)

B and P (N)
(γ,1−γ).

We first need some notation. Given a finite set E and an integer N ≥ 2, put EN :=

E × · · · × E. Given a permutation σ of {1, 2, . . . , N} and x = (x1, . . . , xN ) ∈ EN , write
xσ := (xσ(1), . . . , xσ(N)).
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Lemma 2.1. Let E be a finite set, fix N ≥ 2, let P be the one-step transition matrix for
an irreducible Markov chain in the product space EN , and let π be its unique stationary
distribution. If, for every permutation σ of {1, 2, . . . , N},

P (xσ,yσ) = P (x,y)

for all x,y ∈ EN , then π is exchangeable, that is, for each permutation σ of {1, 2, . . . , N},
we have π(xσ) = π(x) for all x ∈ EN .

Proof. Given a permutation σ of {1, 2, . . . , N}, define the distribution πσ on EN by
πσ(x) := π(xσ). Then

πσ(y) =
∑
x∈EN

π(x)P (x,yσ) =
∑
x∈EN

π(xσ)P (xσ,yσ) =
∑
x∈EN

πσ(x)P (x,y)

for all y ∈ EN , hence by the uniqueness of stationary distributions, πσ = π.

We would like to apply results of Ethier and Lee [4] to game B and to the mixed
game. (They do not apply to game A′ because the one-step transition matrix P (N)

A′ is
not irreducible, but the behavior of the system is clear in this case.) We restate those
results here for convenience.

Consider an irreducible aperiodic Markov chain {Xn}n≥0 with finite state space Σ.
It evolves according to the one-step transition matrix P = (Pij)i,j∈Σ. Let us denote
its unique stationary distribution by π = (πi)i∈Σ. Let w : Σ × Σ 7→ R be an arbitrary
function, which we write as a matrixW = (w(i, j))i,j∈Σ and refer to as the payoff matrix.
Finally, define the sequences {ξn}n≥1 and {Sn}n≥1 by

ξn := w(Xn−1, Xn), n ≥ 1, (2.1)

and
Sn := ξ1 + · · ·+ ξn, n ≥ 1. (2.2)

Let Π denote the square matrix each of whose rows is π, and let Z := (I − (P −Π))−1

denote the fundamental matrix. Denote by Ṗ (resp., P̈ ) the Hadamard (entrywise)
product P ◦W (resp., P ◦W ◦W ), and let 1 := (1, 1, . . . , 1)T. Then define

µ := πṖ1 and σ2 := πP̈1− (πṖ1)2 + 2πṖ (Z −Π)Ṗ1. (2.3)

Theorem 2.2 (Ethier and Lee [4]). Under the above assumptions, and with the distri-
bution of X0 arbitrary, limn→∞ n−1E[Sn] = µ,

Sn
n
→ µ a.s.,

limn→∞ n−1Var(Sn) = σ2, and, if σ2 > 0,

Sn − nµ√
nσ2

→d N(0, 1).

If µ = 0 and σ2 > 0, then −∞ = lim infn→∞ Sn < lim supn→∞ Sn =∞ a.s.

We apply this result first with Σ := ΣN and P := P
(N)
B , which is clearly irreducible

and aperiodic. We claim that the stationary distribution π(N)
B is the N -fold product

measure π × π × · · · × π, where π = (π0, π1, π2) denotes the stationary distribution of
the three-state chain in Σ1 with one-step transition matrix

P
(1)
B =

 0 p0 q0

q1 0 p1

p2 q2 0

 .
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Indeed,∑
x

πx1
· · ·πxNP

(N)
B (x,y)

=

N∑
i=1

πy1 · · ·πyi−1πyi+1 · · ·πyN
∑

xi:xi 6=yi

πxiP
(N)
B ((y1, . . . , yi−1, xi, yi+1, . . . , yN ),y)

= N−1
N∑
i=1

πy1 · · ·πyN

= πy1 · · ·πyN ,

where the first equality holds because state y can be reached in one step only from
states x that differ from y at exactly one coordinate. Alternatively, we could take Σ :=

Σ̄N and P := P̄
(N)
B from Table 1. In this case the unique stationary distribution is

multinomial(N,π).
Next, let us determine the value of µ in the theorem. We have

µ
(N)
B = π

(N)
B Ṗ

(N)
B 1 =

∑
x

πx1
· · ·πxN

N∑
i=1

N−1(pxi − qxi)

= N−1
∑

(n0,n1,n2)

(
N

n0, n1, n2

)
πn0

0 πn1
1 πn2

2 [n0(p0 − q0) + n1(p1 − q1) + n2(p2 − q2)]

= π0(p0 − q0) + π1(p1 − q1) + π2(p2 − q2) = µ
(1)
B = 0

because the parameterization (1.2) with ε = 0 was chosen to ensure the last equality.
Now we apply the theorem with Σ := ΣN and P := P

(N)
(γ,1−γ) = γP

(N)
A′ + (1− γ)P

(N)
B ,

where 0 < γ < 1, which is also irreducible and aperiodic (because P (N)
B is). Here

the unique stationary distribution π(N)
(γ,1−γ) is complicated. For example, in the simplest

case, γ = 1/2 and N = 2,

π
(2)
(1/2,1/2)(0, 0) = (1 + ρ2)(31 + 47ρ+ 60ρ2 + 47ρ3 + 31ρ4)/d,

π
(2)
(1/2,1/2)(0, 1) = π

(2)
(1/2,1/2)(1, 0) = 2(1 + ρ)(1 + ρ2)(11 + 15ρ+ 9ρ2 + 19ρ3)/d,

π
(2)
(1/2,1/2)(0, 2) = π

(2)
(1/2,1/2)(2, 0) = 2(1 + ρ)(1 + ρ2)(19 + 9ρ+ 15ρ2 + 11ρ3)/d,

π
(2)
(1/2,1/2)(1, 1) = (1 + ρ)(19 + 21ρ+ 48ρ2 + 59ρ3 + 27ρ4 + 42ρ5)/d,

π
(2)
(1/2,1/2)(1, 2) = π

(2)
(1/2,1/2)(2, 1) = 6(1 + ρ)2(1 + ρ2)(4 + ρ+ 4ρ2)/d,

π
(2)
(1/2,1/2)(2, 2) = (1 + ρ)(42 + 27ρ+ 59ρ2 + 48ρ3 + 21ρ4 + 19ρ5)/d,

where d := 2(13− 2ρ+ 13ρ2)(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4). In particular, each entry of

π
(2)
(1/2,1/2) is the ratio of two degree-6 polynomials in ρ. In another simple case, γ = 1/2

and N = 3, each entry of π(3)
(1/2,1/2) is the ratio of two degree-14 polynomials in ρ.

Fortunately, explicit formulas such as these are unnecessary to evaluate µ(N)
(γ,1−γ).

Let π̄(N)
(γ,1−γ) denote the corresponding stationary distribution on Σ̄N . Then the mean

profit per turn to the ensemble of players is

µ
(N)
(γ,1−γ) = π

(N)
(γ,1−γ)Ṗ

(N)
(γ,1−γ)1

= (1− γ)
∑
x

π
(N)
(γ,1−γ)(x1, . . . , xN )

N∑
i=1

N−1(pxi − qxi)
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= N−1(1− γ)
∑

(n0,n1,n2)

π̄
(N)
(γ,1−γ)(n0, n1, n2)[n0(p0 − q0) + n1(p1 − q1)

+ n2(p2 − q2)]

= N−1(1− γ){n̄0(p0 − q0) + n̄1(p1 − q1) + n̄2(p2 − q2)}, (2.4)

where
n̄0 := E

π̄
(N)

(γ,1−γ)
[n0], n̄1 := E

π̄
(N)

(γ,1−γ)
[n1], n̄2 := E

π̄
(N)

(γ,1−γ)
[n2].

Now by Table 1, we can compute

E[n′0 − n0] = γ
−2n0(n0 − 1)− n0n1 + n1(n1 − 1) + 2n1n2 − n2n0 + n2(n2 − 1)

N(N − 1)

+ (1− γ)
−n0p0 − n0q0 + n1q1 + n2p2

N

=
γ(N − 3n0) + (1− γ)[n0(−1) + n1q1 + n2p2]

N
.

Similarly,

E[n′1 − n1] =
γ(N − 3n1) + (1− γ)[n0p0 + n1(−1) + n2q2]

N
,

E[n′2 − n2] =
γ(N − 3n2) + (1− γ)[n0q0 + n1p1 + n2(−1)]

N
.

In each of these equations, we have used n0 + n1 + n2 = N to simplify, with the result
that all the quadratic terms cancel and the right sides are linear in (n0, n1, n2), at least
if we replace the N in the numerators by n0 + n1 + n2.

Next we take expectations with respect to π̄(N)
(γ,1−γ) to obtain

(0, 0, 0) = (n̄0, n̄1, n̄2)

γ
−2 1 1

1 −2 1

1 1 −2

+ (1− γ)

−1 p0 q0

q1 −1 p1

p2 q2 −1

 ,
which with n̄0 + n̄1 + n̄2 = N uniquely determines the vector (n̄0, n̄1, n̄2) because the
matrix within brackets is an irreducible infinitesimal matrix. Substituting into (2.4) and
using our parameterization (1.2) with ε = 0, we obtain

µ
(N)
(γ,1−γ) =

3γ(1− γ)(1− ρ)3(1 + ρ)

2(1 + ρ+ ρ2)2 + γ(5 + 10ρ+ 6ρ2 + 10ρ3 + 5ρ4) + 2γ2(1 + ρ+ ρ2)2
, (2.5)

which does not depend on N and is positive if 0 < ρ < 1, zero if ρ = 1, and negative if
ρ > 1, indicating that the Parrondo effect is present, regardless of γ ∈ (0, 1), if ρ 6= 1. (In
the case ρ > 1, the effect is sometimes referred to as an anti-Parrondo effect. We will
not make this distinction.) Temporarily denoting µ(N)

(γ,1−γ) by µ(N)
(γ,1−γ)(ρ) to emphasize its

dependence on ρ, we note that

µ
(N)
(γ,1−γ)(1/ρ) = −µ(N)

(γ,1−γ)(ρ),

a fact that can also be proved probabilistically (Ethier and Lee [4]).
When γ = 1/2, this reduces to

µ
(N)
(1/2,1/2) =

3(1− ρ)3(1 + ρ)

2(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)
.

As we will see in Section 7, this formula appears elsewhere in the literature of Par-
rondo’s paradox.
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3 An alternative approach

The method used in Section 2 to find µ
(N)
(γ,1−γ) does not extend to finding the vari-

ance (σ
(N)
(γ,1−γ))

2. However, a method that does extend is based on the observation that
the components of the N -dimensional Markov chain controlling the mixed game are
themselves Markovian.

For example, when game B is played, the Markov chain for player i (one of the N
players) has one-step transition matrix

P
(1,N)
B := N−1[P

(1)
B + (N − 1)I3]. (3.1)

On the other hand, the redistribution game A′ affects player i only if i is chosen as the
donor or as the beneficiary (probability (N − 1)/[N(N − 1)] = 1/N for each). This leads
to

P
(1,N)
A′ := N−1[2P

(1)
A + (N − 2)I3], (3.2)

where P (1)
A denotes the one-step transition matrix for the original one-player Parrondo

game A (not A′). In both displayed matrices, the superscript (1, N) is intended to indi-
cate that the underlying Markov chain controls one of the N players.

From these one-step transition matrices we calculate

Ṗ
(1,N)
B := N−1Ṗ

(1)
B , Ṗ

(1,N)
A′ := 2N−1Ṗ

(1)
A ,

and
P̈

(1,N)
B := N−1P̈

(1)
B , P̈

(1,N)
A′ := 2N−1P̈

(1)
A .

With

P := γP
(1,N)
A′ + (1− γ)P

(1,N)
B ,

Ṗ := γṖ
(1,N)
A′ + (1− γ)Ṗ

(1,N)
B ,

P̈ := γP̈
(1,N)
A′ + (1− γ)P̈

(1,N)
B ,

and with π, Π, and Z chosen accordingly and 1 := (1, 1, 1)T, we have

µ
(1,N)
(γ,1−γ) = πṖ1, (σ

(1,N)
(γ,1−γ))

2 = πP̈1− (πṖ1)2 + 2πṖ (Z −Π)Ṗ1.

The mean is readily evaluated to give

µ
(N)
(γ,1−γ) = Nµ

(1,N)
(γ,1−γ) (3.3)

=
3γ(1− γ)(1− ρ)3(1 + ρ)

2(1 + ρ+ ρ2)2 + γ(5 + 10ρ+ 6ρ2 + 10ρ3 + 5ρ4) + 2γ2(1 + ρ+ ρ2)2
,

which is consistent with (2.5) and does not depend on N . The variance (σ
(1,N)
(γ,1−γ))

2 is also
easily evaluated but is complicated; we provide only its asymptotic value as N → ∞
(aN ∼ bN if limN→∞ aN/bN = 1):

(σ
(1,N)
(γ,1−γ))

2

∼ 9[8(1 + γ7)ρ2(1 + ρ+ ρ2)4

+ 4(γ + γ6)(1 + ρ+ ρ2)2(1 + 2ρ+ ρ2 + 2ρ3 + ρ4)(1 + 2ρ+ 12ρ2 + 2ρ3 + ρ4)

+ 6(γ2 + γ5)(1 + ρ+ ρ2)2(3 + 20ρ+ 30ρ2 + 40ρ3 + 66ρ4 + 40ρ5 + 30ρ6 + 20ρ7 + 3ρ8)

+ (γ3 + γ4)(59 + 306ρ+ 864ρ2 + 1738ρ3 + 2781ρ4 + 3636ρ5 + 3912ρ6

+ 3636ρ7 + 2781ρ8 + 1738ρ9 + 864ρ10 + 306ρ11 + 59ρ12)]

/{N [2(1 + γ2)(1 + ρ+ ρ2)2 + γ(5 + 10ρ+ 6ρ2 + 10ρ3 + 5ρ4)]3}. (3.4)
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4 Variance parameter for game B

Let P be the one-step transition matrix for an irreducible aperiodic Markov chain,
let π be its unique stationary distribution, and let Π be the square matrix each of whose
rows is π. Denote by ZP := (I − (P −Π))−1 the fundamental matrix of P .

Lemma 4.1. For each positive integer N , Z(1/N)P+(1−1/N)I −Π = N(ZP −Π).

Proof. The one-step transition matrix (1/N)P + (1 − 1/N)I has the same stationary
distribution π, hence the same Π, so

Z(1/N)P+(1−1/N)I = (I − [(1/N)P + (1− 1/N)I −Π])−1 = N(I − (P −NΠ))−1,

hence it suffices to prove that

(I − (P −NΠ))−1 − (1/N)Π = (I − (P −Π))−1 −Π.

For this it is enough that

(I − (P −NΠ))[(I − (P −NΠ))−1 − (1/N)Π]

= (I − (P −Π) + (N − 1)Π)[(I − (P −Π))−1 −Π]

or

I − (1/N)(I − (P −NΠ))Π

= I − (I − (P −Π))Π + (N − 1)Π[(I − (P −Π))−1 −Π]. (4.1)

Now ΠP = PΠ = Π, Π2 = Π, and so Π = Π(I − (P −Π)) and Π(I − (P −Π))−1 = Π.
So (4.1) is equivalent to

I − (1/N)(Π− (Π−NΠ)) = I − (Π− (Π−Π)) + (N − 1)(Π−Π)

or I −Π = I −Π, hence (4.1), and therefore the lemma, is established.

We want to use this to evaluate the variance parameter for Toral’s N -player game
B, in which there is no redistribution of wealth. The state space is ΣN and the one-step
transition probabilities are as previously specified. We assume the parameterization
(1.2) with ε = 0.

We have seen that the stationary distribution π(N)
B is the N -fold product measure

π × π × · · · × π, where π = (π0, π1, π2) denotes the stationary distribution of the three-

state chain with one-step transition matrix P (1)
B . Specifically,

π0 =
1 + ρ2

2(1 + ρ+ ρ2)
, π1 =

ρ(1 + ρ)

2(1 + ρ+ ρ2)
, π2 =

1 + ρ

2(1 + ρ+ ρ2)
.

In principle, we could use the formula σ2 := πP̈1 − (πṖ1)2 + 2πṖ (Z − Π)Ṗ1, but
the evaluation of the 3N × 3N fundamental matrix Z is difficult, so we take a different
approach.

The key observation is that each coordinate of the N -dimensional Markov chain is a
one-dimensional Markov chain with one-step transition matrix (3.1) or

P
(1,N)
B := (1/N)P

(1)
B + (1− 1/N)I3.

Further, the coordinate processes are independent if their initial states are, and they
are if the initial state of the N -dimensional process has the stationary distribution π(N)

B

on ΣN .
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As already noted in Section 3, Ṗ (1,N)
B = (1/N)Ṗ

(1)
B and P̈ (1,N)

B = (1/N)P̈
(1)
B . By

Lemma 4.1, Z(1,N)
B −Π = N(Z

(1)
B −Π), so (since µ(1,N)

B = N−1µ
(1)
B = 0)

(σ
(1,N)
B )2 := πP̈

(1,N)
B 1 + 2πṖ

(1,N)
B (Z

(1,N)
B −Π)Ṗ

(1,N)
B 1

= N−1[πP̈
(1)
B 1 + 2πṖ

(1)
B (Z

(1)
B −Π)Ṗ

(1)
B 1]

= N−1(σ
(1)
B )2 = N−1

(
3ρ

1 + ρ+ ρ2

)2

.

Finally, let Sn denote the profit to the ensemble of N players after n plays of game B,
with S

[i]
n denoting the profit to player i. Then Sn = S

[1]
n + · · · + S

[N ]
n and the summands

are independent (assuming the stationary initial distribution mentioned above), hence

(σ
(N)
B )2 = lim

n→∞
n−1Var(Sn) = N lim

n→∞
n−1Var(S[1]

n )

= N(σ
(1,N)
B )2 =

(
3ρ

1 + ρ+ ρ2

)2

, (4.2)

yielding a simple and explicit formula for (σ
(N)
B )2, which does not depend on N .

5 Variance parameter for random mixtures

With Sn denoting the profit to the ensemble of N players after n plays of the mixed
game, let S[i]

n denote the profit to player i (one of the N players) after n plays of the
mixed game. Then

Sn =

N∑
i=1

S[i]
n ,

so

Var(Sn) =

N∑
i=1

Var(S[i]
n ) + 2

∑
1≤i<j≤N

Cov(S[i]
n , S

[j]
n )

= NVar(S[1]
n ) +N(N − 1)Cov(S[1]

n , S[2]
n ).

Dividing by n and letting n→∞, we find that

(σ
(N)
(γ,1−γ))

2 = N(σ
(1,N)
(γ,1−γ))

2 +N(N − 1)σ
([1,2],N)
(γ,1−γ) , (5.1)

where the last superscript is intended to indicate that the underlying Markov chain
controls players 1 and 2 of the N players. We know how to evaluate (σ

(1,N)
(γ,1−γ))

2, so it

remains to find σ([1,2],N)
(γ,1−γ) .

For this we will need an extension of (2.1)–(2.3). With the same assumptions on
{Xn}n≥0 (an irreducible, aperiodic, finite Markov chain in Σ with one-step transition
matrix P and unique stationary distribution π), we let w[1], w[2] : Σ × Σ 7→ R be two
functions with W [1] and W [2] denoting the corresponding matrices, and define

ξ[1]
n := w[1](Xn−1, Xn), ξ[2]

n := w[2](Xn−1, Xn), n ≥ 1,

and
S[1]
n := ξ

[1]
1 + · · ·+ ξ[1]

n , S[2]
n := ξ

[2]
1 + · · ·+ ξ[2]

n , n ≥ 1.

Let Π and Z be associated with P in the usual way. Denote by P [1], P [2], and P [1,2]

the Hadamard products P ◦W [1], P ◦W [2], and P ◦W [1] ◦W [2], resp., and let 1 :=

(1, 1, . . . , 1)T. Then define the covariance parameter

σ[1,2] := πP [1,2]1− (πP [1]1)(πP [2]1)
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+ πP [1](Z −Π)P [2]1 + πP [2](Z −Π)P [1]1.

The interpretation of this parameter is as follows.

Theorem 5.1. Under the above assumptions, and with the distribution of X0 arbitrary,

lim
n→∞

n−1Cov(S[1]
n , S[2]

n ) = σ[1,2].

Proof. The proof is similar to the proof that limn→∞ n−1Var(Sn) = σ2 in Theorem 2.2,
which is just the special case w[1] = w[2] = w.

We now want to apply this to find σ
([1,2],N)
(γ,1−γ) . This involves only players 1 and 2, for

which we need only a (9-state) Markov chain in Σ2. The reduced model that does not
distinguish between the players but only counts how many players of each type there
are is insufficient.

Thinking of (i, j) ∈ Σ2 as the base-3 representation of the integer 3i + j, we order
the elements of Σ2 by their values (0–8). The one-step transition matrix for the profit to
players 1 and 2 when N players are playing game B is

P
(2,N)
B := N−1[2P

(2)
B + (N − 2)I9],

where P (2)
B is as in Section 2 with N = 2. The superscript (2, N) is intended to indicate

that the underlying Markov chain controls two of the N players. The one-step transition
matrix for the profit to players 1 and 2 when N players are playing game A′ is

P
(2,N)
A′ := [N(N − 1)]−1[2PA0 + 4(N − 2)PA1 + (N − 2)(N − 3)I9],

where PA0 is a 9 × 9 matrix with two entries (each equal to 1/2) in each row, corre-
sponding to one-unit transfers 1 → 2 and 2 → 1; similarly, PA1 is a 9 × 9 matrix with
four entries (each equal to 1/4) in each row, corresponding to one-unit transfers 1 → ·,
· → 1, 2→ ·, and · → 2, where · represents the players other than 1 and 2. The functions
w[1] and w[2] can be specified as follows. Corresponding to matrices P (2)

B and PA1 , the
function w[1] is 1 at (1 wins) and at · → 1; it is −1 at (1 loses) and at 1→ ·; and it is 0 at
(2 wins) or (2 loses) and at · → 2 and 2 → ·. Corresponding to matrix PA0 , the function
w[1] is 1 at 2→ 1; it is −1 at 1→ 2. The function w[2] is defined exactly in the same way
but with the roles of 1 and 2 reversed.

From these one-step transition matrices we calculate

(P
(2,N)
B )[1] := 2N−1(P

(2)
B )[1], (P

(2,N)
B )[2] := 2N−1(P

(2)
B )[2],

(P
(2,N)
A′ )[1] := [N(N − 1)]−1[2(PA0

)[1] + 4(N − 2)(PA1
)[1]],

(P
(2,N)
A′ )[2] := [N(N − 1)]−1[2(PA0

)[2] + 4(N − 2)(PA1
)[2]],

(P
(2,N)
B )[1,2] := 0, and

(P
(2,N)
A′ )[1,2] := 2[N(N − 1)]−1(PA0)[1,2].

With

P := γP
(2,N)
A′ + (1− γ)P

(2,N)
B ,

P [1] := γ(P
(2,N)
A′ )[1] + (1− γ)(P

(2,N)
B )[1],

P [2] := γ(P
(2,N)
A′ )[2] + (1− γ)(P

(2,N)
B )[2],
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P [1,2] := γ(P
(2,N)
A′ )[1,2] + (1− γ)(P

(2,N)
B )[1,2],

and with π, Π, and Z chosen accordingly and 1 := (1, 1, . . . , 1)T, we can evaluate

σ
([1,2],N)
(γ,1−γ) := πP [1,2]1− (πP [1]1)(πP [2]1) + πP [1](Z −Π)P [2]1 + πP [2](Z −Π)P [1]1

as a function of N , at least if we fix ρ and γ.

With ρ = 1/3 and γ = 1/2, we conclude that

(σ
(N)
(1/2,1/2))

2 = 27(−36821493886409 + 71724260647553N − 46282959184439N2

+ 9902542819695N3) (5.2)

/[8331019058(−269171 + 524347N − 338381N2 + 72405N3)],

which is monotonically increasing in N ≥ 2, ranging from

(σ
(2)
(1/2,1/2))

2 =
114315959583

258261590798
≈ 0.442636

to

lim
N→∞

(σ
(N)
(1/2,1/2))

2 =
5941525691817

13404609664322
≈ 0.443245.

Let us summarize our results for random mixtures. Let Sn be the cumulative profit
after n turns to the ensemble of N ≥ 2 players playing the mixed game γA′ + (1− γ)B,
where 0 ≤ γ ≤ 1. We assume the parameterization (1.2) with ε = 0.

Theorem 5.2. If γ = 1 so that game A′ is always played, then P(Sn = 0 for all n ≥ 1) =

1.

If γ = 0 so that game B is always played, then {Sn − Sn−1}n≥1 satisfies the SLLN

and the CLT with mean and variance parameters µ(N)
B = 0 and (σ

(N)
B )2 as in (4.2).

If 0 < γ < 1 so that both games are played, then {Sn − Sn−1}n≥1 satisfies the

SLLN and the CLT with mean and variance parameters µ(N)
(γ,1−γ) as in (2.5) (or (3.3)) and

(σ
(N)
(γ,1−γ))

2, at least when ρ = 1/3 and γ = 1/2, as in (5.2). When ρ 6= 1/3 or γ 6= 1/2, we

implicitly assume that (σ
(N)
(γ,1−γ))

2 > 0.

Proof. The first conclusion is obvious. The second and third conclusions follow from
Theorem 2.2, though the mean and variance parameters are obtained not from the
theorem but by using the methods described in the text.

To compare our results with those of Toral [14], we must restore the bias parameter
ε > 0. For simplicity, let us take γ = 1/2, as he did. Then

µ
(N)
(1/2,1/2) = {3[2(1− ρ)3(1 + ρ)− ε(13 + 26ρ+ 30ρ2 + 26ρ3 + 13ρ4) (5.3)

+ ε2(1− ρ)3(1 + ρ)− 2ε3(1 + ρ)2(1 + ρ2)]}/{2[2(10 + 20ρ

+ 21ρ2 + 20ρ3 + 10ρ4)− ε(1− ρ)3(1 + ρ) + 3ε2(1 + ρ)2(1 + ρ2)]}.

Toral reported a simulation with ρ = 1/3, γ = 1/2, ε = 1/100, and N = 200. Actually,
ε = 1/1000 was intended (personal communication 2011). With ρ = 1/3 and ε = 1/1000,
(5.3) reduces to 193387599/6704101000 ≈ 0.0288462, with which Toral’s estimate, 0.029,
is consistent.
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6 Mean profit for nonrandom patterns

Toral [14] omitted discussion of the case in which his games A′ and B are played in
a nonrandom periodic pattern such as A′BBA′BBA′BB · · · . Let us denote by [r, s] the
pattern (A′)rBs repeated ad infinitum. We would like to apply the results of Ethier and
Lee [4] to the pattern [r, s], showing that the Parrondo effect is present for all r, s ≥ 1.
(Unlike in the original one-player Parrondo games, the case r = s = 1 is included.) We
do this by showing that the mean profit per turn for the ensemble of players, µ(N)

[r,s], is
positive if 0 < ρ < 1, zero if ρ = 1, and negative if ρ > 1, for all r, s ≥ 1 and N ≥ 2. As
we will see, here the mean parameter depends on N and it takes a particularly simple
form in the limit as N →∞.

First, Theorem 6 of Ethier and Lee [4] is applicable. (The assumption there that PA
is irreducible and aperiodic is unnecessary.) But again it is simplest to apply the results
to one or two players at a time, as we did in Sections 3 and 5. Let us begin by finding
the mean parameter µ(N)

[r,s].
For the original one-player Parrondo games, in which

PA :=
1

2

 0 1 1

1 0 1

1 1 0

 , PB :=

 0 p0 q0

q1 0 p1

p2 q2 0

 , W :=

 0 1 −1

−1 0 1

1 −1 0

 .

Ethier and Lee [4] showed that

µ[r,s] =
1

r + s
πs,rR diag

(
s,

1− es1
1− e1

,
1− es2
1− e2

)
Lζ,

where πs,r is the unique stationary distribution of P s
BP

r
A, R is the matrix of right

eigenvectors of PB, e1 and e2 are the nonunit eigenvalues of PB, L := R−1, and
ζ := (PB ◦W )1. They further showed that this formula reduces algebraically to

µ[r,s] = Er,s/Dr,s,

where

Er,s := 3ar{[2 + (3ar − 1)(es1 + es2 − 2es1e
s
2)− (es1 + es2)](1− ρ)(1 + ρ)S

+ ar(e
s
2 − es1)[5(1 + ρ)2(1 + ρ2)− 4ρ2]}(1− ρ)2 (6.1)

and
Dr,s := 4(r + s)[1 + (3ar − 1)es1][1 + (3ar − 1)es2](1 + ρ+ ρ2)2S (6.2)

with ar := [1− (−1/2)r]/3 and S :=
√

(1 + ρ2)(1 + 4ρ+ ρ2).
We apply these results but with PA and PB replaced by

P
(1,N)
A′ := N−1[2P

(1)
A + (N − 2)I3] and P

(1,N)
B := N−1[P

(1)
B + (N − 1)I3].

Now (P
(1,N)
A′ )r is given by the same formula as P r

A but with ar redefined as

ar := [1− (1− 3/N)r]/3, (6.3)

and (P
(1,N)
B )s has the same spectral representation as P s

B but with the nonunit eigen-
values replaced by

e1 := 1− 1− e◦1
N

, e2 := 1− 1− e◦2
N

, (6.4)

where e◦1 and e◦2 are the nonunit eigenvalues of PB, namely

e◦1 := −1

2
+

(1− ρ)S

2(1 + ρ)(1 + ρ2)
, e◦2 := −1

2
− (1− ρ)S

2(1 + ρ)(1 + ρ2)
.
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The matrices R and L are unchanged.
We conclude that

µ
(N)
[r,s] = NEr,s/Dr,s, (6.5)

where Er,s and Dr,s are as in (6.1) and (6.2) with only the changes (6.3) and (6.4). For
example, this leads to

µ
(N)
[1,1] = 3N(2N − 3)(1− ρ)3(1 + ρ)/{2[18(1 + ρ+ ρ2)2 − 3N(13 + 26ρ

+ 30ρ2 + 26ρ3 + 13ρ4) + 2N2(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)]}

and

µ
(N)
[1,2] = 2N(1− ρ)3(1 + ρ)[−3(1 + ρ+ ρ2)2 +N(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)

− 9N2(1 + ρ)2(1 + ρ2) + 3N3(1 + ρ)2(1 + ρ2)]/[36(1 + ρ+ ρ2)4

− 12N(1 + ρ+ ρ2)2(11 + 22ρ+ 24ρ2 + 22ρ3 + 11ρ4) +N2(193 + 772ρ

+ 1660ρ2 + 2548ρ3 + 2938ρ4 + 2548ρ5 + 1660ρ6 + 772ρ7 + 193ρ8)

− 3N3(1 + ρ)2(1 + ρ2)(43 + 86ρ+ 102ρ2 + 86ρ3 + 43ρ4)

+N4(1 + ρ)2(1 + ρ2)(35 + 70ρ+ 78ρ2 + 70ρ3 + 35ρ4)].

Both of these functions are positive if 0 < ρ < 1, zero if ρ = 1, and negative if ρ > 1,
for all N ≥ 2, as can be seen by expanding numerators and denominators in powers of
N−2 and noticing that, after factoring out (1−ρ)3(1+ρ), all coefficients are polynomials
in ρ with only positive coefficients.

Although these formulas become increasingly complicated as r and s increase, their
limits as N →∞ have a very simple form. To see this, it suffices to note that

ar =
r

N
+O

(
1

N2

)
, es1 = 1− (1− e◦1)s

N
+O

(
1

N2

)
,

and similarly for es2, so (6.5) converges as N →∞ to

3rs(1− ρ)3(1 + ρ)

9r2(1 + ρ)2(1 + ρ2) + 9rs(1 + ρ)2(1 + ρ2) + 2s2(1 + ρ+ ρ2)2
,

which coincides with (2.5) (or (3.3)) when γ = r/(r+s). This limit is positive if 0 < ρ < 1,
zero if ρ = 1, and negative if ρ > 1, so we conclude that the Parrondo effect is present
for all r, s ≥ 1, as long as N is large enough and ρ 6= 1. This relationship between the
random-mixture case and the nonrandom-pattern case is apparently not present in the
original one-player Parrondo games except in a single case (r = 2, s = 1). (We have
confirmed this for r, s ≥ 1 and r + s ≤ 75 and expect that it is true generally.)

We now verify that the Parrondo effect is always present if ρ 6= 1. We begin with a
lemma.

Lemma 6.1. If 0 < a < b < c, then (cn − bn)/(bn − an) is increasing in n ≥ 1.

Proof. Divide both numerator and denominator by bn to see that we can, without loss
of generality, assume that b = 1. So the aim is to show that

cn − 1

1− an
<
cn+1 − 1

1− an+1
, n ≥ 1,

or that
cn − 1

cn+1 − 1
<

an − 1

an+1 − 1
, n ≥ 1.
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For this it is enough to fix n ≥ 1 and show that the function

f(x) :=
xn − 1

xn+1 − 1
,

defined by continuity at x = 1, is decreasing on (0,∞). Its derivative has the same sign
as

−[xn+1 − (n+ 1)x+ n],

so it is enough that the quantity within brackets is positive for x > 1 and 0 < x < 1.
First suppose that x > 1. Then

xn+1 − (n+ 1)x+ n = (x− 1 + 1)n+1 − (n+ 1)(x− 1)− 1

= (x− 1)n+1 +

(
n+ 1

1

)
(x− 1)n + · · ·+

(
n+ 1

n− 1

)
(x− 1)2

> 0.

Next suppose that 0 < x < 1. Then

xn+1 − (n+ 1)x+ n = xn+1 − 1− (n+ 1)(x− 1)

= (x− 1)(xn + xn−1 + · · ·+ x+ 1)− (n+ 1)(x− 1)

= (x− 1)[xn + xn−1 + · · ·+ x+ 1− (n+ 1)]

> 0.

This completes the proof.

Theorem 6.2. µ(N)
[r,s] is positive if 0 < ρ < 1, zero if ρ = 1, and negative if ρ > 1, for all

r, s ≥ 1 and N ≥ 2.

Proof. Denoting µ
(N)
[r,s] temporarily by µ(N)

[r,s](ρ) to emphasize its dependence on ρ, it can
be shown algebraically or probabilistically that

µ
(N)
[r,s](1/ρ) = −µ(N)

[r,s](ρ),

so it will suffice to treat the case 0 < ρ < 1. First, |3ar − 1| < 1 and e1, e2 ∈ (0, 1), so
Dr,s > 0. Since ar > 0, it suffices to show that

[2 + (3ar − 1)(es1 + es2 − 2es1e
s
2)− (es1 + es2)](1− ρ)(1 + ρ)S

+ ar(e
s
2 − es1)[5(1 + ρ)2(1 + ρ2)− 4ρ2] > 0.

Discarding the −4ρ2 term (since es2 − es1 < 0), it is enough to show that

(1− es1)[1 + (3ar − 1)es2] + (1− es2)[1 + (3ar − 1)es1]

− ar(es1 − es2)
5(1 + ρ)(1 + ρ2)

(1− ρ)S
> 0. (6.6)

Now e◦1 = (−1 + x)/2 and e◦2 = (−1− x)/2, where x := (1− ρ)S/[(1 + ρ)(1 + ρ2)] ∈ (0, 1),
so e1 = (2N − 3 + x)/(2N) and e2 = (2N − 3− x)/(2N).

Let us first assume that N ≥ 3. Then 3ar − 1 ≤ 0, so, replacing es1 and es2 within
brackets in (6.6) by 1, we need only show that

3(1− es1) + 3(1− es2) > (es1 − es2)
5(1 + ρ)(1 + ρ2)

(1− ρ)S
,

or that
2(2N)s − [(2N − 3 + x)s + (2N − 3− x)s]

[(2N − 3 + x)s − (2N − 3− x)s]/x
>

5

3
. (6.7)
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The denominator is a polynomial of degree s − 1 in x with positive coefficients, while
the term within brackets in the numerator is a polynomial of degree s in x with positive
coefficients. So the left side of (6.7) is decreasing in x, and it suffices to verify it at
x = 1. For this we notice that

2(2N)s − [(2N − 2)s + (2N − 4)s]

(2N − 2)s − (2N − 4)s
= 2

Ns − (N − 1)s

(N − 1)s − (N − 2)s
+ 1,

and the fraction on the right is increasing in s ≥ 1 by Lemma 6.1. At s = 1 the value is
3, so the desired inequality holds.

It remains only to consider the case N = 2. The same argument works if r is even
because then 3ar − 1 ≤ 0 still holds. If r is odd, we can replace the quantities within
brackets in (6.6) by 1 and can replace ar in the second line of (6.6) by a1 = 1/2. Thus,
we need only verify (6.7) with 5/3 replaced by 5/2, and of course it still holds.

7 Remark on a “coincidence”

We can prove algebraically that

lim
M→∞

µ
(M)
[r,r] = µ

(N)
(1/2,1/2) = (3/2)µ

(1)
(2/3,1/3) = (3/2)µ

(1)
[2,1] = µ

(2)
[1,1]

=
3(1− ρ)3(1 + ρ)

2(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)

for all r ≥ 1 and N ≥ 2, where superscripts refer to the number of players. (For
superscripts equal to 1, the games areA andB, the original one-player Parrondo games.
For superscripts 2 or larger, the games are A′ and B.) The first equality is from Section
6. Can the others be explained probabilistically? We can elucidate at least the second
equality, while the third and fourth remain partially unexplained.

Since µ(N)
(γ,1−γ) does not depend on N , it is enough to verify the identity with N = 2.

Let us consider the profit of one player when two players are playing. Recalling (3.1)
and (3.2) with N = 2, we have

P
(1,2)
A′ := P

(1)
A and P

(1,2)
B := (1/2)(P

(1)
B + I3).

The former is just the one-step transition matrix for the original one-player game A, and
we have

(1/2)P
(1,2)
A′ + (1/2)P

(1,2)
B = (1/2)P

(1)
A + (1/4)P

(1)
B + (1/4)I3.

The left side describes the (1/2, 1/2) mixture of games A′ and B, as viewed by one of

two players. Its mean is (1/2)µ
(2)
(1/2,1/2). The right side describes the (2/3, 1/3)-mixture

of games A and B if we ignore the (1/4)I3 term and normalize to ensure a stochastic
matrix. That term just slows down the process, making one-fourth of its transitions null.
So its mean is (3/4)µ

(1)
(2/3,1/3). These are equal, so µ(2)

(1/2,1/2) = (3/2)µ
(1)
(2/3,1/3), as claimed.

This can be regarded as a more correct version of the argument sketched in the
third paragraph of page L307 of Toral [14] and attributed to an anonymous referee of
that paper.

8 Variance parameter for nonrandom patterns

We can evaluate the variance parameter (σ
(N)
[r,s])

2 for the nonrandom pattern [r, s] in

the N -player games directly for small N , using the state space Σ̄N with its
(
N+2

2

)
states.

We apply (25)–(27) of Ethier and Lee [4], obtaining, for example,

(σ
(2)
[1,1])

2 = [9(466 + 2680ρ+ 7621ρ2 + 16310ρ3 + 29018ρ4 + 41582ρ5 + 51471ρ6
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+ 55998ρ7 + 51471ρ8 + 41582ρ9 + 29018ρ10 + 16310ρ11 + 7621ρ12

+ 2680ρ13 + 466ρ14)]/[4(2− ρ+ 2ρ2)(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)3],

which reduces when ρ = 1/3 to 74176355601/141627323986 ≈ 0.523743. Since N = 2, this
is a computation involving 6× 6 matrices.

To get results for larger N , we apply the method of considering one or two players
at a time. By analogy with (5.1), we have

(σ
(N)
[r,s])

2 = N(σ
(1,N)
[r,s] )2 +N(N − 1)σ

([1,2],N)
[r,s] ,

where

(σ
(1,N)
[r,s] )2 =

1

r + s

{ r−1∑
u=0

[πP u
AP̈A1− (πP u

AṖA1)2]

+

s−1∑
v=0

[πP r
AP

v
BP̈B1− (πP r

AP
v
BṖB1)2]

+ 2
∑

0≤u<v≤r−1

πP u
AṖA(P v−u−1

A −ΠP v
A)ṖA1

+ 2

r−1∑
u=0

s−1∑
v=0

πP u
AṖA(P r−u−1

A −ΠP r
A)P v

BṖB1

+ 2
∑

0≤u<v≤s−1

πP r
AP

u
BṖB(P v−u−1

B −ΠP r
AP

v
B)ṖB1

+ 2

[ r−1∑
u=0

r−1∑
v=0

πP u
AṖAP

r−u−1
A P s

B(Z −Π)P v
AṖA1

+

r−1∑
u=0

s−1∑
v=0

πP u
AṖAP

r−u−1
A P s

B(Z −Π)P r
AP

v
BṖB1

+

s−1∑
u=0

r−1∑
v=0

πP r
AP

u
BṖBP

s−u−1
B (Z −Π)P v

AṖA1

+

s−1∑
u=0

s−1∑
v=0

πP r
AP

u
BṖBP

s−u−1
B (Z −Π)P r

AP
v
BṖB1

]}

(from Ethier and Lee [4]) with PA and PB replaced by P (1,N)
A′ and P (1,N)

B as defined in
Section 3.

The covariance term, σ([1,2],N)
[r,s] , requires an extension of the preceding formula to

covariances. We omit the details of the derivation and just give the result:

σ
([1,2],N)
[r,s] =

1

r + s

{ r−1∑
u=0

[πP u
AP

[1,2]
A 1− (πP u

AP
[1]
A 1)(πP u

AP
[2]
A 1)]

+

s−1∑
v=0

[πP r
AP

v
BP

[1,2]
B 1− (πP r

AP
v
BP

[1]
B 1)(πP r

AP
v
BP

[2]
B 1)]

+
∑

0≤u<v≤r−1

[πP u
AP

[1]
A (P v−u−1

A −ΠP v
A)P

[2]
A 1

+ πP u
AP

[2]
A (P v−u−1

A −ΠP v
A)P

[1]
A 1]

+

r−1∑
u=0

s−1∑
v=0

[πP u
AP

[1]
A (P r−u−1

A −ΠP r
A)P v

BP
[2]
B 1

EJP 17 (2012), paper 20.
Page 17/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1867
http://ejp.ejpecp.org/


Parrondo’s paradox via redistribution of wealth

+ πP u
AP

[2]
A (P r−u−1

A −ΠP r
A)P v

BP
[1]
B 1]

+
∑

0≤u<v≤s−1

[πP r
AP

u
BP

[1]
B (P v−u−1

B −ΠP r
AP

v
B)P

[2]
B 1

+ πP r
AP

u
BP

[2]
B (P v−u−1

B −ΠP r
AP

v
B)P

[1]
B 1]

+

r−1∑
u=0

r−1∑
v=0

[πP u
AP

[1]
A P

r−u−1
A P s

B(Z −Π)P v
AP

[2]
A 1

+ πP u
AP

[2]
A P

r−u−1
A P s

B(Z −Π)P v
AP

[1]
A 1]

+

r−1∑
u=0

s−1∑
v=0

[πP u
AP

[1]
A P

r−u−1
A P s

B(Z −Π)P r
AP

v
BP

[2]
B 1

+ πP u
AP

[2]
A P

r−u−1
A P s

B(Z −Π)P r
AP

v
BP

[1]
B 1]

+

s−1∑
u=0

r−1∑
v=0

[πP r
AP

u
BP

[1]
B P

s−u−1
B (Z −Π)P v

AP
[2]
A 1

+ πP r
AP

u
BP

[2]
B P

s−u−1
B (Z −Π)P v

AP
[1]
A 1]

+

s−1∑
u=0

s−1∑
v=0

[πP r
AP

u
BP

[1]
B P

s−u−1
B (Z −Π)P r

AP
v
BP

[2]
B 1

+ πP r
AP

u
BP

[2]
B P

s−u−1
B (Z −Π)P r

AP
v
BP

[1]
B 1]

}
with PA and PB replaced by P (2,N)

A′ and P (2,N)
B as defined in Section 5.

By analogy to (5.2), with ρ = 1/3, we conclude that

(σ
(N)
[1,1])

2 = 9(615639408424560− 6408926620214040N + 29541545957894139N2

− 80214814200037491N3 + 143582273075781927N4

− 179192557802543130N5 + 160434481099881996N6

− 104152159483211664N7 + 48799091685478468N8

− 16137521956595246N9 + 3584898779152593N10

− 481633399018397N11 + 29679648590925N12)

/[2(1521− 3174N + 1609N2)3(3285360− 9816120N + 12525387N2

− 8725589N3 + 3501928N4 − 768851N5 + 72405N6)], (8.1)

which is monotonically decreasing in N , ranging from

(σ
(2)
[1,1])

2 =
74176355601

141627323986
≈ 0.523743

to

lim
N→∞

(σ
(N)
[1,1])

2 =
5935929718185

13404609664322
≈ 0.442827.

This last number differs slightly from the corresponding limit in the random-mixture
case, showing that the variances lack the nice property that the means enjoy.

Similar formulas can be found for other [r, s], assuming ρ = 1/3. With [r, s] = [1, 2]

(resp., [2, 1], [2, 2], [2, 4], [3, 3], [4, 2]), we get in place of (8.1) a ratio of degree-21 (resp.,
24, 33, 51, 54, 57) polynomials in N , and

lim
N→∞

(σ
(N)
[r,s])

2 =


1891312136577
6060711605323 ≈ 0.312061 if [r, s] = [2, 1] or [4, 2],

5935929718185
13404609664322 ≈ 0.442827 if [r, s] = [1, 1] or [2, 2] or [3, 3],

136286243910
252688187761 ≈ 0.539346 if [r, s] = [1, 2] or [2, 4].
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In particular, it appears that the result for [r, s] depends on r and s only through r/(r+s).
We have confirmed this only in the several cases shown above; a proof for all integers
r, s ≥ 1 would seem difficult.

Let us summarize our results for nonrandom patterns. Let Sn be the cumulative
profit after n turns to the ensemble of N ≥ 2 players playing the nonrandom pattern
(A′)rBs (denoted by [r, s]) repeatedly, with r and s being positive integers. We assume
the parameterization (1.2) with ε = 0.

Theorem 8.1. {Sn − Sn−1}n≥1 satisfies the SLLN and the CLT with mean and variance

parameters µ(N)
[r,s] computable for specified r, s ≥ 1 as a function of N ≥ 2 and ρ > 0 and

(σ
(N)
[r,s])

2 computable for specified r, s ≥ 1, N ≥ 2, and ρ > 0. We implicitly assume that

(σ
(N)
[r,s])

2 > 0.

Proof. The proof is as for Theorem 5.2, except that, instead of citing Theorem 2.2, we
cite Theorem 6 of Ethier and Lee [4].

9 Sample variance of players’ capitals

Recall our notation in which S[i]
n is the capital of player i (one of the N players) after

n trials, so that

Sn :=

N∑
i=1

S[i]
n

is the total capital of the N players after n trials. Toral [14] simulated the sample
variance of S[1]

n , . . . , S
[N ]
n , namely

1

N

[ N∑
i=1

(S[i]
n )2 −N

(
1

N

N∑
i=1

S[i]
n

)2]
,

finding that it grows approximately linearly in n. Let us replace this sample variance by
its unbiased (at least in the case of a random sample) version,

(σ̂(N))2
n :=

1

N − 1

[ N∑
i=1

(S[i]
n )2 −N

(
1

N

N∑
i=1

S[i]
n

)2]
,

and let us consider its expectation E[(σ̂(N))2
n] instead of the random variable itself. We

can evaluate this using the results already obtained. Indeed,

E[(σ̂(N))2
n] :=

1

N − 1

[ N∑
i=1

E[(S[i]
n )2]− 1

N
E[(Sn)2]

]

=
1

N − 1

[ N∑
i=1

{Var(S[i]
n ) + (E[S[i]

n ])2} − 1

N
{Var(Sn) + (E[Sn])2}

]
=

1

N − 1

[
NVar(S[1]

n )− 1

N
Var(Sn)

]
∼ n 1

N − 1

[
N(σ(1,N))2 − 1

N
[N(σ(1,N))2 +N(N − 1)σ([1,2],N)]

]
= n[(σ(1,N))2 − σ([1,2],N)]

as n→∞, hence
lim
n→∞

n−1E[(σ̂(N))2
n] = (σ(1,N))2 − σ([1,2],N).
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We have omitted subscripts A′, B, (γ, 1 − γ), and [r, s] because we want to apply this
formula in all cases.

Let us first consider the random-mixture case with ρ arbitrary. With γ = 1/2 we have

(σ
(1,N)
(1/2,1/2))

2 − σ([1,2],N)
(1/2,1/2) ∼ 27(97 + 606ρ+ 1926ρ2 + 4262ρ3 + 7284ρ4 + 9894ρ5 + 10911ρ6

+ 9894ρ7 + 7284ρ8 + 4262ρ9 + 1926ρ10 + 606ρ11 + 97ρ12)

/[2N(10 + 20ρ+ 21ρ2 + 20ρ3 + 10ρ4)3] (9.1)

as N →∞, which is (3.4) with γ = 1/2. With γ = 0 (only game B is played) we have

(σ
(1,N)
B )2 − σ([1,2],N)

B =

(
3ρ

1 + ρ+ ρ2

)2
1

N
.

Finally, with γ = 1 (only game A′ is played) we have

(σ
(1,N)
A′ )2 − σ([1,2],N)

A′ =
2

N − 1
∼ 2

N
.

As Toral found, the result for the mixed game lies between those for games A′ and B,
and this is true regardless of ρ > 0. (Our results are not directly comparable to his
because we have taken the bias parameter ε to be 0.)

Finally, let us consider the nonrandom pattern [1, 1]. We find that (σ
(1,N)
[1,1] )2−σ([1,2],N)

[1,1]

has the same asymptotic value as in (9.1), so we have another coincidence. It appears
that these expected sample variances have essentially the same property that the means
enjoy, namely that their asymptotic value for the case of the nonrandom pattern [r, s]

depends only on r/(r + s) and ρ and is equal to the asymptotic value for the case of the
random mixture with γ = r/(r + s). We have confirmed this in the six cases r, s ≥ 1 and
r + s ≤ 4, but a proof for all integers r, s ≥ 1 would seem difficult.
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