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Abstract

We introduce Parseval networks, a form of deep

neural networks in which the Lipschitz constant

of linear, convolutional and aggregation layers

is constrained to be smaller than 1. Parseval

networks are empirically and theoretically mo-

tivated by an analysis of the robustness of the

predictions made by deep neural networks when

their input is subject to an adversarial perturba-

tion. The most important feature of Parseval net-

works is to maintain weight matrices of linear

and convolutional layers to be (approximately)

Parseval tight frames, which are extensions of

orthogonal matrices to non-square matrices. We

describe how these constraints can be maintained

efficiently during SGD. We show that Parse-

val networks match the state-of-the-art in terms

of accuracy on CIFAR-10/100 and Street View

House Numbers (SVHN), while being more ro-

bust than their vanilla counterpart against adver-

sarial examples. Incidentally, Parseval networks

also tend to train faster and make a better usage

of the full capacity of the networks.

1. Introduction

Deep neural networks achieve near-human accuracy on

many perception tasks (He et al., 2016; Amodei et al.,

2015). However, they lack robustness to small alterations

of the inputs at test time (Szegedy et al., 2014). Indeed

when presented with a corrupted image that is barely dis-

tinguishable from a legitimate one by a human, they can

predict incorrect labels, with high-confidence. An adver-

sary can design such so-called adversarial examples, by

adding a small perturbation to a legitimate input to max-

imize the likelihood of an incorrect class under constraints

on the magnitude of the perturbation (Szegedy et al., 2014;

Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2015; Pa-
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pernot et al., 2016a). In practice, for a significant portion of

inputs, a single step in the direction of the gradient sign is

sufficient to generate an adversarial example (Goodfellow

et al., 2015) that is even transferable from one network to

another one trained for the same problem but with a differ-

ent architecture (Liu et al., 2016; Kurakin et al., 2016).

The existence of transferable adversarial examples has two

undesirable corollaries. First, it creates a security threat

for production systems by enabling black-box attacks (Pa-

pernot et al., 2016a). Second, it underlines the lack of ro-

bustness of neural networks and questions their ability to

generalize in settings where the train and test distributions

can be (slightly) different as is the case for the distributions

of legitimate and adversarial examples.

Whereas the earliest works on adversarial examples already

suggested that their existence was related to the magnitude

of the hidden activations gradient with respect to their in-

puts (Szegedy et al., 2014), they also empirically assessed

that standard regularization schemes such as weight de-

cay or training with random noise do not solve the prob-

lem (Goodfellow et al., 2015; Fawzi et al., 2016). The cur-

rent mainstream approach to improving the robustness of

deep networks is adversarial training. It consists in gen-

erating adversarial examples on-line using the current net-

work’s parameters (Goodfellow et al., 2015; Miyato et al.,

2015; Moosavi-Dezfooli et al., 2015; Szegedy et al., 2014;

Kurakin et al., 2016) and adding them to the training data.

This data augmentation method can be interpreted as a ro-

bust optimization procedure (Shaham et al., 2015).

In this paper, we introduce Parseval networks, a layerwise

regularization method for reducing the network’s sensitiv-

ity to small perturbations by carefully controlling its global

Lipschitz constant. Since the network is a composition of

functions represented by its layers, we achieve increased

robustness by maintaining a small Lipschitz constant (e.g.,

1) at every hidden layer; be it fully-connected, convolu-

tional or residual. In particular, a critical quantity govern-

ing the local Lipschitz constant in both fully connected and

convolutional layers is the spectral norm of the weight ma-

trix. Our main idea is to control this norm by parameter-

izing the network with parseval tight frames (Kovačević &

Chebira, 2008), a generalization of orthogonal matrices.

The idea that regularizing the spectral norm of each weight
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matrix could help in the context of robustness appeared as

early as (Szegedy et al., 2014), but no experiment nor al-

gorithm was proposed, and no clear conclusion was drawn

on how to deal with convolutional layers. Previous work,

such as double backpropagation (Drucker & Le Cun, 1992)

has also explored jacobian normalization as a way to im-

prove generalization. Our contribution is twofold. First, we

provide a deeper analysis which applies to fully connected

networks, convolutional networks, as well as Residual net-

works (He et al., 2016). Second, we propose a computa-

tionally efficient algorithm and validate its effectiveness on

standard benchmark datasets. We report results on MNIST,

CIFAR-10, CIFAR-100 and Street View House Numbers

(SVHN), in which fully connected and wide residual net-

works were trained (Zagoruyko & Komodakis, 2016) with

Parseval regularization. The accuracy of Parseval networks

on legitimate test examples matches the state-of-the-art,

while the results show notable improvements on adversar-

ial examples. Besides, Parseval networks train significantly

faster than their vanilla counterpart.

In the remainder of the paper, we first discuss the previous

work on adversarial examples. Next, we give formal defini-

tions of the adversarial examples and provide an analysis of

the robustness of deep neural networks. Then, we introduce

Parseval networks and its efficient training algorithm. Sec-

tion 5 presents experimental results validating the model

and providing several insights.

2. Related work

Early papers on adversarial examples attributed the vulner-

ability of deep networks to high local variations (Szegedy

et al., 2014; Goodfellow et al., 2015). Some authors ar-

gued that this sensitivity of deep networks to small changes

in their inputs is because neural networks only learn the

discriminative information sufficient to obtain good accu-

racy rather than capturing the true concepts defining the

classes (Fawzi et al., 2015; Nguyen et al., 2015).

Strategies to improve the robustness of deep networks in-

clude defensive distillation (Papernot et al., 2016b), as well

as various regularization procedures such as contractive

networks (Gu & Rigazio, 2015). However, the bulk of

recent proposals relies on data augmentation (Goodfellow

et al., 2015; Miyato et al., 2015; Moosavi-Dezfooli et al.,

2015; Shaham et al., 2015; Szegedy et al., 2014; Kurakin

et al., 2016). It uses adversarial examples generated online

during training. As we shall see in the experimental sec-

tion, regularization can be complemented with data aug-

mentation; in particular, Parseval networks with data aug-

mentation appear more robust than either data augmenta-

tion or Parseval networks considered in isolation.

3. Robustness in Neural Networks

We consider a multiclass prediction setting, where we have

Y classes in Y = {1, ..., Y }. A multiclass classifier is a

function ĝ : (x ∈ R
D,W ∈ W) 7→ argmaxȳ∈Y gȳ(x,W ),

where W are the parameters to be learnt, and gȳ(x,W ) is

the score given to the (input, class) pair (x, ȳ) by a function

g : RD × W → R
Y . We take g to be a neural network,

represented by a computation graph G = (N , E), which is

a directed acyclic graph with a single root node, and each

node n ∈ N takes values in R
d
(n)
out and is a function of its

children in the graph, with learnable parameters W (n):

n : x 7→ φ(n)
(

W (n),
(

n′(x)
)

n′:(n,n′)∈E

)

. (1)

The function g we want to learn is the root of G. The

training data ((xi, yi))
m
i=1 ∈ (X × Y)m is an i.i.d. sam-

ple of D, and we assume X ⊂ R
D is compact. A function

ℓ : RY × Y → R measures the loss of g on an example

(x, y); in a single-label classification setting for instance, a

common choice for ℓ is the log-loss:

ℓ
(

g(x,W ), y
)

= −gy(x,W ) + log
(

∑

ȳ∈Y

egȳ(x,W )
)

. (2)

The arguments that we develop below depend only on the

Lipschitz constant of the loss, with respect to the norm of

interest. Formally, we assume that given a p-norm of inter-

est ‖.‖p, there is a constant λp such that

∀z, z′ ∈ R
Y , ∀ȳ ∈ Y, |ℓ(z, ȳ)−ℓ(z′, ȳ)| ≤ λp‖z−z′‖p .

For the log-loss of (2), we have λ2 ≤
√
2 and λ∞ ≤ 2.

In the next subsection, we define adversarial examples and

the generalization performance of the classifier. Then, we

make the relationship between robustness to adversarial ex-

amples and the lipschitz constant of the networks.

3.1. Adversarial examples

Given an input (train or test) example (x, y), an adversarial

example is a perturbation of the input pattern x̃ = x + δx
where δx is small enough so that x̃ is nearly undistinguish-

able from x (at least from the point of view of a human

annotator), but has the network predict an incorrect label.

Given the network parameters and structure g(.,W ) and a

p-norm, the adversarial example is formally defined as

x̃ = argmax
x̃:‖x̃−x‖p≤ǫ

ℓ
(

g(x̃,W ), y
)

, (3)

where ǫ represents the strength of the adversary. Since the

optimization problem above is non-convex, Shaham et al.

(2015) propose to take the first order taylor expansion of

x 7→ ℓ(g(x,W ), y) to compute δx by solving

x̃ = argmax
x̃:‖x̃−x‖p≤ǫ

(

∇xℓ(g(x,W ), y)
)T

(x̃− x) . (4)
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If p = ∞, then x̃ = x + ǫsign(∇xℓ(g(x,W ), y)). This is

the fast gradient sign method. For the case p = 2, we ob-

tain x̃ = x + ǫ∇xℓ(g(x,W ), y). A more involved method

is the iterative fast gradient sign method, in which several

gradient steps of (4) are performed with a smaller stepsize

to obtain a local minimum of (3).

3.2. Generalization with adversarial examples

In the context of adversarial examples, there are two differ-

ent generalization errors of interest:

L(W ) = E
(x,y)∼D

[

ℓ(g(x,W ), y)
]

,

Ladv(W, p, ǫ) = E
(x,y)∼D

[

max
x̃:‖x̃−x‖p≤ǫ

ℓ(g(x̃,W ), y)
]

.

By definition, L(W ) ≤ Ladv(W, p, ǫ) for every p and ǫ>0.

Reciprocally, denoting by λp and Λp the Lipschitz constant

(with respect to ‖.‖p) of ℓ and g respectively, we have:

Ladv(W, p, ǫ) ≤ L(W )

+ E
(x,y)∼D

[

max
x̃:‖x̃−x‖p≤ǫ

|ℓ(g(x̃,W ), y)− ℓ(g(x,W ), y)|
]

≤ L(W ) + λpΛpǫ .

This suggests that the sensitivity to adversarial examples

can be controlled by the Lipschitz constant of the network.

In the robustness framework of (Xu & Mannor, 2012),

the Lipschitz constant also controls the difference between

the average loss on the training set and the generalization

performance. More precisely, let us denote by Cp(X , γ)
the covering number of X using γ-balls for ‖.‖p. Using

M = supx,W,y ℓ(g(x,W ), y), Theorem 3 of (Xu & Man-

nor, 2012) implies that for every δ ∈ (0, 1), with probabil-

ity 1− δ over the i.i.d. sample ((xi, yi)
m
i=1, we have:

L(W ) ≤ 1

m

m
∑

i=1

ℓ(g(xi,W ), yi)

+ λpΛpγ +M

√

2Y Cp(X , γ
2 ) ln(2)− 2 ln(δ)

m
.

Since covering numbers of a p-norm ball in R
D increases

exponentially with R
D, the bound above suggests that it is

critical to control the Lipschitz constant of g, for both good

generalization and robustness to adversarial examples.

3.3. Lipschitz constant of neural networks

From the network structure we consider (1), for every node

n ∈ N , we have (see below for the definition of Λ
(n,n′)
p ):

‖n(x)− n(x̃)‖p ≤
∑

n′:(n,n′)∈E

Λ(n,n′)
p ‖n′(x)− n′(x̃)‖p ,

for any Λ
(n,n′)
p that is greater than the worst case variation

of n with respect to a change in its input n′(x). In par-

ticular we can take for Λ
(n,n′)
p any value greater than the

supremum over x0 ∈ X of the Lipschitz constant for ‖.‖p
of the function (1n′′ = n′ is 1 if n′′ = n′ and 0 otherwise):

x 7→ φ(n)
(

W (n),
(

n′′(x0+1n′′ = n′(x−x0))
)

n′′:(n,n′′)∈E

)

.

The Lipschitz constant of n, denoted by Λ
(n)
p satisfies:

Λ(n)
p ≤

∑

n′:(n,n′)∈E

Λ(n,n′)
p Λ(n′)

p (5)

Thus, the Lipschitz constant of the network g can grow ex-

ponentially with its depth. We now give the Lipschitz con-

stants of standard layers as a function of their parameters:

Linear layers: For layer n(x) = W (n)n′(x) where n′ is

the unique child of n in the graph, the Lipschitz constant

for ‖.‖p is, by definition, the matrix norm of W (n) induced

by ‖.‖p, which is usually denoted ‖W (n)‖p and defined by

‖W (n)‖p = sup
z:‖z‖p=1

‖W (n)z‖p .

Then Λ
(n)
2 = ‖W (n)‖2Λ(n′)

2 , where ‖W (n)‖2, called the

spectral norm of W (n), is the maximum singular value

of W (n). We also have Λ
(n)
∞ = ‖W (n)‖∞Λ

(n′)
∞ , where

‖W (n)‖∞ = maxi
∑

j |W
(n)
ij | is the maximum 1-norm of

the rows. W (n).

Convolutional layers: To simplify notation, let us con-

sider convolutions on 1D inputs without striding, and we

take the width of the convolution to be 2k + 1 for k ∈ N.

To write convolutional layers in the same way as linear lay-

ers, we first define an unfolding operator U , which pre-

pares the input z, denoted by U(z). If the input has length

T with din inputs channels, the unfolding operator maps

z For a convolution of the unfolding of z considered as a

T × (2k + 1)din matrix, its j-th column is:

Uj(z) = [zj−k; ...; zj+k] ,

where “;” is the concatenation along the vertical axis (each

zi is seen as a column din-dimensional vector), and zi = 0
if i is out of bounds (0-padding). A convolutional layer

with dout output channels is then defined as

n(x) = W (n) ∗ n′(x) = W (n)U(n′(x)) ,

where W (n) is a dout × (2k + 1)din matrix. We thus have

Λ
(n)
2 ≤ ‖W‖2‖U(n′(x))‖2. Since U is a linear operator

that essentially repeats its input (2k + 1) times, we have

‖U(n′(x)) − U(n′(x̃))‖22 ≤ (2k + 1)‖n′(x) − n′(x̃)‖22,

so that Λ
(n)
2 ≤

√
2k + 1‖W‖2Λ(n′)

2 . Also, ‖U(n′(x)) −
U(n′(x̃))‖∞ = ‖n′(x) − n′(x̃)‖∞, and so for a convolu-

tional layer, Λ
(n)
∞ ≤ ‖W (n)‖∞Λ

(n′)
∞ .
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Aggregation layers/transfer functions: Layers that per-

form the sum of their inputs, as in Residual Netowrks (He

et al., 2016), fall in the case where the values Λ
(n,n′)
p in (5)

come into play. For a node n that sums its inputs, we have

Λ
(n,n′)
p = 1, and thus Λ

(n)
p ≤ ∑

n′:(n,n′)∈E Λ
(n′)
p . If n is

a tranfer function layer (e.g., an element-wise application

of ReLU) we can check that Λ
(n)
p ≤ Λ

(n′)
p , where n′ is the

input node, as soon as the Lipschitz constant of the transfer

function (as a function R→ R) is ≤ 1.

4. Parseval networks

Parseval regularization, which we introduce in this section,

is a regularization scheme to make deep neural networks

robust, by constraining the Lipschitz constant (5) of each

hidden layer to be smaller than one, assuming the Lipschitz

constant of children nodes is smaller than one. That way,

we avoid the exponential growth of the Lipschitz constant,

and a usual regularization scheme (i.e., weight decay) at

the last layer then controls the overall Lipschitz constant

of the network. To enforce these constraints in practice,

Parseval networks use two ideas: maintaining orthonormal

rows in linear/convolutional layers, and performing convex

combinations in aggregation layers. Below, we first explain

the rationale of these constraints and then describe our ap-

proach to efficiently enforce the constraints during training.

4.1. Parseval Regularization

Orthonormality of weight matrices: For linear layers,

we need to maintain the spectral norm of the weight matrix

at 1. Computing the largest singular value of weight ma-

trices is not practical in an SGD setting unless the rows

of the matrix are kept orthogonal. For a weight matrix

W ∈ R
dout×din with dout ≤ din, Parseval regulariza-

tion maintains WTW ≈ Idout×dout
, where I refers to

the identity matrix. W is then approximately a Parseval

tight frame (Kovačević & Chebira, 2008), hence the name

of Parseval networks. For convolutional layers, the ma-

trix W ∈ R
dout×(2k+1)din is constrained to be a Parse-

val tight frame (with the notations of the previous section),

and the output is rescaled by a factor (2k + 1)−1/2. This

maintains all singular values of W to (2k+1)−1/2, so that

Λ
(n)
2 ≤ Λ

(n′)
2 where n′ is the input node. More generally,

keeping the rows of weight matrices orthogonal makes it

possible to control both the spectral norm and the ‖.‖∞ of

a weight matrix through the norm of its individual rows.

Robustness for ‖.‖∞ is achieved by rescaling the rows so

that their 1-norm is smaller than 1. For now, we only ex-

perimented with constraints on the 2-norm of the rows, so

we aim for robustness in the sense of ‖.‖2.

Remark 1 (Orthogonality is required). Without orthogo-

nality, constraints on the 2-norm of the rows of weight ma-

trices are not sufficient to control the spectral norm. Parse-

val networks are thus fundamentally different from weight

normalization (Salimans & Kingma, 2016).

Aggregation Layers: In parseval networks, aggregation

layers do not make the sum of their inputs, but rather take

a convex combination of them:

n(x) =
∑

n′:(n,n′)∈E

α(n,n′)n′(x)

with
∑

n′:(n,n′)∈E α
(n,n′) = 1 and α(n,n′) ≥ 0. The pa-

rameters α(n,n′) are learnt, but using (5), these constraint

guarantee that Λ
(n)
p ≤ 1 as soon as the children satisfy the

inequality for the same p-norm.

4.2. Parseval Training

Orthonormality constraints: The first significant differ-

ence between Parseval networks and its vanilla counter-

part is the orthogonality constraint on the weight matrices.

This requirement calls for an optimization algorithm on the

manifold of orthogonal matrices, namely the Stiefel man-

ifold. Optimization on matrix manifolds is a well-studied

topic (see (Absil et al., 2009) for a comprehensive survey).

The simplest first-order geometry approaches consist in op-

timizing the unconstrained function of interest by moving

in the direction of steepest descent (given by the gradient

of the function) while at the same time staying on the man-

ifold. To guarantee that we remain in the manifold after

every parameter update, we need to define a retraction op-

erator. There exist several pullback operators for embedded

submanifolds such as the Stiefel manifold based for exam-

ple on Cayley transforms (Absil et al., 2009). However,

when learning the parameters of neural networks, these

methods are computationally prohibitive. To overcome this

difficulty, we use an approximate operator derived from the

following layer-wise regularizer of weight matrices to en-

sure their parseval tightness (Kovačević & Chebira, 2008):

Rβ(Wk) =
β

2
‖W⊤

k Wk − I‖22.

Optimizing Rβ(Wk) to convergence after every gradient

descent step (w.r.t the main objective) guarantees us to stay

on the desired manifold but this is an expensive procedure.

Moreover, it may result in parameters that are far from the

ones obtained after the main gradient update. We use two

approximations to make the algorithm more efficient: First,

we only do one step of descent on the function Rα(Wk).
The gradient of this regularization term is∇Wk

Rβ(Wk) =
β(WkW

⊤
k − I)Wk. Consequently, after every main update

we perform the following secondary update:

Wk ← (1 + β)Wk − βWkW
⊤
k Wk.
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Algorithm 1 Parseval Training

Θ = {Wk,αk}
K

k=1, e← 0
while e ≤ E do

Sample a minibatch {(xi, yi)}
B

i=1.
for k ∈ {1, . . . ,K} do

Compute the gradient: GWk
← ∇Wk

ℓ(Θ, {(xi, yi)}),
Gαk

← ∇αk
ℓ(Θ, {(xi, yi)}).

Update the parameters:
Wk ←Wk − ǫ ·GWk

αk ← αk − ǫ ·Gαk
.

if hidden layer then
Sample a subset S of rows of Wk.
Projection:
WS ← (1 + β)WS − βWSW

⊤
S WS .

αk ← argmin
γ∈∆K−1‖αK − γ‖22

e← e+ 1.

Optionally, instead of updating the whole matrix, one can

randomly select a subset S of rows and perform the update

from Eq. (4.2) on the submatrix composed of rows indexed

by S. This sampling based approach reduces the overall

complexity to O(|S|2d). Provided the rows are carefully

sampled, the procedure is an accurate Monte Carlo ap-

proximation of the regularizer loss function (Drineas et al.,

2006). The optimal sampling probabilities, also called sta-

tistical leverages are approximately equal if we start from

an orthogonal matrix and (approximately) stay on the man-

ifold throughout the optimization since they are propor-

tional to the eigenvalues of W (Mahoney et al., 2011).

Therefore, we can sample a subset of columns uniformly

at random when applying this projection step.

While the full update does not result in an increased over-

head for convolutional layers, the picture can be very dif-

ferent for large fully connected layers making the sampling

approach computationally more appealing for such layers.

We show in the experiments that the weight matrices result-

ing from this procedure are (quasi)-orthogonal. Also, note

that quasi-orthogonalization procedures similar to the one

described here have been successfully used previously in

the context of learning overcomplete representations with

independent component analysis (Hyvärinen & Oja, 2000).

Convexity constraints in aggregation layers: In Parse-

val networks, aggregation layers output a convex combina-

tion of their inputs instead of e.g., their sum as in Residual

networks (He et al., 2016). For an aggregation node n of

the network, let us denote by α = (α(n,n′))n′:(n,n′)∈E the

K-size vector of coefficients used for the convex combina-

tion output by the layer. To ensure that the Lipschitz con-

stant at the node n is such that Λ
(n)
p ≤ 1, the constraints

of 4.1 call for a euclidean projection of α onto the positive

simplex after a gradient update:

α
∗ = argmin

γ∈∆K−1

‖α− γ‖22 ,

Figure 1. Sample images from the CIFAR-10 dataset, with corre-

sponding adversarial examples. We show the original image and

adversarial versions for SNR values of 24.7, 12.1 and 7.8.

where ∆K−1 = {γ ∈ R
K |1⊤

γ = 1,γ ≥ 0}. This is a

well studied problem (Michelot, 1986; Pardalos & Kovoor,

1990; Duchi et al., 2008; Condat, 2016). Its solution is

of the form: α∗
i = max(0, αi − τ(α)), with τ : RK →

R the unique function satisfying
∑

i(xi − τ(α)) = 1 for

every x ∈ R
K . Therefore, the solution essentially boils

down to a soft thresholding operation. If we denote α1 ≥
α2 ≥ . . . αK the sorted coefficients and k(α) = max{k ∈
(1, . . . ,K)|1+kαk >

∑

j≤k αj}, the optimal thresholding

is given by (Duchi et al., 2008):

τ(α) =
(
∑

j≤k(α) αj)− 1

k(α)

Consequently, the complexity of the projection is

O(K log(K)) since it is only dominated by the sorting

of the coefficients and is typically cheap because aggre-

gation nodes will only have few children in practice (e.g.

2). If the number of children is large, there exist effi-

cient linear time algorithms for finding the optimal thresh-

olding τ(α) (Michelot, 1986; Pardalos & Kovoor, 1990;

Condat, 2016). In this work, we use the method detailed

above (Duchi et al., 2008) to perform the projection of the

coefficient α after every gradient update step.

5. Experimental evaluation

We evaluate the effectiveness of Parseval networks on

well-established image classification benchmark datasets

namely MNIST, CIFAR-10, CIFAR-100 (Krizhevsky,

2009) and Street View House Numbers (SVHN) (Netzer

et al.). We train both fully connected networks and wide

residual networks. The details of the datasets, the models,

and the training routines are summarized below.
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5.1. Datasets

CIFAR. Each of the CIFAR datasets is composed of 60K

natural scene color images of size 32 × 32 split between

50K training images and 10K test images. CIFAR-10 and

CIFAR-100 have respectively 10 and 100 classes. For these

two datasets, we adopt the following standard preprocess-

ing and data augmentation scheme (Lin et al., 2013; He

et al., 2016; Huang et al., 2016a; Zagoruyko & Komodakis,

2016): Each training image is first zero-padded with 4 pix-

els on each side. The resulting image is randomly cropped

to produce a new 32 × 32 image which is subsequently

horizontally flipped with probability 0.5. We also normal-

ize every image with the mean and standard deviation of

its channels. Following the same practice as (Huang et al.,

2016a), we initially use 5K images from the training as a

validation set. Next, we train de novo the best model on

the full set of 50K images and report the results on the test

set. SVHN The Street View House Number dataset is a

set of 32× 32 color digit images officially split into 73257

training images and 26032 test images. Following common

practice (Zagoruyko & Komodakis, 2016; He et al., 2016;

Huang et al., 2016a;b), we randomly sample 10000 images

from the available extra set of about 600K images as a val-

idation set and combine the rest of the pictures with the

official training set. We divide the pixel values by 255 as

a preprocessing step and report the test set performance of

the best performing model on the validation set.

5.2. Models and Implementation details

ConvNet Models. For the CIFAR and SVHN datasets, we

trained wide residual networks (Zagoruyko & Komodakis,

2016) as they perform on par with standard resnets (He

et al., 2016) while being faster to train thanks to a reduced

depth. We used wide resnets of depth 28 and width 10 for

both CIFAR-10 and CIFAR-100. For SVHN we used wide

resnet of depth 16 and width 4. For each architecture, we

compare Parseval networks with the vanilla model trained

with standard regularization both in the adversarial and the

non-adversarial training settings.

ConvNet Training. We train the networks with stochas-

tic gradient descent using a momentum of 0.9. On CIFAR

datasets, the initial learning rate is set to 0.1 and scaled

by a factor of 0.2 after epochs 60, 120 and 160, for a to-

tal number of 200 epochs. We used mini-batches of size

128. For SVHN, we trained the models with mini-batches

of size 128 for 160 epochs starting with a learning rate

of 0.01 and decreasing it by a factor of 0.1 at epochs 80

and 120. For all the vanilla models, we applied by default

weight decay regularization (with parameter λ = 0.0005)

together with batch normalization and dropout since this

combination resulted in better accuracy and increased ro-

bustness in preliminary experiments. The dropout rate use

is 0.3 for CIFAR and 0.4 for SVHN. For Parseval regular-

ized models, we choose the value of the retraction parame-

ter to be β = 0.0003 for CIFAR datasets and β = 0.0001
for SVHN based on the performance on the validation set.

In all cases, We also adversarially trained each of the mod-

els on CIFAR-10 and CIFAR-100 following the guidelines

in (Goodfellow et al., 2015; Shaham et al., 2015; Kurakin

et al., 2016). In particular, we replace 50% of the examples

of every minibatch by their adversarially perturbed version

generated using the one-step method to avoid label leak-

ing (Kurakin et al., 2016). For each mini-batch, the magni-

tude of the adversarial perturbation is obtained by sampling

from a truncated Gaussian centered at 0 with standard de-

viation 2.

Fully Connected Model. We also train feedforward net-

works composed of 4 fully connected hidden layers of size

2048 and a classification layer. The input to these networks

are images unrolled into a C × 1024 dimensional vector

where C is the number of channels. We used these models

on MNIST and CIFAR-10 mainly to demonstrate that the

proposed approach is also useful on non-convolutional net-

works. We compare a Parseval networks to vanilla models

with and without weight decay regularization. For adver-

sarially trained models, we follow the guidelines previously

described for the convolutional networks.

Fully Connected Training. We train the models with SGD

and divide the learning rate by two every 10 epochs. We use

mini-batches of size 100 and train the model for 50 epochs.

We chose the hyperparameters on the validation set and re-

train the model on the union of the training and validation

sets. The hyperparameters are β, the size of the row subset

S, the learning rate and its decrease rate. Using a subset

S of 30% of all the rows of each of weight matrix for the

retraction step worked well in practice.

5.3. Results

5.3.1. (QUASI)-ORTHOGONALITY.

We first validate that Parseval training (Algorithm 1) indeed

yields (near)-orthonormal weight matrices. To do so, we

analyze the spectrum of the weight matrices of the different

models by plotting the histograms of their singular values,

and compare these histograms for Parseval networks to net-

works trained using standard SGD with and without weight

decay (SGD-wd and SGD).

The histograms representing the distribution of singular

values at layers 1 and 4 for the fully connected network (us-

ing S = 30%) trained on the dataset CIFAR-10 are shown

in Fig. 2 (the figures for convolutional networks are sim-

ilar). The singular values obtained with our method are

tightly concentrated around 1. This experiment confirms

that the weight matrices produced by the proposed opti-



Parseval Networks

0 2 4

singular values

0

500

1000

1500

fr
eq
u
en

cy

sgd

sgd-wd

parseval

0 2 4

singular values

0

500

1000

1500

2000

fr
eq
u
en

cy

sgd

sgd-wd

parseval

Figure 2. Histograms of the singular values of the weight matrices

at layers 1 and 4 of our network in CIFAR-10.
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Figure 3. Performance of the models for various magnitudes of

adversarial noise on MNIST (left) and CIFAR-10 (right).

mization procedure are (almost) orthonormal. The distribu-

tion of the singular values of the weight matrices obtained

with SGD has a lot more variance, with nearly as many

small values as large ones. Adding weight decay to stan-

dard SGD leads to a sparse spectrum for the weight matri-

ces, especially in the higher layers of the network suggest-

ing a low-rank structure. This observation has motivated

recent work on compressing deep neural networks (Denton

et al., 2014).

5.3.2. ROBUSTNESS TO ADVERSARIAL NOISE.

We evaluate the robustness of the models to adversarial

noise by generating adversarial examples from the test set,

for various magnitudes of the noise vector. Following com-

mon practice (Kurakin et al., 2016), we use the fast gradient

sign method to generate the adversarial examples (using

‖.‖∞, see Section 3.1). Since these adversarial examples

transfer from one network to the other, the fast gradient

sign method allows to benchmark the network for reason-

able settings where the opponent does not know the net-

work. We report the accuracy of each model as a function

of the magnitude of the noise. To make the results easier

to interpret, we compute the corresponding Signal to Noise

Ratio (SNR). For an input x and perturbation δx, the SNR

is defined as SNR(x, δx) = 20 log10
‖x‖2

‖δx‖2
. We show some

adversarial examples in Fig. 1.

Fully Connected Nets. Figure 3 depicts a comparison of

Parseval and vanilla networks with and without adversar-

ial training at various noise levels. On both MNIST and

CIFAR-10, Parseval networks consistently outperforms

weight decay regularization. In addition, it is as robust as

Table 1. Classification accuracy of the models on CIFAR-10 and

CIFAR-100 with the (combination of) various regularization

scheme. ǫ represents here the value of the signal to noise ratio

(SNR). At ǫ = 30, an adversarially perturbed image is percepti-

ble by a human. For each dataset, the top 3 rows report results for

non-adversarial training and the bottom 3 rows report results for

adversarial training.

Model Clean ǫ ≈ 50 ǫ ≈ 45 ǫ ≈ 40 ǫ ≈ 33

C
IF

A
R

-1
0

Vanilla 95.63 90.16 85.97 76.62 67.21

Parseval(OC) 95.82 91.85 88.56 78.79 61.38

Parseval 96.28 93.03 90.40 81.76 69.10

Vanilla 95.49 91.17 88.90 86.75 84.87

Parseval(OC) 95.59 92.31 90.00 87.02 85.23

Parseval 96.08 92.51 90.05 86.89 84.53

C
IF

A
R

-1
0
0

Vanilla 79.70 65.76 57.27 44.62 34.49

Parseval(OC) 81.07 70.33 63.78 49.97 32.99

Parseval 80.72 72.43 66.41 55.41 41.19

Vanilla 79.23 67.06 62.53 56.71 51.78

Parseval(OC) 80.34 69.27 62.93 53.21 52.60

Parseval 80.19 73.41 67.16 58.86 39.56
S

V
H

N
Vanilla 98.38 97.04 95.18 92.71 88.11

Parseval(OC) 97.91 97.55 96.35 93.73 89.09

Parseval 98.13 97.86 96.19 93.55 88.47

adversarial training (SGD-wd-da) on CIFAR-10. Combin-

ing Parseval Networks and adversarial training results in

the most robust method on MNIST.

ResNets. Table 1 summarizes the results of our experi-

ments with wide residual Parseval and vanilla networks on

CIFAR-10, CIFAR-100 and SVHN. In the table, we denote

Parseval(OC) the Parseval network with orthogonality con-

straint and without using a convex combination in aggrega-

tion layers. Parseval indicates the configuration where both

of the orthogonality and convexity constraints are used.

We first observe that Parseval networks outperform vanilla

ones on all datasets on the clean examples and match the

state of the art performances on CIFAR-10 (96.28%) and

SVHN (98.44%). On CIFAR-100, when we use Parse-

val wide Resnet of depth 40 instead of 28, we achieve

an accuracy of 81.76%. In comparison, the best perfor-

mance achieved by a vanilla wide resnet (Zagoruyko & Ko-

modakis, 2016) and a pre-activation resnet (He et al., 2016)

are respectively 81.12% and 77.29%. Therefore, our pro-

posal is a useful regularizer for legitimate examples. Also

note that in most cases, Parseval networks combining both

the orthogonality constraint and the convexity constraint is

superior to use the orthogonality constraint solely.

The results presented in the table validate our most impor-

tant claim: Parseval networks significantly improve the ro-

bustness of vanilla models to adversarial examples. When

no adversarial training is used, the gap in accuracy be-
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Table 2. Number of dimensions (in % of the total dimension) nec-

essary to capture 99% of the covariance of the activations.

SGD-wd SGD-wd-da Parseval

all class all class all class

Layer 1 72.6 34.7 73.6 34.7 89.0 38.4

Layer 2 1.5 1.3 1.5 1.3 82.6 38.2

Layer 3 0.5 0.5 0.4 0.4 81.9 30.6

Layer 4 0.5 0.4 0.4 0.4 56.0 19.3

tween the two methods is significant (particularly in the

high noise scenario). For an SNR value of 40, the best

Parseval network achieves 55.41% accuracy while the best

vanilla model is at 44.62%. When the models are adversar-

ially trained, Parseval networks remain superior to vanilla

models in most cases. Interestingly, adversarial training

only slightly improves the robustness of Parseval networks

in low noise setting (e.g. SNR values of 45-50) and some-

times even deteriorates it (e.g. on CIFAR-10). In contrast,

combining adversarial training and Parseval networks is an

effective approach in the high noise setting. This result

suggests that thanks to the particular form of regularizer

(controlling the Lipschitz constant of the network), Parse-

val networks achieves robustness to adversarial examples

located in the immediate vicinity of each data point. There-

fore, adversarial training only helps for adversarial exam-

ples found further away from the legitimate patterns. This

observation holds consistently across all our datasets.

Better use of capacity Given the distribution of singu-

lar values observed in Figure 2, we want to analyze the

intrinsic dimensionality of the representation learned by

the different networks at every layer. To that end, we use

the local covariance dimension (Dasgupta & Freund, 2008)

which can be measured from the covariance matrix of the

data. For each layer k of the fully connected network,

we compute the activation’s empirical covariance matrix
1
n

∑n
i=1 φk(x)φk(x)

⊤ and obtain its sorted eigenvalues

σ1 ≥ · · · ≥ σd. For each method and each layer, we select

the smallest integer p such that
∑p

i=1 σi ≥ 0.99
∑d

i=1 σi.

This gives us the number of dimensions that we need to

explain 99% of the covariance. We can also compute the

same quantity for the examples of each class, by only con-

sidering in the empirical estimation of the covariance of the

examples xi such that yi = c. Table 2 report these numbers

for all examples and the per-class average on CIFAR-10.

Table 2 shows that the local covariance dimension of all

the data is consistently higher for Parseval networks than

all the other approaches at any layer of the network. SGD-

wd-da contracts all the data in very low dimensional spaces

at the upper levels of the network by using only 0.4% of the

total dimension (layer 3 and 4) while Parseval networks use

about 81% and 56% at of the whole dimension respectively
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Figure 4. Learning curves of Parseval wide resnets and Vanilla

wide resnets on CIFAR-10 (right) and CIFAR-100 (left). Parseval

networks converge faster than their vanilla counterpart.

in the same layers. This is intriguing given that SGD-wd-da

also increases the robustness of the network, apparently not

in the same way as Parseval networks. For the average local

covariance dimension of the classes, SGD-wd-da contracts

each class into the same dimensionality as it contracts all

the data at the upper layers of the network. For Parseval,

the data of each class is contracted in about 30% and 19%
of the overall dimension. These results suggest that Parse-

val contracts the data of each class in a lower dimensional

manifold (compared to the intrinsic dimensionality of the

whole data) hence making classification easier.

faster convergence Parseval networks converge signifi-

cantly faster than vanilla networks trained with batch nor-

malization and dropout as depicted by figure 4. Thanks to

the orthogonalization step following each gradient update,

the weight matrices are well conditioned at each step dur-

ing the optimization. We hypothesize this is the main ex-

planation of this phenomenon. For convolutional networks

(resnets), the faster convergence is not obtained at the ex-

pense of larger wall-time since the cost of the projection

step is negligible compared to the total cost of the forward

pass on modern GPU architecture thanks to the small size

of the filters.

6. Conclusion

We introduced Parseval networks, a new approach for

learning neural networks that are intrinsically robust to ad-

versarial noise. We proposed an algorithm that allows us to

optimize the model efficiently. Empirical results on three

classification datasets with fully connected and wide resid-

ual networks illustrate the performance of our approach.

As a byproduct of the regularization we propose, the model

trains faster and makes a better use of its capacity. Further

investigation of this phenomenon is left to future work.
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