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Parsimonious Approximation of Streamline

Trajectories in White Matter Fiber Bundles
Pietro Gori*, Olivier Colliot, Linda Marrakchi-Kacem, Yulia Worbe, Fabrizio De Vico Fallani, Mario Chavez,

Cyril Poupon, Andreas Hartmann, Nicholas Ayache and Stanley Durrleman

Abstract—Fiber bundles stemming from tractography algo-
rithms contain many streamlines. They require therefore a great
amount of computer memory and computational resources to
be stored, visualised and processed. We propose an approx-
imation scheme for fiber bundles which results in a parsi-
monious representation of weighted prototypes. Prototypes are
chosen among the streamlines and they represent groups of
similar streamlines. Their weight is related to the number of
approximated streamlines. Both streamlines and prototypes are
modelled as weighted currents. This computational model does
not need point-to-point correspondences and two streamlines are
considered similar if their endpoints are close to each other
and if their pathways follow similar trajectories. Moreover, the
space of weighted currents is a vector space with a closed-form
metric. This permits easy computation of the approximation
error and the selection of the prototypes is based on the
minimisation of this error. We propose an iterative algorithm
which approximates independently and simultaneously all the
fascicles of the bundle in a fast and accurate way. We show that
the resulting representation preserves the shape of the bundle and
it can be used to accurately reconstruct the original structural
connectivity. We evaluate our algorithm on bundles obtained from
both deterministic and probabilistic tractography algorithms.
The resulting approximations use on average only 2% of the
original streamlines as prototypes. This drastically reduces the
computational burden of the processes where the geometry of
the streamlines is considered. We demonstrate its effectiveness
using as example the registration between two fiber bundles.

Index Terms—Diffusion weighted imaging, Brain, Connectivity
analysis, Dimensionality reduction, Registration, Tractography,
Visualization

I. INTRODUCTION

TRACTOGRAPHY [1], [2] from diffusion-weighted mag-

netic resonance imaging (DW-MRI) [3] is the only non-

invasive technique capable to trace in vivo the wiring architec-

ture of the human brain white matter. It is widely employed

for both clinical (i.e. stroke [4], surgical procedures [5]) and

research purposes (i.e. Alzheimer’s disease, schizophrenia [6]).

The 3D polylines stemming from tractography algorithms,

called streamlines or fibers, are only estimates of the tra-

jectories of large groups of neural axons. Streamlines are

traced from points inside a starting voxel, called seeds, and

they are constituted of segments connecting neighbouring
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voxels. The direction of these segments is defined by a local

diffusion model (i.e. tensor, Q-ball [7]) computed at each voxel

and by a tractography method: deterministic or probabilistic

[7]. Deterministic algorithms produce segments which follow

the principal direction of the local diffusion model whereas

probabilistic ones use randomly perturbed versions of the main

direction. Depending on the tractography step-size parameter

(i.e. the distance between two consecutive points), segments

may be collinear. A piece-wise linearization step, as proposed

in [8], may be applied to reduce the number of segments.

Seeds are usually placed in every voxel of the white matter

(whole-brain tractography) and the resulting streamlines can

be divided into different fiber bundles based on clustering

algorithms or starting/ending Regions of Interest (ROI). Fiber

bundles may then be decomposed into fascicles which are

groups of fibers with a similar pathway and whose extrem-

ities are close to each other, connecting therefore the same

functional territories.

Fiber bundles are difficult to analyse both qualitatively and

quantitatively due to their considerable number of streamlines.

The size of a bundle can make computationally intractable

processes such as clustering [9], registration [10], atlas con-

struction [11] or shape analysis [12], where the trajectory of

the streamlines is considered. Moreover, the great quantity of

streamlines might also complicate the rendering, the visualisa-

tion and the interpretation of a bundle, thus limiting possible

clinical applications.

In this paper, we propose to approximate a fiber bundle with

a parsimonious representation of weighted streamline proto-

types. We exploit the fact that many streamlines, starting from

seeds in the same voxel or in neighbour voxels, share the same

pathway and ending area. We approximate these streamlines

with one of them, called prototype. We use a computational

model for both streamlines and prototypes characterised by

an explicit and easily computable metric. This allows us to

control the approximation error and to select the streamlines

which minimize it as prototypes. Furthermore, the resulting

representation of weighted prototypes preserve both the shape

and the fiber density on grey matter structures (i.e. structural

connectivity) with a controlled error.

The proposed approximation scheme is conceived for fiber

bundles resulting from both deterministic and probabilistic

streamline tractography algorithms. The definitions of stream-

line, fascicle and bundle, as employed throughout this paper,

are as follows. A streamline is a curve composed of a finite,

ordered and connected sequence of 3D points. The distance

between connected points is not assumed to be constant. The
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number of points may vary between two different streamlines.

A fascicle is an ensemble of streamlines with similar pathway

and whose extremities are close to each other. A bundle

is a group of streamlines with a consistent orientation and

connecting two specific ROIs defined by the user. Every bundle

is composed of one or more fascicles.

II. RELATED WORK

In the last years, there has been a great effort to compactly

represent a fiber bundle. A pragmatic strategy is to randomly

choose a smaller subset of streamlines. The sampling is not

driven by the minimisation of an approximation error and it

is not possible to control the selection of the streamlines.

This can cause the loss of the smallest fascicles of the

bundle which might be important for the purpose of the study.

More sophisticated solutions have been proposed and they

can be divided into two categories. The first group gathers

computational models conceived to compactly represent single

streamlines. The second category assembles instead strategies

focused on simplifying the representation of the entire fiber

bundle.

A. Compact representation of streamlines

Streamlines are composed of contiguous variable-length

segments whose number might also vary among fibers. Dif-

ferent computational models have been proposed whose goal

is to concisely parametrise a streamline. A widely employed

method consists of defining point-to-point correspondence

among streamlines parametrising them as sets of points [13]

or with cubic B-splines [14] for instance. This technique eases

the computations but it can be applied only if streamlines

have a similar length and the definition of corresponding

points can be very challenging. Other authors proposed to

characterise a streamline using only its extremities [15] or

its connectivity signature [16], namely the probabilities to be

linked to a defined set of ROIs. These methods have been

used for clustering, visualisation and interpretation purposes

but they do not take into consideration the shape of the stream-

lines which is important for registration and morphometry.

Conversely, different authors proposed to evaluate only the

geometry of the fibers, without taking into consideration their

extremities. A first example is given by the methods based

on Fourier descriptors [17], [18], which result in a concise

parametrisation useful for clustering and shape analysis. In

these models the number of descriptors needs to be fixed

though and the optimal number depends on the length and

shape of the streamlines, which might vary even within a

single bundle. Lately, other authors proposed to represent

a streamline as a blurred indicator function modelled as a

Gaussian process [19], [20]. This representation can be easily

employed to compare and average streamlines. However, it

is not a geometric primitive and it is therefore difficult to

use in multi-object registrations together with other geometric

primitives such as 3D surface meshes.

B. Compact representation of the whole bundle

The second category is composed of methods which approx-

imate the entire fiber bundle. The most common strategy is to

divide the fiber bundle into subsets, usually called clusters,

which are then characterised by representative fibers (i.e.

prototypes.) These fibers represent the average trajectory of

the streamlines of the clusters. They can be computed as

the mode [21] or mean [22] of the streamlines, if there is

a point-correspondence, or according to a fiber dissimilarity

measure [23], [24]. Representative fibers are mainly used

to ease the interpretation and visualisation of a bundle and

to reduce the memory footprint and computational time for

shape analysis and registration. A first approach to speed

up affine registration with prototype fiber representations was

the one proposed in [25]. Other authors have also employed

isosurfaces to represent the spatial variation of the clusters

[26]. This representation can be used only for tubular-shaped

bundles that can be modelled as convex envelopes. Other

bundles, such as the corpus callosum and the rostral part of

the corticospinal tract, have a different topology and they are

defined as sheet-like bundles. In [27] the authors proposed to

represent those bundles as 3D surface meshes whereas in [28]

it was suggested to use deformable medial models (cm-reps).

In both cases, the medial surface representations are employed

only for visualisation and clustering and to provide statistics

about diffusion coefficients. A different representation, which

can be employed for any kind of bundle, is the tract probability

map [19], [29], [30]. It indicates the probability of a voxel to

belong to a given bundle. This method is very concise but it

is not based on a geometrical primitive and it has been used

for visualisation, interpretation and clustering. A last example

is the sparse representation based on the matching pursuit

algorithm for currents presented in [11]. In the framework of

currents [31], a bundle is considered as a single mathematical

object composed of disconnected oriented points which model

the local orientation of the streamlines. The approximation

presented in [11] represents a bundle with a sparse set of

oriented points. This representation is very concise but it

has the drawback to accurately approximate only the areas

of the bundle characterised by a high density of streamlines,

like the central mass of the bundle. Thus, the small fascicles

may not be well approximated. Moreover, the framework

of currents does not take into account the extremities of

the streamlines. This prevents the analysis of the structural

connectivity, namely the areas of the gray matter connected

by the bundle.

III. OUR CONTRIBUTION

In this paper, extending [32], we propose to approximate any

fiber bundle with a set of weighted prototypes. Prototypes are

chosen among the streamlines and they represent ensembles

of similar fibers. Their weights are related to the number of

streamlines approximated. Both prototypes and streamlines are

modelled as weighted currents, an extension of the framework

of currents. This computational model takes into consideration

both the pathway of the fiber/prototype and the anatomical lo-

cation of its extremities. Two fibers/prototypes are considered

similar if their endpoints are close to each other and if their

trajectories are similar. The space of weighted currents is a

vector space with an explicit and easily computable metric.
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This implies that the approximation error of the proposed

scheme can be easily controlled. The resulting parsimonious

representation, up to a reasonable approximation level, pre-

serves both the shape and the structural connectivity (com-

puted as streamlines density) of the original bundle. Moreover,

the framework of weighted currents inherits from the one of

currents [33] the fact that it does not need either point-to-point

or streamline-to-streamline correspondences. Nevertheless, it

requires the definition of the starting and ending point of each

streamline. The uncertainty of tractography algorithms near

the grey/white matter boundaries is taken into account by a

Gaussian smoothing kernel. Prototypes are visualised as tubes

whose constant radii are proportional to their weights. This

concise representation can be easily combined in multi-object

studies with other geometric primitives such as surface meshes

modelled as landmarks, currents or varifolds [34], [35].

The paper is organised as follows. In Section IV, we

first present the framework of weighted currents and then

the different steps of the proposed approximation scheme.

After that, we demonstrate the effectiveness of our algorithm

on deterministic and probabilistic fiber bundles from both a

qualitative and quantitative point of view.

IV. METHOD

A. Weighted currents

The framework of weighted currents is an extension of the

one of currents [31] [36, Chapter 2]. In this framework, a

streamline is considered as a set of disconnected oriented

points which are weighted by the spatial coordinates of the

streamline extremities. In this way, every oriented point en-

codes not only the local orientation of a streamline, as with

currents, but also its connectivity. It is an adaptation of the

framework of functional currents [37].

A streamline X is a polygonal line of N segments. The

coordinates of the two extremities fa and f b are two 3D

vectors defined in the space Q=R3xR3. The fiber X is

modelled as a 1-weighted current CX via a line integral of

a vector field ω:

CX(ω) =

∫

X

w(x, fa, f b)Tα(x)dx ≈

N
∑

i=1

ωT
(xi,fa,fb)(αi)

≈
N
∑

i=1

δαi

(xi,fa,fb)
(ω)

(1)

where xi and αi are respectively the center and the tangent

vector of segment i which is approximated by a Dirac delta

weighted current δ. It can be shown that the approximation

error tends to zero as the sampling becomes more accurate

i.e. the length of the segments decreases [38]. The vector field

ω belongs to a reproducing kernel Hilbert space (RKHS) W
defined on the product space R

3xQ. The space of weighted

currents is a continuous linear form on W and every weighted

current CX belongs to its dual space W ∗. As a space of

mappings, the space of weighted currents is a vector space.

A natural way to build a kernel K associated to the product

Fig. 1. Two 2D streamlines X and Y are compared using both the framework
of currents and the one of weighted currents. In the three figures only
the position of the extremities change, the overall pathway remains almost
unchanged. The framework of weighted currents is more sensitive to the
distance between the extremities which explains why the two streamlines X
and Y are almost orthogonal in the last figure on the right. The bandwidths
of all kernels employed in both frameworks are equal to 5.

space W is as tensor product of two kernels defined separately

in R
3 (Kg) and in Q (Kf ): K=Kg ⊗ Kf . Since even Q

is a product space, Kf is also defined as a tensor product

between two kernels Ka and Kb. Thus, the kernel K results:

K((x, fa, f b), (y, ta, tb))=Kg(x, y)Ka(f
a, ta)Kb(f

b, tb). All

kernels Kg , Ka and Kb are defined as Gaussian and

they are parametrised by their bandwidths λg , λa and

λb. Using these kernels, the inner product in the frame-

work of weighted currents between two Diracs is de-

fined as: 〈δα(x,fa,fb), δ
β
(y,ta,tb)

〉W∗ = Ka(f
a, ta) Kb(f

b, tb)

(αTKg(x, y)β). By linearity, the inner product between two

streamlines X and Y (CY (ω) ≈
∑M

j=1 ω(yj ,ta,tb)(βj)) is:

〈CX , CY 〉W∗ = Ka(f
a, ta)Kb(f

b, tb)
N
∑

i=1

M
∑

j=1

αT
i Kg(xi, yj)βj

= exp

(

−||fa − ta||22
λ2
a

)

exp

(

−||f b − tb||22
λ2
b

)

(2)

N
∑

i=1

M
∑

j=1

exp

(

−||xi − yj ||
2
2

λ2
g

)

αT
i βj

The framed part would be the inner product between X
and Y if modelled as currents. It measures overall differences

between the geometry of their trajectories where the degree

of detail is determined by the scale λg , which is in distance

unit. If the average distance between the segments of X and

Y is definitely greater than 3 times λg , the two streamlines

are considered orthogonal (〈CX , CY 〉W∗ ∼ 0). The two other

terms evaluate how far the streamline extremities are from each

other and they are parametrised by λa and λb respectively.

If fa and ta (resp. f b and tb) are spaced more than 3

times λa (resp. λb) apart, the two streamlines are considered

orthogonal. This means that two streamlines are considered

orthogonal if they do not share either the pathway or the

ending areas. As shown in Fig.1, the framework of currents is

almost “blind” to a change of the positions of the end-points.

Even if the extremities of the two streamlines are far from

each other, with respect to the kernel bandwidth λg , the angle
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(cos−1 〈CX ,CY 〉W∗

|CX |W∗|CY |W∗

) between the two streamlines varies by

only few degrees. On the contrary, the streamlines become

almost orthogonal in the framework of weighted currents when

their extremities are spaced out. This makes the definition of

similarity twofold in the framework of weighted currents. Two

streamlines are considered similar if their pathways are alike,

as in currents, but also if their endpoints are close to each

other. In Fig.2 we show the most similar fibers to the red

streamline in the framework of currents (green) and in the one

of weighted currents (blue). The green fibers share a similar

pathway with the red one but some of them connect different

anatomical areas. On the contrary, the blue fibers are similar to

the red streamline both in terms of geometry and connectivity.

As currents, the framework of weighted currents does not

need point-to-point correspondence, except for the extremi-

ties. This can be obtained, for instance, by tracing all the

streamlines of a bundle from one ROI to another one, as it

is done for the bundles considered in this paper. Moreover,

every streamline Si is considered as a vector in a Hilbert

space. Thus, a fiber bundle, which is the union of many

fibers B = ∪ni Si, is represented as a sum in this framework:

CB =
∑n

i CSi
. The difference between two streamlines,

modelled as weighted currents, is defined as their sum with

the orientation of the second fiber inverted. If two fibers are

equal, their difference cancels out. Furthermore, it is also

possible to compute the average weighted current S̄ of a

fiber bundle as: CS̄ = 1
n

∑n
i CSi

. Given the inner product

defined in Eq.2, the squared norm of the difference between

two bundles CB =
∑n

i=1 CSi
and CB′ =

∑m
p=1 CS′

p
is

equal to: ||CB − CB′ ||2W∗ =
∑n

i=1

∑n
j=1〈CSi

, CSj
〉W∗ +

∑m
p=1

∑m
q=1〈CS′

p
, CS′

q
〉W∗ - 2

∑n
i=1

∑m
p=1〈CSi

, CS′

p
〉W∗.

A bundle B composed of two streamlines, X and Y , is

modelled as CB = CX+CY in the framework of weighted

currents. If the two streamlines X and Y are similar in this

framework, their sum can be well approximated by CB=2CX

or CB=2CY . This is crucial for the scope of this paper since

an ensemble of streamlines can be represented with a single

weighted prototype where the weight is related to the number

of streamlines approximated. In the previous example both X
and Y could be chosen as prototype and the weight would be

2. A weighted prototype can be visualised as a tube where

the streamline chosen as prototype is the central axis and the

constant radius is proportional to the weight (see Fig.3). In the

following, we will describe how to use this idea to approximate

a complex bundle stemming from a tractography algorithm.

We will also assume that both streamlines and bundles are

modelled as weighted currents writing simply S (resp. B)

instead than CS (resp. CB).

B. Approximation scheme

The goal of the proposed approximation scheme is to

represent a fiber bundle B with a set of weighted prototypes

{τkPk}. The resulting parsimonious representation should

preserve both the shape and the structural connectivity (stream-

lines density on the grey matter surfaces) of the original

bundle. The proposed algorithm is based on a greedy approach

where we first subdivide the bundle into fascicles and then

select the prototypes in each fascicle independently.

Fig. 2. Streamlines that have an angle smaller than 45 degrees with the
red one using currents (green, #118) and weighted currents (blue, #8).
Green streamlines are more spread than the blue ones, connecting anatomical
locations far from the ones of the red fiber. The concept of similarity in the
framework of weighted currents is more stringent than using currents.

Fig. 3. Weighted prototype visualised as a red tube. It approximates the
fascicle of streamlines coloured in green. The streamline chosen as prototype
is the central axis of the tube and it is coloured in black. The radius of the
tube is proportional to the weight of the prototype and it does not represent
the spatial coverage of the prototype. The spatial coverage is the same for all
prototypes and it depends on the three bandwidths λg , λa and λb.

a) Fascicles detection: A fascicle is a group of stream-

lines which are considered similar in the framework of

weighted currents, namely they have a similar pathway and

end-points close to each other. The subdivision of a bundle into

fascicles is based on the maximization of a quality function

called modularity [39]:

Q =

NF
∑

F=1







‖
∑

i∈F

Si‖
2
W∗‖

∑

j /∈F

Sj‖
2
W∗ − (

∑

i∈F

∑

j /∈F

〈Si, Sj〉W∗)
2







(3)

where F is a fascicle, NF is the number of fascicles and

it is constrained by
∑NF

F=1

∑

i∈F Si = B. In the simple case

of NF =2, Eq.3 can be rewritten as: Q = ‖S̄1‖
2
W∗‖S̄2‖

2
W∗ −

〈

S̄1, S̄2

〉2

W∗
where S̄1 and S̄2 are the averages of the two

fascicles. Maximizing Q means therefore dividing the bundle

into two fascicles such that their averages have a similar norm

and tend to be orthogonal to each other. In the general form

of Eq.3, one looks for NF fascicles with balanced norms and

which tend to have streamlines orthogonal to the streamlines

of the other fascicles and parallel to the streamlines of their

own fascicle.

Modularity is often employed in the field of complex

networks to detect densely connected communities of nodes

within a network [39]. It has been demonstrated that exact

modularity optimization is strongly NP-complete [40]. Several

approximation schemes exist in the literature and one of the

state-of-the-art methods is the “Louvain” algorithm [39]. It

is a greedy solution where every fascicle is considered as a

vertex of a graph. Two vertices F1 and F2 have a weighted
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edge equal to the sum of the inner products between the

streamlines of the fascicles
∑

i∈F1

∑

j∈F2
〈Si, Sj〉W∗ . At the

beginning, every streamline is considered as an independent

fascicle. The algorithm is divided into two parts which are

repeated iteratively. The first part consists of moving all the

streamlines of a vertex to its neighbour vertices finding the

relocation that leads to the greatest increase in modularity. If

none movement produces a positive gain in modularity, the

streamlines remain in their initial vertex. This part is repeated

until no change would produce an increase in modularity. In

the second part, one redefines the graph by discarding the

empty vertices and recomputing the weighted edges between

the new vertices. The two steps are repeated until no change

would produce an increase in modularity. At the end, the fiber

bundle is separated into different fascicles without fixing in

advance neither the number of fascicles nor the number of

streamlines per fascicle.

Remark: This step could be seen as a clustering. How-

ever, the word “clustering” is often employed in the literature

with a connotation of “segmentation”, namely the subdivision

of a white matter tractogram into tracts reproducible across

subjects. Here, the goal is not to create anatomically relevant

clusters but to subdivide the multi-modal distribution of fibers

into different fascicles (modes). In order not to create ambi-

guity about this step, we avoided the word “clustering”.

b) Prototypes Streamline Selection (PSS): Once the fas-

cicles are defined, a PSS is performed in each fascicle in-

dependently. We propose an iterative algorithm in the spirit

of orthogonal matching pursuit [41]. Let F be a fascicle

with L streamlines modelled as weighted currents, the first

prototype P1 is chosen as the streamline minimising the

residual squared error, namely: P1 = argminSi
||F−τ1Si||

2
W∗ .

Since the space of weighted currents is a vector space,

we can easily minimize it. The optimal weight is: τ1 =
〈F,P1〉W∗

||P1||2W∗

and the prototype is: P1 = argmaxSi
〈F, Si

||Si||W∗

〉2W∗

= argmaxSi
L2〈S̄, Si

||Si||W∗
〉2W∗ with i=1,...,L. The prototype

is therefore the most parallel streamline to the average S̄ of

the fascicle.

Once the first prototype is selected, we remove from each

streamline Si its orthogonal projection onto the prototype,

resulting in the residual: r(Si) = Si−π(Si) = Si−
〈Si,P1〉W∗

P1

||P1||2W∗

.

We keep therefore only the components of the streamlines

orthogonal to the prototype P1. In this new space, we select the

second prototype as: P2 = argmaxr(Si)〈r(F ), r(Si)
‖r(Si)‖W∗

〉2W∗

.

In this way, P1 and P2 should be very different as well as the

streamlines they approximate. We iterate this process until:

||F −
∑K

k=1 τkPk||W∗
≤ γ||F ||W∗

where ||F ||W∗
is the norm

of the fascicle, K is the number of prototypes and γ indicates

the required approximation level. At each iteration t, the set of

weights {τk}k=1,...,t is computed as the orthogonal projection

of all the streamlines of F to the space spanned by the selected

set of prototypes {Pk}k=1,...,t. The final number of prototypes

depends on the chosen approximation level γ and on the kernel

bandwidths of the framework of weighted currents.

It is important to notice that the computations are based on

the Gram matrix Γ of the fascicle F which has size [LxL].
Thus, instead of computing directly r(Si), we simply update

Γ as: 〈r(Si), r(Sj)〉W∗
= 〈Si, Sj〉W∗

−
〈Si,P 〉W∗

〈Sj ,P 〉W∗

||P ||2
W∗

=

Γ(i,j) −
Γ(i,P )Γ(j,P )

||Γ(P,P )||
2
2

. A sketch of the algorithm can be found

in Algorithm 1 where Γ(i,j) indicates the value of the matrix

Γ at row i and column j, Γ(K,L) refers to the submatrix of Γ
containing the K rows of the prototypes and all the L columns,

Γ(K,K) is the square submatrix with the rows and columns of

the K prototypes and 1(L,1) is a L-dimensional vector of ones.

Algorithm 1 Prototype Fiber Selection

Input: Fascicle F with L streamlines Si: F =
∑L

i=1 Si ;

threshold γ ; pre-computed matrix Γ ; K=1

1: P1 ← argmaxSi
〈F, Si

||Si||W∗
〉2W∗

2: τ1 ←
〈F,P1〉W∗

||P1||2W∗

3: for i = 1 to L do

4: for j = 1 to L do

5: 〈Si, Sj〉W∗ ← 〈Si, Sj〉W∗ −
〈Si,P1〉W∗ 〈Sj ,P1〉W∗

||P1||2W∗

6: end for

7: end for

8: while ||F −
∑K

k=1 τkPk||W∗
≤ γ||F ||W∗

do

9: K ← K + 1

10: PK ← argmaxi
(Γ(i,L)1(L,1))

2

Γ(i,i)

11: {τk}k=1,...,K ←
Γ(K,L)1(L,1)

Γ(K,K)

12: for i = 1 to L do

13: for j = 1 to L do

14: Γ(i,j) ← Γ(i,j) −
Γ(i,PK )Γ(j,PK )

||Γ(PK,PK )||
2
2

15: end for

16: end for

17: end while

Output: {τk}, {Pk} k=1,...,K

After selecting the prototypes of each fascicle indepen-

dently, they are all gathered into a single bundle of prototypes

BP . The weights are then recomputed as the orthogonal

projection of the whole bundle B to the entire set of pro-

totypes BP in order to retrieve the correct values also for the

weights of the prototypes close to the boundary between two

different fascicles. Moreover, before the PSS algorithm, we

also perform an outlier detection step in every fascicle. The

streamlines characterised by an average angle with the other

streamlines between 88◦ and 90◦ are considered as outliers

and discarded from the analysis.

In Fig.4, we show a sketch of the entire approximation

scheme. A fiber bundle is first divided into fascicles. The sub-

division is not meant to be related to anatomy. Its goal is purely

algorithmic. It permits the detection and the approximation of

all fascicles, even the small ones. This is crucial, for instance,

when registering two bundles in order to correctly align all the

fascicles and not only the central and bigger ones. The size

and number of fascicles is determined by the bandwidths λg ,

λa and λb. The smaller the bandwidths, the greater the number

of fascicles. In fact, by decreasing these values we make the

definition of similarity between two streamlines more strin-

gent. For instance, if their extremities are more distant than

3 times λb, they will be considered orthogonal (i.e. far from

each other). At the end of the PSS step, if the approximation

level is sufficiently small, the resulting weighted prototypes
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Fig. 4. Sketch of the approximation scheme on a toy bundle composed of blue
streamlines and a black cortex. The first row shows the structural connectivity
computed as the density of the streamlines extremities onto the grey matter.
The second row presents the results of the two steps. At the end of the first
step, the bundle is divided into different fascicles. Streamlines considered as
outliers (i.e. the yellow one on the right) are discarded before the PSS step.
The resulting weighted prototypes preserve the original structural connectivity.

should preserve both the shape and the structural connectivity

of the original bundle. Structural connectivity is computed as

the density of the streamlines/prototypes extremities onto the

grey matter surface. When using the prototypes, we also take

into account their weights. We use kernel density estimation

with a Gaussian kernel.

Remark: Performing the PSS in each fascicle indepen-

dently allows us to distribute the computations to different pro-

cessors, reducing therefore the computational time. Moreover,

it also decreases the chance to select as prototype a streamline

which might be considered an outlier. This is explained in

Fig.5 where every dot represents a streamline of a bundle

modelled as weighted current. We oversimplify this space

assuming it is simply R
2. In this space, it is likely that

a tractography bundle has a multi-modal distribution, where

every mode is a fascicle. If we wanted to approximate the

whole bundle with a single prototype, it would be the most

parallel streamline to the average of the bundle. In Fig.5, we

would choose the streamline represented by the green cross.

This fiber is far from almost all the other streamlines and

it could be considered as an outlier. Instead, if we applied

the same selection process in each fascicle independently,

we would obtain the three prototypes highlighted in red.

These streamlines are more representative than the green fiber

and they better approximate the bundle. Obviously, an actual

fascicle does not lie in a 2D space and therefore we may need

more than one prototype to explain its variability.

V. EXPERIMENTS AND RESULTS

In this section, we first describe the dataset used in the

following experiments and some technical details about the

implementation of the proposed algorithm. Then, we present

the approximation of two probabilistic bundles and we show

that their structural connectivity is similar to the one of the

original bundles. Furthermore, we evaluate from a qualitative

point of view how a variation in the parameters of the

algorithm affects the approximation of a deterministic bun-

dle. Eventually, we assess the effectiveness of our algorithm

showing that the registration between two approximated fiber

Fig. 5. Visual explanation of the bundle subdivision into fascicles (modes).
Dots and crosses represent the streamlines of a fiber bundle in the space
of weighted currents. The green cross is the most similar streamline to the
average of the bundle. It is far from almost all the other streamlines and it
could be considered as an outlier. The three circles represent the fascicles
(modes) composed by similar fibers. The red crosses are the prototypes of the
fascicles considered independently. These fibers are more representative than
the green cross and they better approximate the fiber bundle.

bundles is definitely faster than using the original bundles for

the same registration accuracy.

A. Materials

We test the proposed approximation scheme on 25 subjects.

Diffusion-weighted (DW) scans are acquired with sequences

of 50 directions with a B-factor of 1000 and a voxel size of

2x2x2 mm3. We use the Spherical Deconvolution Transform

(SDT) model [42] to estimate the local underlying orientation

distribution function (ODF). Whole brain connectivity is then

inferred within an anatomy-based tractography mask [24]

using both a deterministic (1 seed per voxel) and a proba-

bilistic (8 seeds per voxel) tractography algorithm available in

BrainVISA/Connectomist-2.0 [43]. In this paper, we consider

three distinct fiber bundles connecting the left hemisphere of

the cortical surface to the left thalamus, putamen and caudate

respectively. We extract them from both the deterministic and

probabilistic whole brain tractography as explained in [44].

All bundles also include the commissural fibers which are

truncated at the inter-hemispheric plane. The other streamlines

are cut at the intersection with their respective sub-cortical

structure and at the border between white and gray matter

of the cortex. Sub-cortical structures are segmented with FSL

[45] from 3D T1-weighted images (voxel size: 1x1x1 mm3)

and we merge the segmentations of nucleus accumbens and

caudate in order to consider them as a single structure. The

3D meshes are created using the marching cubes algorithm

of BrainVISA v4.4.0. The cortical surface is segmented using

FreeSurfer v5.3 [46]. More information about acquisition and

preprocessing of both T1-w and DW images can be found in

[44].

B. Numerical aspects

The parameters needed to be fixed by the user are the

bandwidths of the three kernels of weighted currents λg , λa

and λb and the approximation level γ. In the following, λg

refers to the kernel of currents, λa to the end-point on the

nuclei and λb to the end-point on the cortical surface.
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Fig. 6. Weighted prototype approximations of two probabilistic bundles: a cortico-putamen and a cortico-thalamus. As it is possible to notice, our approximation
alters neither the global shape of the bundle nor the densities of the endpoints onto the cortical surface. We use: γ=0.13, λg=7mm, λa=5mm and λb=10mm.

All experiments shown in this paper are computed on a Intel

Xeon, 8 cores, CPU E5-1620, 3.60 GHz with a memory of

16Gb and a graphic card NVIDIA Quadro K4000.

The computational times for the approximations of the fiber

bundles shown in Fig.6 and in Fig.8, composed of 80.000 and

35.674 streamlines, were of 150 and 19 minutes respectively.

C. Weighted prototypes representation

We present in Fig.6 the weighted prototype approximations

of two probabilistic bundles using γ= 0.13, λg=7mm, λa=5mm

and λb=10mm. The proposed representation preserves the

global shape of the bundle and it approximates thoroughly

all the fascicles. We also show the densities of the endpoints

(i.e. structural connectivity) on the cortical surface computed

using either the streamlines of the original bundles or the

weighted prototypes. The two densities are very similar from

a qualitative point of view and the Kolmogorov-Smirnov test

fails to show statistically significant differences between them

at the 5% level. Probability densities are computed using

Gaussian kernels, taking into account the weights of the

prototypes for the proposed approximation. Furthermore, we

use the same parameters to approximate all the bundles of

our data-set (75 deterministic and 75 probabilistic) and in no

case the density of the endpoints is statistically significantly

different from the one of the original bundle at the 5% level.

The average compression ratios 100(1- K/N), where N is

the number of streamlines of the original bundles and K
is the number of prototypes, are shown in Table I and II

for the deterministic and probabilistic bundles respectively. In

Fig.7, we also show the evolution of the average compression

ratio and number of prototypes for different approximation

levels. These results show that our algorithm leads to a much

more compact representation than the original bundle while

preserving the overall structural connectivity.

D. Qualitative evaluation of the parameters influence

In Fig.8 we evaluate the influence of the parameters

of our algorithm on the approximation of a deterministic

TABLE I
AVERAGE COMPRESSION RATIO (%) OF ALL THE BUNDLES OBTAINED

FROM THE DETERMINISTIC TRACTOGRAPHY ALGORITHM

Deterministic

Bundle Cortex-caudate Cortex-putamen Cortex-thalamus

N (Streamlines) 17079±4881 28056±5247 28371±6806

K (Prototypes) 344±58 409±55 341±87

Compression 97.85 % 98.49 % 98,77 %

TABLE II
AVERAGE COMPRESSION RATIO (%) OF ALL THE BUNDLES OBTAINED

FROM THE PROBABILISTIC TRACTOGRAPHY ALGORITHM

Probabilistic

Bundle Cortex-caudate Cortex-putamen Cortex-thalamus

N (Streamlines) 75389±4646 78125±2223 68640±8568

K (Prototypes) 1182±358 1411±393 1000±319

Compression 98,41 % 98,19 % 98,54 %

Fig. 7. Evolution of the average number of prototypes and compression
ratio at different approximation levels for 5 deterministic and 5 probabilistic
cortico-putamen bundles. Bars represent one standard deviation.

cortico-putamen bundle. In the first row we employ λg=5mm,

λa=4mm, λb=6mm and in the second row λg=7mm, λa=5mm,

λb=10mm. Every column corresponds to a different approx-
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Fig. 8. Weighted prototype representations (in red) at different approximation levels of a deterministic cortico-putamen bundle (in blue). Each row is based
on a different set of kernel bandwidths. The letters N and K refer respectively to the number of streamlines of the bundle and to the number of prototypes.
The compression ratios are indicated in brackets.

Fig. 9. Results of the fascicles detection step applied to the bundle shown in
Fig.8 using the two sets of kernel bandwidths. The number of fascicles are
respectively: 65 (left) and 35 (right). Colours are chosen randomly.

imation level. It can be noticed that at γ=0.05 and γ=0.13

all fascicles are well approximated, whatever the set of pa-

rameters. At γ=0.25 and higher values of γ (not shown here)

only the denser parts of the fascicles are well approximated.

Moreover, the results based on the first row use almost twice

the prototypes than in the second row. This is expected

since the bandwidths of the kernels are smaller and therefore

the definition of similarity between two streamlines is more

stringent. Thus, for a given γ, one needs more prototypes to

approximate the same number of streamlines. Furthermore,

this also influences the number/size of the fascicles, as shown

in Fig.9. The fascicles obtained with the first set of parameters

are smaller in size and greater in number than the ones

obtained using the second set of parameters.

E. Registration-based evaluation of the algorithm

Here we evaluate the impact of the proposed approxima-

tion scheme on the quality of a registration between two

deterministic cortico-putamen bundles of different subjects.

We use the diffeomorphic transformation implemented in the

software Deformetrica (www.deformetrica.org). It is based on

a control points formulation [35] of the Large Deformation

Diffeomorphic Metric Mapping (LDDMM) framework [47].

In the following experiments, we use a diffeomorphic kernel

bandwidth equal to 10mm and 1309 control points. The source

bundle BS is the one shown in Fig.8. First, we approximate

both BS and the target bundle BT , composed of 35674

and 25916 streamlines respectively, at different approximation

levels using λg=7mm, λa=5mm, λb=10mm. Then, for each

level, we register the approximation of BS onto the one

of BT . After that, we apply the obtained deformation to

the original bundle BS and we compute the residual error

between the transformed original source bundle φ(BS) and

the original target bundle BT : ||φ(BS) − BT ||
2
W∗

in the

framework of weighted currents. Ideally, we would compare

this residual error with the one resulting from the registration

of the original fiber bundles. Unfortunately, the computational

time would be too long (see Table III). Thus, we decide to

register smaller sub-samples of the original fiber bundles and

then to use the resulting residual errors for comparison. In

Fig.10, we apply two different deformations to the original

source bundle. The first one results from the registration of

the prototype approximations with γ=0.13. The second one

is instead obtained by matching the sub-samples of 5000

streamlines of the original bundles. It is possible to notice

that the results look very similar. This is confirmed in Table III

where we show that the difference between their residual errors

is very small. We can conclude that the registration based

on the approximation at γ=0.13 is as accurate as using the

sub-sample of 5000 streamlines but 93 times faster! We also

present the results for other approximation levels. Compared

to γ=0.13, the other registrations are either less accurate or

slower and with a similar accuracy.

Remark: It is important to highlight that the proposed

approximation scheme is general and that it could have been

tested with other registration approaches (i.e. affine transfor-

mation [13], [21], [48]). We use the LDDMM framework as

one possible example. We expect similar results with other

registration methods.

www.deformetrica.org
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Fig. 10. On the left: registration between the green source bundle and the red target bundle approximated with weighted prototypes. On the right top:
original fiber bundles. On the right bottom: deformed original fiber bundle. The deformation applied on the left results from the registration of the prototype
approximations with γ=0.13. The deformation applied on the right results from the matching of the sub-samples of 5000 streamlines of the original bundles.
Black arrows highlight the areas where the alignment is more noticeable.

TABLE III
REGISTRATION ERROR AND COMPUTATIONAL TIME USING DIFFERENT

APPROXIMATION LEVELS AND SAMPLES OF THE ORIGINAL BUNDLES.

Registration Error Computational Time

γ=0.40 1.75e+09 2h 39min

γ=0.25 1.42e+09 4h 34min

γ=0.13 9.88e+08 5h 51min

γ=0.05 9.79e+08 18h 35min

1000 streamlines 9.96e+08 23h 12min

5000 streamlines 9.94e+08 547h 32min

8000 streamlines - ∼ 1120h

15000 streamlines - ∼ 4484h

30000 streamlines - ∞

VI. DISCUSSION AND CONCLUSIONS

We presented an algorithm to approximate a fiber bun-

dle with a small and scattered set of weighted streamlines

prototypes. We tested it on 150 bundles resulting from both

deterministic and probabilistic tractography algorithms. The

number of prototypes was on average 2% of the number of

streamlines of the original bundles. We showed that such a

parsimonious representation preserves the shape of the bundles

and it can be used to reconstruct their original structural

connectivity, for sufficiently small approximation levels (γ).

It is interesting to notice that the density of streamlines on

grey matter surfaces could be also stored in a connectivity

matrix. This would provide an efficient encoding of the

structural connectivity but it would discard the trajectory (i.e.

geometry) of the streamlines. Moreover, it would also require

the definition of a parcellation scheme for grey matter surfaces.

This might be a tricky task since, to date, there is still not

a globally accepted parcellation of the grey matter in the

scientific community. On the contrary, our approach could be

used to drive an adapted parcellation in future works.

The streamlines considered in this paper have been truncated

at the intersection between gray and white matter which is an

area usually characterised by a low Signal to Noise Ratio. This

means that the estimates of the end-points of the streamlines

are not very robust. To account for this uncertainty, we

use Gaussian kernels for measuring the dissimilarity between

two streamlines. Theoretically, the greater the uncertainty,

the greater the bandwidths of the kernels. In the proposed

algorithm, these bandwidths (i.e. λa and λb) are considered

as parameters fixed by the user. Their values are chosen by

looking at how much the streamlines fan out when approaching

to the boundary between white and grey matter. Streamlines

deviate more when they are close to the cortex than to the sub-

cortical nuclei, which explains why λb is always greater than

λa in our experiments. It would be of interest to automatically

estimate these parameters taking into consideration the type

of bundle, the SNR of the diffusion image, the tractography

algorithm and the diffusion model.

Another parameter fixed at the beginning of the algorithm

is the approximation level γ. It defines the stopping criteria

and the value (1− γ) is the minimal percentage of the norm

of the fascicle explained by the prototypes. In fact, thanks to

the triangle inequality, we can rewrite the stopping criteria ob-

taining (1−γ)||F ||W∗
≤ ||

∑K
k=1 τkPk||W∗

≤ (1+γ)||F ||W∗
.

This means that, using γ=0.13, the norm of the prototypes will

be at least 87% of the norm of the fascicle at the end of the

algorithm. Furthermore, we noticed that between γ=0.5 and

γ=0.01 the number of prototypes grows exponentially (see

Fig.7). The first prototypes to be estimated approximate the

parts of the fascicle with an higher density of streamlines (i.e.

greater redundancy). Thus, their weights have a great value and

few prototypes can explain a considerable percentage of the

norm of the fascicle. Instead, between γ=0.1 and γ=0.01, most

of the streamlines have already been approximated and every

new prototype can explain only a few of the remaining fibers.

We found that a value of γ=0.13 results in a parsimonious

representation which exhaustively approximates all the fasci-
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cles. An interesting improvement would be to automatically

estimate the value of γ taking into consideration both the

approximation error and the number of prototypes.

The proposed algorithm does not take into account any mi-

crostructure measurement such as FA (Fractional Anisotropy).

This means that there is no certainty as to whether the

approximation would not change the microstructural properties

of a bundle. A possible solution would be to augment the

framework of weighted currents with a “functional signal”

describing the microstructure architecture of the bundle in the

same spirit of [49]. Based on this new computational model,

we could use analyses such as “tractometry” [50] to investigate

the quality of the approximation with respect to microstructure

measurements such as FA. In this work, we focused on the

ability of the proposed method to preserve the fiber density in

specific ROIs, which encodes the structural connectivity.

We showed that our representation can approximate not only

the central and denser mass of a bundle, as with currents, but

also its smaller fascicles and extremities. We demonstrated

its usefulness by registering two approximated bundles where

we correctly matched the entire pathway of the weighted

prototypes, including their extremities (see Fig.10). Further-

more, bundle registrations based on our approximation scheme

present a lower computational time and memory footprint than

using the original fiber bundles. This makes thus possible

population studies, like the atlas construction [51], based

on multiple template-to-subject non-linear registrations, which

would be very time-consuming - or even unfeasible - with the

original fiber bundles.

APPENDIX A

INTERPRETATION OF τ

We show here that the weight τ of a prototype P is related

to the number of fibers approximated by P . Given a bundle B
composed of 3 fibers: B =

∑3
i=1 Si we want to approximate

it with one prototype P . Let assume that S1 is the prototype

P (the reasoning does not change modifying the prototype),

the value of its weight τ is 1 +
||S2||

2
W∗

||P ||2
W∗

cos(P, S2)W∗ +

||S3||
2
W∗

‖P‖2
W∗

cos(P, S3)W∗ . This means that if S1 is parallel to the

other fibers and their norms are similar, the value of τ will be

about 3. Instead, if either S2 or S3 is orthogonal to S1, the

prototype will not approximate that fiber and the weight will

be smaller than 3. This shows that τ is related to the number

of fibers approximated by the prototype or, more precisely,

to the “amount of similarity” between the prototype and the

other fibers of the bundle. When dealing with more prototypes,

every τ also depends on the inner product between prototypes.

Since we project at each iteration all the streamlines onto the

orthogonal space of the last estimated prototype, the inner

product between prototypes should be small.

APPENDIX B

MODULARITY BASED ON WEIGHTED CURRENTS

The definition of modularity in [39] is:

Q =

NC
∑

c=1

[

Wc

m
−

(

Sc

2m

)2
]

(4)

where NC is the number of modules (fascicles),

Wc=1/2‖
∑

i∈c Si‖
2
W∗ is the sum of the weights (inner

products) of all the edges joining only the vertices (fibers)

of module c, Sc=
∑

i∈c

∑N
j=1 〈Si, Sj〉W∗ is the sum of the

weights of the edges between the vertices in c and the N
vertices in the graph (bundle) and m=1/2‖

∑N
i=1 Si‖

2
W∗

is the sum of the weights of all edges in the graph.

Substituting these equations in Eq.4 and noting that

m is a constant term and that it can be rewritten as

2m=‖
∑

i∈c Si‖
2
W∗+‖

∑

j /∈c Sj‖
2
W∗+2

∑

i∈c

∑

j /∈c 〈Si, Sj〉W∗ ,

one obtains Eq.3.
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