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E X A S C A L E 

C O M P U T I N G

PaRSEC: Exploiting Heterogeneity 
to Enhance Scalability

New high-performance computing system designs with steeply escalating processor and 

core counts, burgeoning heterogeneity and accelerators, and increasingly unpredictable 

memory access times call for dramatically new programming paradigms. These new 

approaches must react and adapt quickly to unexpected contentions and delays, and 

they must provide the execution environment with sufficient intelligence and flexibility to 

rearrange the execution to improve resource utilization.

“N
othing endures but change.” 
This old adage certainly ap-
plies to the hardware avail-
able to computer scientists 

since the dawn of the computing age. Beginning 
in the 1970s, vector computing was indisputably 
the technology for those seeking the highest pos-
sible performance; in the 1980s, the introduc-
tion of multiprocessor vector systems added a 
new dimension to this approach. By the 1990s, 
improvements to the price/performance ratio of 
conventional microprocessors led to massively 
parallel processor architectures. Interconnected 
by network interface cards, they replaced vector 
processor systems with symmetric multiprocessor 
designs. This design dominated most of the mar-
ket until the end of the decade, when the concept 
of cluster computing emerged. In the middle of 
the 2000s, however, traditional processor designs 
hit physical limits that prevented them from con-
tinuing the race for improved performance by 

simply running the clock of each new generation 
of processors at ever-higher frequencies.

Having reached a hard upper limit on clock 
frequencies, designers began to seek higher 
performance by increasing the number of 
computing resources on each chip; the many-
core revolution began. Manycore designs have 
indeed been able to sustain (now familiar) ex-
ponential improvements in processor perfor-
mance, but only at the cost of a sharp escalation 
in the amount of parallelism inside a node. Fast 
forward several years, and we �nd that issues 
of power consumption and performance price 
points have given rise to dedicated hardware 
accelerators, providing a large number of spe-
cialized cores not directly under the control of 
the traditional operating system. These accel-
erators come from diverse vendors, and because 
each vendor usually has its own programming 
paradigm, as well as frequently changing inter-
faces and design characteristics, they confront 
software developers with a formidable set of new 
programming challenges. The usual abstrac-
tions provided by the operating system and the 
traditional software stack (programming mod-
els, execution environments, and tools) only 
partially help the programmer striving to uti-
lize heterogeneous resources (http:// herbsutter.
com/welcome-to-the-jungle); the additional 
complexity hinders all efforts at writing high-
performing yet portable applications.

1521-9615/13/$31.00 © 2013 IEEE

COPUBLISHED BY THE IEEE CS AND THE AIP

George Bosilca, Aurelien Bouteiller, and Anthony Danalis

University of Tennessee

Mathieu Faverge

Bordeaux Institute of Technology

Thomas Herault and Jack J. Dongarra

University of Tennessee



NOVEMBER/DECEMBER 2013  37

The challenging environment we describe 
in the next section calls for �exible models that 
can adapt the execution �ow with respect to the 
algorithms used to match not only the available 
hardware’s capabilities but also its availabil-
ity. In short, a dynamic environment calls for 
a dynamic execution model. Historically, this 
idea has been investigated in other contexts, 
typically in grid environments. But the increas-
ing complexity of execution environments has 
brought this concept back to the fore for high-
performance computing (HPC), with models 
exhibiting �ner task granularity and runtimes 
supporting larger and more heterogeneous 
platforms. Several research groups are actively 
investigating programming paradigms based 
on ideas revolving around a runtime-supported 
task-based graph concept.1–4 Here, we describe 
our particular approach.

Today’s Challenging Environment
Looking outside the boundaries of a single pro-
cessor reveals several challenges: as the num-
ber of processors on a node increases beyond 
a certain point, the use of �at interconnection 
backbones is excluded. Consequently, the use of 
deep Non-Uniform Memory Access (NUMA) 
has become pervasive, with communication 
delays varying according to the position of a 
given process in the communication topology; 
each synchronization results in an unpredict-
able waiting time, and intersocket memory 
bandwidth becomes a scarce resource that must 
be carefully managed to avoid contention. 
Moreover, the heterogeneity of the comput-
ing resources involved further complicates the 
challenge of ensuring an ef�cient distribution 
of work among those resources, which in turn 
generates unsolvable multidimensional opti-
mization problems. In summary, the massive 
parallelism and multidimensional heterogene-
ity of current and expected high-performance 
platforms both differentiates them sharply 
from the machines of the past and, for the same 
reasons, causes them to clash with the legacy 
SPMD programming model.

In an attempt to accompany this evolution 
on the software side, the HPC community has 
brought about a complex ecosystem of middle-
ware dedicated to facilitating the use of the 
massively parallel resources that constitute the 
workhorse of computational simulation. Since 
the mid-1980s, the ubiquitous programming 
model for parallel applications has been both ex-
plicit message passing to exchange information 

between computing nodes and parallel threads 
inside the node (with explicit, or implicit, syn-
chronization) through a thread library, such as 
Pthreads, or through the use of a parallel lan-
guage. These two dominant abstractions gave 
birth to numerous highly successful supporting 
stacks—for example, Parallel Virtual Machine 
(PVM) and the Message Passing Interface 
(MPI), on the side of explicit internode com-
munications, and OpenMP for shared-memory 
machines. We could argue that these models 
have been successful because they provided 
a level of abstraction that delivered portable 
performance—a code written in MPI, for in-
stance, could be deployed, unchanged, on many 
target systems—yet still achieved reasonable 
performance levels. However, the issue with all 
these variations of the SPMD programming 
model is that they encourage bulk-synchronous 
programming (BSP), in which sequential pro-
cesses work in parallel and then synchronize, 
sometimes globally, to ensure the computa-
tion’s consistency. Consequently, these models 
don’t cope productively with the system noise, 
variable completion times, and performance 
heterogeneity of the processing units that we 
see in the new era of massively manycore and 
heterogeneous systems.

In addition, due to the multidimensional het-
erogeneity of modern architectures, it is becom-
ing increasingly clear that using only one of these 
abstract models in a one-size-�ts-all approach 
fails to deliver the desired performance level. 
With systems that encompass both large NUMA 
shared-memory processors and the accelerators 
gathered in large constellations, performance-
conscious developers are forced to employ mul-
tiple abstract models simultaneously. This is 
evidenced by the way in which CUDA, OpenMP, 
and MPI are sometimes combined in the same 
application to map parallelism on different types 
of hardware in the same machine. Unfortunately, 
such hybrid programming efforts have had mixed 
results; the desired performance boost often fails 
to materialize after near-heroic investments in 
software engineering.

One explanation of this regrettable phenom-
enon is that the separation-of-concerns barrier 
is being violated. End user programmers must 
decide which parts of the algorithm should be 
expressed using a particular parallelism abstrac-
tion when developing their application. Hence, 
the mapping of an application to a particular 
type of computing resource becomes a static 
decision. The burden imposed on  application 
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 developers to optimize and tune their code 
in this way has become unsustainable: heavy 
modi�cations to adapt the application to 
 cutting-edge architectures become a daunting 
task, distracting the attention of scientists from 
their core competencies. Supporting the devel-
opment of applications on a diversity of target 
hardware architectures—while still achieving 
ef�ciency and performance with minimum 
programming effort—requires a far more �exi-
ble infrastructure. Such an infrastructure could 
incorporate autocon�gurability as one possible 
approach to achieving this goal.

Another signi�cant concern is that legacy 
programming approaches assume that a static 
load balance, often completely under the pro-
grammer’s supervision, is enough to exploit the 
machine’s parallel potential. However, due to 
the variety of processing elements participat-
ing in the computation, programmers �nd it 
increasingly dif�cult to express a load balance 
that can hold for all types of hardware and for 
the computation’s entire duration. It’s therefore 
necessary to �nd solutions that dynamically 
rebalance the work among resources so as to 
tolerate the inevitable jitter that arises in het-
erogeneous compute nodes.

A Dynamic Runtime  
for a Dynamic World
Task-based runtime systems have properties 
that make them more versatile than legacy 

 execution models. For example, because such a 
runtime system manages the execution, it can 
perform dynamic, opportunistic scheduling 
decisions. It can also orchestrate an adaptive 
response to conditions of the resources it cur-
rently senses (idling accelerators, load imbal-
ance, network congestions, and so on), adapting 
the way in which it maps and schedules compu-
tations onto resources, while at the same time 
minimizing data transfers, either on the net-
work or with memory banks.

In this article, we make the case for a run-
time-supported data�ow programming model—
speci�cally, the PaRSEC (http://icl.cs.utk.edu/
parsec/)5 runtime system—to alleviate some of 
the challenges imposed by changes at the hard-
ware level. We emphasize the fact that such 
an approach not only has bene�ts for current 
architectures but also provides a portable way 
to automatically adapt algorithms to new hard-
ware trends. PaRSEC can boost the perfor-
mance of distributed, task-based algorithms, as 
was demonstrated in the D-PLASMA5 library 
(http://icl.cs.utk.edu/dplasma), which we devel-
oped using PaRSEC.

To substantiate the claim that a runtime can in-
deed deliver superior performance, consider the 
execution traces shown in Figure 1. The top trace 
shows the execution of an application using MPI, 
and the bottom trace shows the execution of the 
same application using the PaRSEC runtime. In 
both cases, the application is a QR factorization, a 
dense direct matrix factorization commonly used 
to solve a linear least square problem. In both 
cases, the horizontal axis depicts time, and each 
horizontal stripe (within each trace) represents 
the behavior of one thread. Useful work is depict-
ed in red and yellow; idle time is depicted in gray. 
Clearly, the highly dynamic scheduling approach 
featured in PaRSEC utilizes the hardware much 
more ef�ciently than static approaches, and al-
though the algorithm and dataset are the same in 
both �gures, Figure 1 demonstrates a signi�cant 
reduction in the execution time.

This dynamic runtime is only one side of the 
necessary abstraction. To reach the desired level 
of �exibility, we must be able to expose much 
more of the available parallelism than we have tra-
ditionally done, and the runtime must be capable 
of freely exploiting it to increase the opportuni-
ties for useful computation. A dynamic runtime 
can adapt the execution to the current resources 
condition, as long as it is able to discover con-
currency in the application. This calls for an 
expression of the  parallelism that is practical to 

Figure 1. Comparison of execution traces for the same algorithm using 
the single-program, multiple data message passing interface (SPMD/
MPI) programming model and the dataflow model. Gray areas denote 
idle time; red and yellow depict useful work happening. The SPMD/
MPI approach makes it difficult to resolve imbalances that result in 
a longer execution time and more idle/wait time. In the runtime-
supported dataflow model, most of the jitter and imbalance are 
resolved through an adaptive rebalancing of the work.
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end users, expressive, and avoids cumbersome re-
strictions that prevent the �exible scheduling of 
operations on heterogeneous hardware.

The Data�ow Model

The concept of data�ow has been center-stage 
for program execution since nearly the beginning 
of computer science. As early as 1966, A.J. Bern-
stein postulated a set of conditions6 that describe 
what operations can be executed in parallel with 
any other, or how operations can be reordered 
while preserving the program’s semantics. From 
these conditions, you can deduce a program’s 
data�ow. Compiler optimizations and hardware 
designs aim to improve applications’ execution 
speed, whether they’re parallel or serial, while 
still observing the limitations set by the appli-
cations’ data�ow. Data�ow research has yielded 
results at different levels of granularity and ap-
plicability, but in most cases, an appropriate unit 
of computation is considered to be a set of atomic 
computations that receives some input, performs 
some operations, and generates some output. For 
our purpose here, we refer to such a unit as a task. 
The interactions between these tasks—what data 
they use or produce—is the data�ow, which the 
system (compiler, hardware, or runtime) builds 

and uses to orchestrate the task execution and 
data movement.

At the �nest level of granularity, compiler 
optimizations, such as instruction scheduling 
or vectorization, and hardware features, such 
as pipelining and superscalar execution, rely on 
speeding up execution by analyzing the data�ow 
of small blocks of a program to discover instruc-
tions that are independent and can thus proceed 
concurrently. At this granularity, each instruction 
becomes a task, and the data�ow analysis’s role is 
to examine the operands of different instructions 
to discover how they depend on one another.

At the other extreme of granularity, entire par-
allel programs can be written such that computa-
tion takes place in large groups of operations that 
have well-de�ned dependencies with one another 
and can thus be de�ned as tasks. In procedural 
programming languages, such as C, C++, Fortran, 
and so on, the natural unit of atomic computation 
is a function (or subroutine, in Fortran parlance). 
Functions that can behave as tasks have well-de-
�ned entry and exit points and can be “pure”—
that is, have only side effects that can be described 
in terms of their input and output data.

Figure 2 illustrates the idea of developing 
programs that lend themselves to task-based 

Figure 2. 1D Jacobi method in different programming styles. (a) Plain serial code. (b) Task-based serial 
code. The task-based serial code expresses the problem as a combination of fine and coarse granularities. 
The outer coarse grain loop can be analyzed to extract dataflow parallelism.

(a)

(b)
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execution. Figure 2a shows a pseudocode im-
plementation of the 1D Jacobi method. The 
program iterates until reaching a steady state; 
in each iteration, every array element is re-
placed by the average of its previous value and 
its immediate neighborhood. Figure 2b shows 
a program that computes exactly the same re-
sult, only now the computation is logically 
segmented, with every segment processed by 
the function process_sgm(). This function is 
pure in that it only modi�es memory passed to 
it through its arguments. Although both pro-
grams are serial, the latter can be readily pro-
cessed by a data�ow system and executed using 
a task-based runtime.

We believe future high-performance applica-
tions and runtimes should be targeted at this coarse 
level of granularity, which is achieved when whole 
functions are de�ned as tasks. Operating at a coarse 
granularity has signi�cant practical implications. 
Consider, for example, an application in which each 
task has an execution time on the order of tens of 
microseconds or above. In such a case, if additional 
code execute every time a task ran, such that the ad-
ditional code complete in less than a few  hundred 
nanoseconds, then the overhead incurred by the 
application would be less than 1 percent. Still, 
hundreds of nanoseconds are suf�cient time for a 
modern computer to perform a large number of 
operations, including traversals of several memory 
structures; this is especially so if these structures are 
traversed frequently and thus reside in some level 
of the cache hierarchy. This tolerance for exter-
nal book-keeping operations enables coarse-grain, 
task-based execution models to utilize runtime 
engines that continuously monitor the applica-
tion’s progress and make dynamic decisions. This 
is in stark contrast with the BSP model, in which 
a static schedule is embedded into the algorithm’s 
expression as explicitly speci�ed by the program-
mer in the program’s code �ow. Although the BSP 
approach eliminates the need for management and 
scheduling overhead and is therefore very ef�cient 
for instruction-level handling, it lacks the �exibility 
necessary to adapt to runtime conditions.

A runtime engine that’s aware of both the 
tasks to be executed and the data�ow that con-
nects them provides other signi�cant bene�ts. 
A runtime engine that’s continuously aware of 
the current state of execution and the next tasks 
that will become available, as well as the data 
that they’ll require, can automatically handle 
the communication necessary to transfer this 
data between nodes of a distributed memory 
system. This capability makes the transition 

from shared to distributed memory execution 
seamless. Furthermore, the runtime can sched-
ule tasks based on specialized rules or con-
straints deduced from algorithmic priorities, 
generated communication volume, cache locali-
ty, or several other (combinations of) heuristics. 
These different scheduling heuristics can opti-
mize a variety of goals, such as task duration, 
energy consumption, or the amount of com-
munication-computation overlap. Of course, 
the further into the future of an application’s 
execution that a runtime can see, the higher 
quality the scheduling decisions it can make. In 
the best case, an application’s component tasks 
and the data�ow between them can be given an 
algebraic expression that can be evaluated in 
constant time, so that the application’s future 
execution can be explored to arbitrary depths. 
This programming and execution model is one 
of the models that PaRSEC supports.

The PaRSEC Runtime

PaRSEC employs the data�ow programming 
and execution model to provide a dynamic 
platform that can address the challenges posed 
by distributed heterogeneous hardware re-
sources. The system’s central component, the 
runtime, combines the source program’s task 
and data�ow information with supplementary 
information provided by the user—such as data 
distribution or hints about the importance of 
different tasks—and orchestrates task execu-
tion on the available hardware.

From a technical perspective, PaRSEC is an 
event-driven system. When an event occurs, 
such as task completion, the runtime reacts by 
examining the data�ow to discover what future 
tasks can be executed based on the data generat-
ed by the completed task. The runtime handles 
the data exchange between distributed nodes, 
and thus it reacts to the events triggered by the 
completion of data transfers as well. When no 
events are triggered because the hardware is 
busy executing application code, the runtime 
gets out of the way, allowing all hardware re-
sources to be devoted to the application code’s 
execution.

Due to the dataflow representation (see 
Figure 3), communications become implicit 
and thus are handled automatically as ef�-
ciently as possible by the runtime. Speci�cal-
ly, in the PaRSEC model, data exchange isn’t 
explicitly coded by the developers into their 
application, as in MPI, but implied in the ap-
plication’s data�ow representation. Given that 
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PaRSEC is aware of this representation and 
has knowledge of the mapping of tasks onto 
compute nodes, its runtime can perform all 
necessary data exchanges without user inter-
vention. This has the bene�t of simplifying 
the development of distributed memory par-
allel applications; most importantly, it allows 
the runtime to automatically make use of ef-
�cient nonblocking communication and ad-
vanced collective communication algorithms 
to achieve communication-computation over-
lapping and hide signi�cant parts of the com-
munication overhead.

Task scheduling within each node is also 
one of the runtime’s responsibilities. Speci�-
cally, as tasks complete, they generate data that 
 enables the execution of other tasks. The run-
time keeps track of the tasks that have com-
pleted (the active tasks in Figure 3), discovers 
the tasks that can execute next, and decides 
which hardware resources (CPU cores, accel-
erators, and coprocessors) should be devoted 
to each new task. Consequently, applications 
that use PaRSEC can enjoy high ef�ciency 
because of its advanced scheduling algorithms 
for managing data locality, load balancing, and 
algorithmic priorities. At the same time, it lib-
erates application developers from the dif�-
cult and tedious intricacies of micromanaging 
processes, threads, and other exotic low-level 
library primitives and interfaces. By exposing 
a �at view of the system, the PaRSEC runtime 
manages all this complexity internally.

High-Productivity Ecosystem
Given the ongoing increase in system complex-
ity, it’s clear that any viable programming model 
will need to help developers achieve the best 
performance possible, even while helping them 
keep their efforts below a reasonable threshold. 
Arguably, then, for emerging system and pro-
gramming paradigms, ease of use and develop-
ment aren’t only relevant metrics but are often as 
important as achievable performance. A system 
that doesn’t promote usability can hardly expect 
to be widely adopted by end users, even if it de-
livers better performance than the status quo. 
In this section, using PaRSEC to illustrate the 
case, we describe how a shift toward the data-
�ow programming model from conventional 
practices can preserve and enhance programmer 
productivity while achieving superior ef�ciency 
and scalability. It can accomplish this, in part, 
by providing a uni�ed, expressive, and power-
ful representation of application parallelism. 

The resulting parallel workload of concurrent 
tasks is managed by the runtime scheduler and 
 decouples the communication patterns from the 
algorithm speci�cation.

Parallelism Expression

PaRSEC expresses an algorithm as a Directed 
Acyclic Graph (DAG) of tasks and an associ-
ated data�ow, implying a signi�cant shift in 
software engineering practice. It can enable 
the use of much larger and much more complex 
supercomputers, but only if users embrace it as 
an effective way of developing production code. 
To that end, we created, and are actively ex-
tending, tools that aim to help developers make 
their codes “PaRSEC-enabled.” Because our 
system’s users are parallel application develop-
ers, the primary tools we created for interfacing 
with them are analysis and compilation tools. 
Figure 4 illustrates how these tools integrate 
in the larger perspective of existing productiv-
ity ecosystem (here represented by the Tensor 

Figure 3. The PaRSEC runtime walks the DAG using a concise 
representation that instantiates only the relevant tasks at each 
computing node. Only the active, local tasks need to be stored and 
considered.
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Contraction Engine). Speci�cally, our system 
includes two compilation tools: the front-end 
and back-end compilers.

The front-end compiler aims to make it as 
easy as possible to use PaRSEC and to enable 
a seamless upgrade of legacy software that was 
created for multicore processors but not for 
distributed heterogeneous systems. The input 
to the front-end compiler must conform to a 
canonical form, which enables the compiler to 
extract and analyze all data�ow information. 
After the analysis, the compiler produces a �le 
containing a parameterized task graph—rep-
resented in a PaRSEC-speci�c notation—that 
describes the input program’s tasks and the 
 dependencies between them in a symbolic- and 
problem-size-independent way.7

However, the source code’s canonical form lim-
its the input to af�ne codes. That is, loops with 
bounds that might be parameterized but �xed—
neither the loop bounds nor the induction vari-
able can be altered within the loop, or depend on 
function calls or user data—and memory accesses 
are linear functions of the induction variables and 
constant parameters. This is akin to programs 
written using the DO loop construct of Fortran 
77. Although several interesting problems meet 

this limitation (dense linear algebra, tensor con-
traction, and so on), not all parallel applications 
can be expressed as such. For this reason, PaR-
SEC allows the human developer to alter the 
program’s data�ow representation or even write 
it completely by hand. This way, the developer 
can go beyond the front-end compiler’s limita-
tions and trade simplicity for expressivity.

There’s a signi�cant difference between this 
approach and what other task-based runtimes 
typically do. In the latter, the execution �ow 
is directly derived from sequential execution 
of the target application; discovering the task 
graph in a scalable way in such cases is a chal-
lenge in distributed environments. In contrast, 
PaRSEC’s parameterized task graph provides 
a concise symbolic task representation that al-
lows scalable task discovery and scheduling in 
distributed environments.

Data Af�nity and Movement

As communications are implicit in the data�ow 
model, the algorithm’s expression is indepen-
dent of task placement and data af�nity. Yet, 
maximum performance on distributed memory 
machines demands that the developer control 
(even loosely) the communication volume and 

Figure 4. The PaRSEC environment. At a high level, productivity tools convert domain-specific codes into a 
dataflow representation. The dataflow representation is combined with the PaRSEC runtime library to form 
the versatile application representation.
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pattern. By default, PaRSEC expresses task 
placement as af�nity functions to data follow-
ing the “owner computes” rule; common data 
distributions, such as 2D-cyclic matrices, are 
provided in the PaRSEC toolkit. The program-
mer can write functions to describe arbitrary 
distributions for both input data and task place-
ment. This three-stage development process—
algorithm, data distribution, and optional task 
placement—helps improve code portability. 
Application developers �rst focus on expressing 
the algorithm in the most ef�cient manner with 
respect to parallelism. Then, they need to de�ne 
an appropriate data distribution to �t the algo-
rithm’s speci�cs. Finally, if required,  developers 
can �ne tune communication volumes and pat-
terns by replacing the owner computes rule with 
a different strategy for mapping tasks to data. 
When transporting the code to new hardware 
featuring a different (and possibly exotic) net-
work topology, only the data and/or task distri-
bution functions need to be tuned. The general 
algorithm can remain unchanged, thereby im-
proving productivity when porting codes.

Fine Tuning and Expert Interface

When the input program’s data�ow represen-
tation has been generated, PaRSEC provides a 
second compilation tool, the back-end compiler 
that translates this representation into C code 
stubs that are PaRSEC-enabled. This generated 
code can be compiled and linked with PaRSEC’s 
runtime library using a traditional C compiler 
such as the GNU C Compiler (gcc) or Intel C 
Compiler (icc). This generated C code consists 
of the actual steps that will be taken when the 
program runs and has no limitation regarding 
its behavior. Therefore, an expert developer 
could alter or directly write code at this level.

Offering the option for such low-level pro-
gramming might sound counterproductive, but 
it’s similar to the familiar fact that, 40 years af-
ter C’s creation, expert programmers still write 
critical code snippets in assembler. We believe 
that offering application developers a choice in 
the level of complexity versus expressivity, as 
well as the ability to combine different levels, 
offers the best promise for delivering excellent 
performance while keeping the amount of pro-
grammer effort within reasonable limits.

Performance and Correctness Analysis

While tools to facilitate the conversion from leg-
acy programming models to data�ow representa-
tions are essential, it’s also important to provide 

tools for debugging and analysis that are adapted 
to the new model. Programmers are then placed 
at the center of a feedback loop (as illustrated in 
Figure 5), taking input from a variety of correct-
ness and performance analysis tools to �ne tune 
their code at all levels of the PaRSEC compilers 
stack. An application programmer might want to 
verify that a parameterized task graph, whether 
automatically or manually written, correctly de-
scribes a given program’s data dependencies. For 
this reason, we provide a tool for generating and 
displaying the application’s graph of tasks at a 
 developer-speci�ed level of detail. Figure 3 shows 
the algorithm’s dependency graph with four dif-
ferent kernels. This representation displays useful 
information for the developer—the graph’s shape 
indicates the length of the algorithm’s critical 
path, as well as the potential parallelism that can 
be automatically extracted from the application. 
The developer might want to generate a wider 
DAG to increase the available parallelism. To do 
so, at least two solutions are possible: rethink or 
change the algorithm to minimize or remove 
the need for synchronization or generate  smaller 
grain computational tasks. The �rst solution 
might be impossible, and the second might lead 
to larger scheduling overhead. For this reason, we 
also provide an instrumentation framework for 
gathering low-level information at the task level.

The DAG representation is helpful for de-
bugging purposes as well as for providing hints 
on parallelism available in the algorithm. How-
ever, it doesn’t provide helpful information re-
garding the algorithm’s ef�ciency in exploiting 
system resources. One common way to study 
the performance of parallel applications is to 
measure the elapsed time on each section of 
the code contained between synchronization 
points. The most expensive section is then 
analyzed to reduce the time spent on it. How-
ever, an algorithm’s data�ow representation re-
moves most, if not all, of the synchronization 
points. Therefore, in the case of data-driven, 
task-based execution, two things must be stud-
ied. The �rst is the performance of the tasks 
 themselves, which is observed by collecting 
statistics such as time spent, cache misses, and 
so on. The second is scheduling ef�ciency to 
 ensure that the  correct choices have been made 
for a given DAG. PaRSEC lets the developer 
collect this kind of detailed information about 
tasks and scheduling so that system behavior 
can be analyzed, understood, and tuned.

For performance reasons, the developer must  
make sure that the choices are an ef�cient 
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 compromise between keeping data locality for 
local performance and maximizing parallel-
ism within the DAG. To validate those choic-
es, PaRSEC provides the ability to visualize 
execution traces as Gantt diagrams, such as 
those in Figure 1. Execution traces, coupled 
with the data�ow’s DAG representation, show 
the set of active tasks at a given time with re-
spect to the number of available resources. 
This functionality is an asset in understand-
ing and adapting the scheduling to each class 
of problems.

In addition to “legacy”-type analysis tools, 
there’s also a clear need for new tools to explore 
the complementary aspects of data and/or task 
distribution. Such tools will help programmers 
determine task ef�ciency and the way in which 
tasks affect the memory and computational 
load balance, both between and within the het-
erogeneous resources available on computa-
tional nodes. The community has only begun 
to explore the needs for debugging and analysis 
tools that these new algorithm representations 
are introducing.

C
ompute-intensive simulation has be-
come a pillar of scienti�c discovery in 
the modern age. Ensuring that such 
simulations can run ef�ciently with 

high performance and accuracy on current and 
future parallel machines is critical to high scien-
ti�c throughput and, consequently, is likely to 
have a signi�cant impact on the pace of scienti�c 
progress.

Although the classical programming para-
digm of hybrid message passing and shared 
memory served this purpose well over the past 
two decades, the complexity and heterogeneity 
of new hardware has relentlessly eroded its ef-
fectiveness. Despite possible improvements in 
the performance of some narrow benchmarks, 
without a changing of the guard in accepted 
programming models, we risk seeing declining 
bene�ts for real-world applications. As the gap 
between peak and sustained performance con-
tinues to increase, algorithms will be unable to 
reach their  maximum performance potential, 
and fall short on both energy ef�ciency and 
resilience. The data�ow-driven programming 
paradigm described in this article, together 
with a corresponding runtime, provides an ex-
citing opportunity to close this gap and increase 
code portability at the same time.

The era of dynamic and heterogeneous 
hardware that’s now dawning clearly requires 
radical changes in the standard execution en-
vironment, and we believe that a model based 
on task graphs meets that requirement well. 
To further improve productivity and por-
tability, new domain-speci�c extensions, as 
well as tools to better analyze, understand, 
and improve runtime behavior, should also 
be developed. Similar twists and turns on the 
narrow climb to exascale are likely to provide 
many more such exciting perspectives and 
challenges. 
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