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Parsimonious path openings and closings
Vincent Morard, Petr Dokládal and Etienne Decencière

Abstract—Path openings and closings are morphological tools
used to preserve long, thin and tortuous structures in gray level
images. They explore all paths from a defined class, and filter
them with a length criterion. However, most paths are redundant,
making the process generally slow.

Parsimonious path openings and closings are introduced in this
paper to solve this problem. These operators only consider a
subset of the paths considered by classical path openings, thus
achieving a substantial speed-up, while obtaining similar results.
Moreover, a recently introduced one dimensional (1-D) opening
algorithm is applied along each selected path. Its complexity is
linear with respect to the number of pixels, independent of the
size of the opening. Furthermore, it is fast for any input data
accuracy (integer or floating point) and works in stream.

Parsimonious path openings are also extended to incomplete
paths, i.e. paths containing gaps. Noise-corrupted paths can thus
be processed with the same approach and complexity.

These parsimonious operators achieve a several orders of
magnitude speed-up. Examples are shown for incomplete path
openings, where computing times are brought from minutes to
tens of milliseconds, while obtaining similar results.

Index Terms—Path operators, curvilinear structures, mathe-
matical morphology, complete and incomplete paths.

I. INTRODUCTION

Thin structures extraction is a non-trivial task in image

processing. It requires adapted tools, used in a great range

of applications, from the biomedical field to the industrial

domain. Blood vessels extraction from eye fundus images [1],

[2], microglia tree-like form in confocal microscope images

[3], guide-wire segmentation in X-ray fluoroscopy [4], road

detection from remote sensing images [5] or automated cracks

detection from metallic pieces for non-destructive testing [6],

[7] are some examples.

In the literature, the typical approach to enhance thin

structures is to compute the supremum of openings with linear

structuring elements (SE) in many orientations [8], [9]. The

same strategy can be used with a bank of directional Gabor

filters or difference of Gaussians filters [10]. However, tortuous

structures are difficult to detect with this kind of approach.

Using adaptive mathematical morphology methods improves

the detection. Tankyevych et al. [11] introduced hessian based

filters to detect curvilinear lines. In [7], the SE are able to adapt

their shapes to enhance very thin cracks of any tortuosity. Area

openings, introduced by Vincent [12], are considered as the

first attribute openings, later generalized by Breen and Jones

to obtain attribute thinnings [13]. Indeed, using non-increasing

criteria to build attribute thinnings yields interesting filters to

detect thin structures. For instance, the inertia of the connected

components, weighted by their area, gives an interesting shape

descriptor for elongated structures [14], [15]. More recently,

thinnings based on geodesic attributes have been shown to

efficiently characterize structures according to their length,

tortuosity or elongation [6], [16]. Finally, the so-called path

openings (PO) [17]–[19] use underlying directed acyclic graph

to measure the path length.

All these methods have the same drawback: their lack

of robustness with respect to noise. Indeed, thin elongated

structures we are looking for can be easily corrupted by noise,

resulting in disconnected paths. Heijmans et al. [19] have

proposed incomplete path openings, able to deal with gaps in

paths. Later, Talbot and Appleton [20] proposed an efficient

algorithm to compute both complete and incomplete path

openings. It has logarithmic complexity w.r.t. the length of the

paths and linear w.r.t. the width of the gaps, resulting in long

computation timings, unsuitable for time-critical applications.

A recent work by Cokelaer et al. [21] presents a more effi-

cient, robust to noise version of path operators, unfortunately,

computing time is still not compatible with high-throughput

computing.

A good robustness to noise also offers the semi-local or

global approach proposed in Rouchdy and Cohen [3] or

Bismuth et al. [4]. Both exploit the spatial density of locally

shortest paths designed to converge to thin, curvilinear image

structures to enhance. Based on this ideas, several techniques

can be used to enhance or detect structures: voting [3] and

voting, pruning or cost minimization in the polygonal path

image [4].

The approach developed in this paper is motivated by the

need to detect thin, long, tortuous and possibly noisy structures

in a computationally demanding framework. The methods

from the state of the art that fulfill the best these requirements

are indeed path openings with complete or incomplete paths

[20]. Here, we propose the Parsimonious path opening (PPO) a

new fast operator for detecting the same set of structures, using

complete or incomplete paths. PPO only explore a relevant

subset of all paths in the image, to reduce the computation

time by several orders of magnitude. Hence, the results of

PPO are not exactly the same as classical path openings but

they are fast, accurate and robust to noise.

This paper is organized as follows. We first recall the

theory of classical path openings (Sec. II). Then, we describe

the extraction of the relevant subset of paths in the image

(Sec. III), the filtering strategies available (Sec. IV), the

practical considerations (Sec. V) and the operator accuracy

(Sec. VI). Finally, we present some results through an appli-

cation: the detection of cracks from road pavement images.

We also study the algorithmic complexity and we propose a

timing comparison with classical path openings (Sec. VII).

II. BASIC NOTIONS ON PATH OPENINGS

Path openings [18], [19] were introduced to offer a higher

flexibility compared to the supremum of linear openings. We

briefly recall here their definition and characteristics.
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(a) (b) (c) (d)

Fig. 1. Example of commonly used graphs: (a) paths having an orientation from south to north (S-N). (b) SW-NE paths, (c) W-E paths and (d) NW-SE
paths
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Fig. 2. Path openings computation: (a) input binary image, (b) upstream distance map λ+, (c) downstream distance map λ−, and (d) maximal path length
map λ.

A. Connectivity graph and maximal paths

A two-dimensional binary image X can be described as a

subset of a rectangular sub-domain D of Z2. We equip D with

a directed acyclic graph G : D → P(D), where P(D) is the

power set of D. For any two points x and y of D, we say that

x is linked to y on G if, and only if, y ∈ G(x). G− is the

inverse of G, defined by G− : D → P(D) and for all x in

D, y ∈ G−(x) (i.e. x is linked to y on G−) if, and only if,

x ∈ G(y) (i.e. y is linked to x on G). GX is the subgraph of

G obtained when the graph is restricted to X .

Fig. 1 illustrates some classical graphs used in practice for

G.

Let us introduce now the definition of a path on GX :

Definition 1

A sequence π = (x1, x2, . . . , xn), n ∈ N, of points is a path

of GX if, and only if, ∀i ∈ N, 1 ≤ i ≤ n−1, xi+1 ∈ GX(xi)
(xi is linked to xi+1 on GX ). The path length is equal to n.

Points x1 and xn are its starting and end points. The set of all

paths of GX is denoted ΠGX
.

On each point x of D we define λGX
(x) (or λ(x), when

there is no ambiguity) as the maximal length of all the paths

of ΠGX
going through x. If x does not belong to X , then

λ(x) is equal to zero. Given that the considered graphs are

finite, and without loops, the values of λ are finite.

B. Binary path opening

Map λ can be efficiently computed using a scan of GX ,

followed by a scan of G−
X : let λ+ (reps. λ−) be the map

which gives, for each point x of D, the maximal length of

the paths of ΠGX
(resp. ΠG−

X
) ending at x. λ+ and λ− are

efficiently computed thanks to the following equations:

λ+(x) = max
y∈GX(x)

λ+(y) + 1, (1)

λ−(x) = max
y∈G−

X
(x)

λ−(y) + 1. (2)

An example of λ+ and λ− is shown in Fig. 2 (b and c). Finally,

λ is simply computed as follows, for all x ∈ D:

λ(x) = λ+(x) + λ−(x)− 1. (3)

For a given pixel x, λ(x) gives the length of the longest paths

going through it. If we remove from X all the points where λ

is smaller than a given constant L, we obtain an operator which

is idempotent, increasing and anti-extensive (see Heijmans et

al. [19] for the details), therefore, it is an opening, called a

path opening (PO) of size L, and written ΓPO
L (X):

ΓPO
L (X) = {x ∈ X|λGX

(x) ≥ L}. (4)

Such an opening, when based on any of the graphs illus-

trated in Fig. 1, is by design not rotation invariant, an often

welcome property. In order to improve on this aspect, one

can use the fact that the supremum of openings is still an

opening [22]: four openings are in practice computed, based

on the four graphs depicted in Fig. 1, and their supremum is

computed.

In the following ΓPO
L will denote the path opening of size

L based on this supremum.

C. Gray level path openings

Let f : D → V be a gray level image, where V is a finite

subset of R, such as {0, 1, . . . , 255}. Finally, ∞V and −∞V

respectively denote the maximal and minimal values of V .
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Let Xh = {x | f(x) ≥ h} be the upper level set obtained

by thresholding f at level h. Given that the binary opening

ΓPO
L is increasing, it commutes with thresholding. Thence, the

extension to gray level images is direct:

∀x ∈ D, γPO
L (f)(x) = ∨{h ∈ V | x ∈ ΓPO

L (Xh(f))}. (5)

Using equation 5 to compute gray level path openings is

easy, but it is never used in practice because it would be

much too slow. In [23], an efficient update of λ+ and λ−

is proposed, which achieves a large speed up factor. This

update is improved in Luengo Hendriks [24] to be able to

easily work with n-D images. The same paper [24] also

proposes a constraint on the connectivity to prevent paths

from zigzagging and overestimating the length of diagonally

oriented segments. Later, Cokelaer et al [21] use a different

way of making the path opening less sensitive to noise with

n-D images. These three papers bring notable improvements

on path opening timings, but the algorithms are still too slow

for many applications. Parsimonious path operators, presented

in the following sections, address this issue.

In what follows, we present and illustrate this work with

the extraction of bright structures in an image, with no loss

of generality. Path closings (resp. parsimonious path closings)

are computed using path openings (resp. parsimonious path

openings) on the inverted image.

III. PARSIMONIOUS SET OF PATHS

The principal idea behind the notion of parsimonious paths

is to work with a restricted set of paths instead of exploring

all of them. In fact, the set of paths will be so sparse, that

most points in the image will not be crossed by any of them.

In the original definition of path openings, the number of

paths grows exponentially with the size of the image. However,

only few out of these paths bring relevant information. In the

following, we deal with the problem of building a relevant

subset of paths.

For the extraction of bright structures, the relevant paths

have to follow the brightest structures of the image. Since this

will usually leave other pixels devoided of a path, we will

speak about parsimonious path openings.

Three strategies are proposed in this section to select a

relevant subset of paths. The last one is a generalization of

the first two. Hereafter, D, the definition domain or support

of f , will be a rectangular subset of Z
2, and G will be a

directed acyclic graph.

A. Locally maximal paths

The strategy called locally maximal paths (LMP) performs

a local search for bright structures. Definition 1 relative to a

path is extended as follows:

Definition 2

πLMP = (x1, . . . xn) is a locally maximal path if, and only

if, the starting point of the path belongs to a boundary of D

and if, ∀xi ∈ πLMP, 0 ≤ i ≤ n, we have:

xi+1 ∈ argmax
xj∈G(xi)

{f(xj)}. (6)

Equation 6 is used to iteratively construct a path from a

starting point. The path ends when there is no successor to

xn. We note that several successors of a pixel xi may have the

same gray-scale value. In that case, the principal orientation is

preserved by selecting the central pixel defined by the graph.

Pixels from the boundary of D are used as starting points

for each selected graph. Thus, we define ΠLMP
f :

Definition 3

The set ΠLMP
f = {πLMP

1 , . . . , πLMP
p }, is the set of locally

maximal paths of f .

Fig. 4(b) proposes an illustration of this set. Pixels that belong

to at least one path of the set appear as white ; other pixels are

black. The original image shows a molecule of DNA observed

with an electron microscope [18] (Fig. 4(a)). We note that the

number of paths in the image is very low in comparison with

the number of paths considered by path openings. We also

observe that most pixels are black (no path crossing them).

This method is not only sparse with respect to paths, but also

with respect to pixels.

With this strategy, the search for the next pixel of a path is

only local and the required time is very low. However, such

paths are not very robust to noise. For instance, impulsive

noise can disturb and deviate a path from a thin structure. To

improve noise robustness, we make a global search for the

paths with a second strategy, namely globally maximal paths

(GMP).

B. Globally maximal paths

To build a path, we use graph theory to search for the

highest path between two pixels of the image. To explain the

notion of highest path, let us see the image as a topographical

surface where high (resp. low) gray-scale values correspond

to high (resp. low) altitudes. A globally maximal path (GMP)

is a path between two points such that the average gray-

scale value is the highest one among all available paths.

The Dijkstra algorithm allows such search. However, given

that the graph is directed and acyclic, specific algorithms

can be used to provide fast algorithms. They are part of

dynamic programming approaches and known as longest path

algorithms [25]–[28]. The definition of a globally maximal

path is given as follows:

Definition 4

πGMP = (x1, . . . xn) is a globally maximal path if, and

only if, the starting and end points of the path belong to a

boundary of D and if we have:

πGMP ∈ argmax
π∈ΠG

(

1

card(π)

∑

xi∈π

f(xi)

)

. (7)

For a given point from the boundary of D, several globally

maximal paths can be found. In practice, we select the path that

preserves the principal orientation of the graph. Computing a

GMP from all boundary pixels of the support D and for every

considered graph, we obtain ΠGMP
f :
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Definition 5

ΠGMP
f = {πGMP

1 , . . . , πGMP
p }, is the set of globally maximal

paths of f .

This set is depicted on Fig. 4(g). We observe that the

paths tend to go straight towards a bright structure, and then

they follow it as far as they can. It is a global approach,

robust to noise. With this strategy, the size of zones with no

information (no path going through them) is larger than with

locally maximal paths. We call these zones blind regions, since

structures localized in these regions are not analyzed. With

globally maximal paths, large and bright structures attract all

paths; short and a bright structures found in their vicinity might

not be seen.

GMP need more computation time than LMP and the size

of blind regions is larger. Nevertheless, the robustness w.r.t

noise is much higher than with LMP. Below we introduce a

new general formalism that allows for intermediate strategies.

We call this generalization the β-maximal paths (βMP).

C. β-maximal paths

The idea of βMP is to localize the globally maximal paths

by subdividing the image support. With a given graph, say

south to north (Fig. 1(a)), the image is divided into several

horizontal stripes β pixels height, as illustrated in Fig. 3.

1

2

3

4

n

Fig. 3. Construction of β maximal paths with the concatenation of globally
maximal paths.

From a starting point x1 localized on the bottom boundary

of the support D, we compute πGMP = (x1, . . . , xβ) on the

first stripe. Then, xβ is the new starting point and we iterate

this process until there is no successor to xn with the graph

G.

Definition 6

πβMP = (x1, . . . , xn) is a β maximal path if, and only if,

the starting point of the path belongs to a boundary of D and

if πβMP is the concatenation of globally maximal paths πGMP

on stripes of size β.

Computing βMP from all boundary pixels of the support D

and for every graph G, we get ΠβMP
f :

Definition 7

(a) Input image (500×160 pixels)

(b) ΠLMP: locally maximal paths (β = 1)

(c) Π5MP: β maximal paths (β = 5)

(d) Π10MP: β maximal paths (β = 10)

(e) Π30MP: β maximal paths (β = 30)

(f) Π50MP: β maximal paths (β = 50)

(g) ΠGMP: global maximal paths (β = ∞)

Fig. 4. Illustration of the sets of parsimonious paths on a given image (a).
Pixels in white belong to at least one path of the set; other pixels appear in
black. The graphs used are defined in Fig. 1.
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ΠβMP
f = {πβMP

1 , . . . , πβMP
p }, is the set of all the β maximal

paths of f .

By definition, β maximal paths generalize previous methods:

LMP are obtained with β=1 and GMP with β=∞. This method

unifies the path extraction strategy and is used to compute the

set of paths of Fig. 4. Thus, we control the trade-off between

noise robustness and blind regions size. The choice of β is

application dependent. On a noisy image, a high value for β

is preferable. On the contrary, if the signal to noise ratio is

high, a small value will reduce the size of blind regions.

Now that we have proposed a general strategy to extract

parsimonious paths, below we explain how to:

• filter an image along each path;

• combine the results along each path to obtain a 2-D

operator.

IV. PATHS OPERATORS

We will see in this section how, from an operator working

on single paths, we can build an operator working on the whole

image.

A. General strategy

Recall that D is the support of function f , also written

spt(f), and Π = {πi} denotes a collection of paths of D.

The restriction of f to the path π, denoted by f/π , can be

considered as a one-dimensional signal. Furthermore, recall

that the set of values V is a finite subset of R.

Let ξf/π be the application of a 1-D operator ξ to f

restricted to π. Using ξ we obtain a result for each path πi of

Π. Notice that for any x belonging to the intersection of two

different paths πi and πj , one generally obtains ξf/πi
(x) 6=

ξf/πj
(x). Hence, we need a method to produce a single value.

Let spt(Π) denote the support of Π, i.e. the set of all

points of D which belong to at least one path of Π. The

illustrations of different sets of parsimonious paths given in

Fig. 4 correspond in fact to this domain. We can extend ξf/π
to spt(Π) by taking:

ξf(x) = ⊗
π∋x
π∈Π

ξ(f/π)(x), (8)

where ⊗ is a binary operator such as
∨

or
∧

(i.e. supremum

or infimum). In practice, the choice of the binary operator will

depend upon the desired properties of the resulting operator.

Several examples are described in the following sections.

We now have a result on all points belonging to at least one

path. However, Eq. 8 does not define ξf(x), for x outside the

support of Π.

The β-maximal strategy constrains the paths to go through

the brightest structures of the image (the support of the paths

spt(Π)). These are usually the structures of interest. Even

though one may focus only on these objects, e.g. for measuring

purposes, having a result for each pixel of the image support

(spt(f)) can be useful, e.g. for filtering or preprocessing

purposes.

The first and simpler strategy consists of using a constant

value outside spt(Π), e.g. the minimum or maximum of V , or

even the original f . Another strategy is using a morphological

reconstruction under/above f in order to propagate the results

to the entire D. We will come back to this strategy in

section V-D.

B. Parsimonious path openings

The first step to obtaining parsimonious path openings

(PPO) is the choice of a convenient ξ. We naturally take the

1-D opening of size L, γL and use
∨

in Eq. 8 to compute a

value for each x ∈ spt(Π):

γΠ
L (f)(x) =











∨

π∋x
π∈Π

γL(f/π)(x), x ∈ spt(Π)

−∞V otherwise

(9)

we pad D outside spt(Π) by −∞V to ensure the anti-

extensiveness of the operator.

Based on the fact that γΠ
L is built from openings using

supremums, and that outside spt(Π) the result is set to the

minimal value of V , it can be demonstrated that this operator

is an opening.

Note that if Π covers all the nodes of the graph, then

spt(Π)=D and no padding is necessary.

Concerning path closings, as in the classical path opening

definition by Heijmans et al. [19], they can be obtained by

duality: ϕ(f)=−γ(−f). However it should be noted that Πf

and Π−f are not the same. Whereas Πf selects the bright

structures Π−f selects the dark ones.

C. Interlude: why parsimonious path openings are openings?

The set of paths Π is a function of the image f , written Πf .

So, what can we say about γ
Πf

L ? It can be shown that although

anti-extensivity remains a valid property, increasingness and

idempotence are lost. Therefore this more general operator is

not an opening.

From a practical point of view, to avoid an unexpected

behavior of serially composed operators, once Πf is defined, it

should remain constant. For example, for building granulome-

tries [29] (see Section VI later) it is necessary to use the same

Π in all stages. Similarly, when computing alternate sequential

filters, it is logical to compute once Πf and Π−f and use

them, respectively, in computing all subsequent openings and

closings.

Hence, provided the collection of extracted paths Πf re-

mains constant, PPO are anti-extensive, increasing and idem-

potent operators. Consequently, we can conclude that PPO are

openings.

D. Parsimonious Incomplete path openings (PIPO)

In presence of noise, long, thin structures are likely to

appear disconnected, implying an underestimation of their

length. See for example the result of a PPO in Fig. 5. Notice

that while the background texture has been filtered out, some

portions of the molecule are lost as well. We propose solutions

below.

Consider a signal disconnected by one “noisy” pixel (Fig. 6,

top). A path opening γL fails to detect a part of it (Fig. 6,
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(a) Input image (500×160 pixels) (b) PPO γΠ
L

L=50

Fig. 5. A molecule (a) on textured background. The PPO nicely filters background noise, but the contrast of some molecule sections is partially lost. The
graphs used are defined in Fig. 1.

Fig. 6. Complete and incomplete parsimonious path openings. From top to
bottom: input signal f . The opening γL(f), L=5 fails to detect a portion of
the signal due to noise. A closing ϕǫ(f) of size ǫ=2, followed by the opening,
γLϕǫ(f), detects correctly the entire structure. The infimum with the original
f ∧ γLϕǫ(f) is used to ensure the anti-extensiveness of the result.

middle, blue). To solve this problem, two strategies have been

proposed in the literature. In the following, ǫ > 0 is a general

parameter corresponding to the robustness with respect to

noise. Talbot and Appleton [20] introduced Incomplete Path

Openings (IPO), tolerating gaps (Fig. 6, middle, dashed red)

in the same way as rank max openings. For example, an IPO

of length 50 with ǫ = 1 may not have less than 49 pixels, and

no more than one missing pixel. Robust path operators (RPO),

introduced by Cokelaer et al. [21], tolerate gaps up to some

maximal allowable width. For example, a robust path [21] of

length 50 with ǫ = 1 may contain as few as 26 pixels, with

one-pixel gaps in between.

To achieve the same objective within our framework, we

propose to use a small closing ϕǫ of size ǫ to close the

gap, followed by an opening of size L, see Fig. 6 bottom,

dashed red. Therefore, ǫ is the noise tolerance parameter which

behaves similarly to that of robust paths. The 2-D operator

version is built by using the supremum:

ζΠL,ǫ(f)(x) =











∨

π∋x
π∈Π

γLϕǫ(f/π)(x), x ∈ spt(Π)

−∞V otherwise.

(10)

The original IPO verify the anti-extensivity of openings.

To obtain an anti-extensive result from Eq. 10 one can take

the infimum with the original image to obtain a parsimonious

incomplete path opening γΠ
L,ǫf = f∧ζΠL,ǫf (see Fig. 6 bottom,

blue).

V. PRACTICAL CONSIDERATIONS

The construction of PPO comprises two steps: path extrac-

tion and path processing. We give here some details on the

algorithms used to speed up both steps. Next, we introduce

a parsimony parameter and we allow the detection of thick

structures by assigning a value to all pixels of the resulting

image, by means of the morphological reconstruction.

A. Path extraction: efficient algorithm

1) Local maximal paths: The LMP strategy (Sec. III-A)

extracts paths from the input image with a local search, by

using the definition corresponding to Eq. 6. Thanks to the

locality, the LMP extraction is extremely efficient.

On the other hand, the extraction of β maximal paths by

using the definition corresponding to Eq. 7 is slow. Below,

we propose an efficient implementation using a fast, two-step

algorithm.

2) Globally maximal paths: The extraction of GMP is in

principle similar to the classical path opening on binary sets

(Sec. II-B). This method was first introduced by Schmitt [30]

to extract the longest path in a binary set, and extended later to

gray level images by Vincent and Jeulin [31] to detect fracture

lines in porous media or to extract correlogram tracks from

noisy sonar data [28].

Starting from the input image f we compute the upstream

λ+ and downstream λ− weighted distance maps with G and

G−, by extending equations 1 and 2:

λ+(x) = max
y∈G(x)

λ+(y) + f(x), (11)

λ−(x) = max
y∈G−(x)

λ−(y) + f(x). (12)

Then, we sum these two distance maps to get, for each pixel

of the image, the weighted length of the longest and brightest

path going through it:

λ(x) = λ−(x) + λ+(x). (13)

Finally, GMP are obtained by using the LMP search (Eq. 6),

on the map λ.

To obtain βMP, we divide the image into several, β-pixel

wide stripes oriented perpendicularly to the main direction of

the selected graph, and we compute GMP on each of these

stripes.
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(a) PO of size L=50 (b) IPO of size L=50 (ǫ=2)

(c) PPO of size L=50 (β=5) (d) PIPO of size L=50 (ǫ=2, β=5)

(e) RPO of size L=50 (f) RPO of size L=50 (ǫ=2)

Fig. 7. Comparison between path openings (first column) with parsimonious path openings with a reconstruction step (second column) for complete or
incomplete paths. The graphs used are defined in Fig. 1.

To conclude, the LMP extraction and the map λ are both

computed in O(1) per pixel. Consequently, GMP (and βMP)

are extracted with the same O(1) complexity per pixel as LMP.

Nonetheless, the execution time of GMP (and βMP) is longer

due to the time needed to compute λ.

B. Path filtering: efficient algorithm

The βMP strategy individualizes each path π of the set

ΠβMP. The image alongside a path, f/π , is a 1D signal. Using

the LMP strategy on the map λ allows to filter while a path

is being extracted. Efficient algorithms are available in the

literature for 1D openings or closings that run in one scan

of the signal in O(1) per pixel. The fastest algorithm for

1D openings is the one invented by Van Droogenbroeck and

Buckley [32]. However, it uses a histogram, consequently the

whole signal to be processed must be known in advance, and

the pixel values are limited to 8-bits. Instead, we propose

using another fast algorithm [33], [34], which offers the

following additional advantages: (i) it computes the output

signal progressively, each time a pixel is added to a path;

(ii) it can handle the signal borders in two different ways, by

padding with −∞V or with ∞V ; (iii) it can handle any input

data accuracy (integer or floating point) with no extra cost;

(iv) the complexity is independent of the size of the opening;

(v) it is fast and GPU compliant, as shown by Karas et al.

[35].

In the next section, a parsimony parameter k is introduced

to further reduce the computation time.

C. Parsimony parameter k

Recall that all paths start at the border of the image, one

path from each border point. As we see in Fig. 4, many

paths rapidly converge to follow the same structures, without

bringing any new information. Increasing β further reinforces

this phenomenon. The paths with close starting points are

likely to be attracted by the same structures, and do not bring

new information.

By reducing the number of starting points, the resulting set

of paths is considerably sparser without increasing much the

parsimony of the image support scan. We achieve this goal by

keeping only one starting point out of k, the parsimony pa-

rameter of our method. The total number of paths is therefore

divided by k, as well as the computing cost of the algorithm,

while the accuracy of the PPO is only slightly reduced (see

section VI for details).

D. Morphological reconstruction

PPO is a sparse operator and yields a thin representation of

objects. Should one need a thick detection, PPO results can be

reconstructed under the original image. Efficient implementa-

tions of the morphological reconstruction are available in the

literature [36], [37]. Their complexity is linear with respect to

the image size.

Fig. 7 illustrates the DNA molecule extraction from the

noisy background using parsimonious path openings followed

by a reconstruction to ease the comparison with classical path

openings and with robust path openings. Figs. 7(a), 7(c) and

7(e) compare PO, PPO and RPO with complete paths whereas

Figs. 7(b), 7(d) and 7(f) illustrate the results for incomplete
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paths with a tolerance ǫ of 2 pixels. Very similar results are

obtained using PPO with a significant reduction of the timings

(see Sec. VII-B).

Using incomplete paths improves the detection since thin

structures are reconnected. However, it also reconnects noisy

pixels, preserving some structures in the image background.

Thus, tuning the parameter ǫ is a trade-off between the size

of the gaps to fill and the level of noise.

In the following section, the accuracy of PPO with respect

to length measurements is studied.

VI. ACCURACY OF PPO

In order to evaluate the accuracy of PPO, we will apply

them to binary images containing segments of known length,

and compare the measured length distribution using PPO with

the theoretical one.

Size distributions are usually computed by a residual ap-

proach with a collection of increasing-size filters commonly

known as granulometry, introduced by Matheron [29], [38].

Let us us consider a binary image f , and a set of paths Πf

computed on f . The family of PPO {γΠ
L}L≥1 is a granulom-

etry. Note that we have dropped the f index on Π, as the set

of paths is computed once and for all, and then kept constant,

for reasons explained in section IV-C. The corresponding size

distribution is, for non-negative integers L:

SDL = Meas(γΠ
L − γΠ

L−1). (14)

In the present case, the measure Meas is the number of

connected components of the binary image. Eq. (14) measures

the length distribution.

PPO suffer from two types of error. The first one is the

anisotropy of the length measurement, also present in the

original PO. It comes from the discretization of the path on

the Z
2 grid. The second error is due to the parsimonious scan

of the support. The following text analyzes the phenomena at

the origin of these errors and their impact on the accuracy.

Let x be a measurement, and m the correct value. The

relative measure error is:

err =
x−m

m
. (15)

A positive err means overestimation, whereas a negative err

means underestimation.

In our case x and m are distributions (expressed as prob-

ability density functions or counts in case of histograms).

A number of measures exist to compare probability density

functions or histograms (see [39] for a review of most common

distances or divergences). However, none of these suits our

case for the following reasons: i) The metric behind the

majority of the distances considers the probability density

function as a vector in an orthogonal space. Nonetheless, the

histogram bins in our case are not orthogonal. ii) A distance is

always positive, which does not reflect the difference between

under- and over-estimation of a measure. iii) No distance

or metric is correlated to the usually used relative measure

error as in eq. 15. This means that for singleton distributions

(a) thick line segment

(b) thin line segment

Fig. 8. Relative error of measuring the length of a straight isolated line
segment with respect to its orientation. Segment length L = 80. (a) width
2px, (b) thin segment. Note: For thin segments the errors of PO and CPO
coincide.

(containing only one point) we would not obtain the same

value as with eq. 15.

Consequently, we define an equivalent of Eq. 15 for two

histograms X and M , with respective mean values equal

to X and M . We define the relative error of the measured

distribution X to the ground truth distribution M as:

err =
X −M

M
. (16)

This error evaluation has the following properties: The

difference X −M is insensitive to the standard deviation of

either distribution, that can be evaluated separately. It does not

require the histograms to be normalized nor aligned. X and

M can have different count sum and either X and M or both

can be scalars. If both are scalars then eq. 16 is equivalent to

eq. 15.

The first experiment evaluates the isotropy, see Fig. 8. It

reports the relative error of measuring the length of an isolated,

straight segment w.r.t. its orientation. It compares PPO to path

openings (PO) by Talbot and Appleton [20] and constrained

path openings (CPO) by Hendriks [24]. The segment is 80

pixels long, placed in the center of the image. Since the result

depends on the width, we report two cases: a two pixels thick

segment, Fig. 8(a), and a thin segment, Fig. 8(b). For both, all

PO, CPO and PPO provide a correct measure for orientations

multiple of 90◦. For other orientations various phenomena

occur and bring about different errors.

For diagonal orientations, PO suffer from a nonnegligible

error. In thick segments, when graph V3 is used, the PO

overestimate the length since the longest path zigzags around

the principal orientation. When graph V2 is used, or for thin

segments, the zigzagging effect does not occur. However, the

PO underestimate the length since it is only evaluated by

merely counting the number of pixels.
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(a) orientation: 45◦

(b) orientation: 55◦

Fig. 9. The length distribution of a population of straight, co-linear segments of constant length (L=80), oriented at 45◦ (top), and 55◦ (bottom), as measured
with the PPO, PPO+reconstruction vs. the Ground truth (left to right)

The error due to zigzagging has already been pointed out

by Hendriks and corrected by CPO [24] where the zigzagging

is limited by using a more complex graph. The CPO improve

the accuracy in thick objects. In thin objects, the CPO under-

estimate as well as the PO.

The PPO measure the length with a better accuracy than

that of the two previous methods. The PPO provide a correct

measure for integer multiples of 45◦, and in all other cases,

and regardless of the thickness, the error is upper-bounded by

10%. This represents one of the major advances brought by

PPO compared to the previous techniques.

The second experiment evaluates the error to measure

the length distribution on a population of co-linear straight

segments. We use a model of N=100, constant-length L=80,

equally-oriented segments, randomly (uniform distribution)

placed in the support without touching each other. The length

distribution M of the model is a Dirac impulse located at L

(Fig. 9, right). The length distribution X measured with PPO is

at left. Note that for 45◦ (Fig. 9, top left) the measure is exact,

for other orientations there is a bias towards shorter lengths

(e.g. 55◦, see the overestimated bin 10 at Fig. 9, bottom left).

The relative measure error w.r.t. the orientation (eq. 16) is

given in Fig. 10 (green curve). Again, the length distribution is

exact if the segments are oriented in a multiple of 45 degrees.

For other orientations the two mentioned errors occur: i) the

length is overestimated due to the discretization of the support,

ii) a few segments have been counted in short bins. This is

a direct consequence of the parsimony of the support scan.

Some segments are not entirely followed by any path. For

example, in Fig. 11 the segment in the middle is only partially

followed by the two dotted and dashed paths. These fragments

are filtered, and counted in short histogram bins.

This fragmentation can be attenuated if a morphological

reconstruction is used, as proposed in section V-D. In Fig. 11,

the middle segment is entirely reconstructed from its central

portion used as the marker. A PPO followed by a morpho-

logical reconstruction is a connected operator [40], and yields

more accurate results, see Fig. 9 middle, and Fig. 10 blue

curve.

The third experiment evaluates the relative error w.r.t. the

Fig. 10. The relative length-measurement error of a population of co-linear
segments with respect to the orientation.

Fig. 11. Occlusions bias the length measure. Neither the dotted nor the
dashed path can entirely follow the middle segment.

spatial density of the segments. We use a collection of realiza-

tions of a random model of thin, straight segments uniformly

distributed in a support of 512×512 pixels (see Fig. 12). The

model contains a population of N ∈ {50, 100, 150, . . . , 450}
segments of random length l drawn from the normal distri-

bution N (µ, σ) with L = N (40, 20), bounded in the (5, 90)

interval. The segments have a random (uniformly distributed)

orientation and are placed in the support without touching each

other.

We observe that the fragmentation in sparsely populated

media (N=50) does not occur, as illustrated in Fig. 13,

top, and increases with the density of the population (see

the overestimated bin 10 in Fig. 13, bottom). Indeed, the

fragmentation cannot be completely avoided even by using the

reconstruction since it may happen that no marker remains to

reconstruct the segment.

To complete the error evaluation w.r.t. the density of the

media see the two following Figs. 14 and 15 that confirm that

with increasing number of segments N the error increases
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(a) N = 50 (b) N = 450

Fig. 12. Two realizations of the random gaussian length distribution model with N segments.

(a) N = 50 segments

(b) N = 450 segments

Fig. 13. Length distributions measured with PPO+reconstruction vs. PO by Talbot and Appleton [20] vs. ground-truth for N segments.

towards stronger underestimation. Both figures are provided

for various values of the parameters k and β. One can

observe that the error also increases with increasing parsimony

(increasing k) and decreasing locality (increasing β).

Note that the two length measurement errors, i.e. the

overestimation and the one due to occlusions (as in Figs. 10

and 11) are additive. Hence, there are situations where they

compensate as e.g. Fig. 14, 50 segments, k=10. However,

this compensation is illusory since both errors still occur, and

their compensation depends of hazardous, random geometrical

configurations in the measured structures.

It is interesting to observe however that even for dense

populations, as shown in Fig. 12 (right), i.e. a situation deemed

unfavorable to a parsimonious approach, PPO parameters can

be chosen in such a way that the absolute error is smaller

than 10%. The choice of these parameters remains however

an open, application dependant, question. For example, the

choice of ǫ is directly linked to the noise level of the image;

the higher the noise, the higher ǫ should be, at the expense of

potential unwanted connections between structures that would

have been otherwise erased. As it will be seen in the following

section, it should be noted that the user has in practice large

freedom in the choice of his parameters, as the running time

of PPO and PIPO is not impaired by large parameter values.

Fig. 14. Relative error w.r.t. to the number of segments and the parsimony
parameter: k=1, 5, 10 (blue, green, red).

Fig. 15. Relative error w.r.t. the number of segments and the parameter β=
1, 20, 50 (blue, green, red).

VII. COMPLEXITY AND TIMINGS

A. Complexity

In the original version of PO, the number of paths passing

through one pixel is exponential w.r.t. the length L. Conse-

quently, if implemented in a naive way, PO have exponential
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complexity. An implementation with logarithmic complexity

w.r.t. L has been proposed in [23]. More recently, the com-

plexity of incomplete paths has been decreased to logarithmic

w.r.t. L and linear w.r.t. the tolerance ǫ [20].

Here we analyze the complexity of PPO, split into two parts:

path extraction and path filtering.

We have shown above that the collection of paths βMP can

be extracted in O(1) per pixel (Sec. V-A), and that an image

f can be filtered alongside a path π also in O(1) per sample

(Sec. V-B). To complete the analysis of complexity we need

to count the number of paths, and evaluate their length.

For a given image f , with D=spt(f) a W×H rectangle

(width×height), we have 2W vertical and 2H horizontal paths.

Vertical paths are H pixels long, and horizontal paths are

W pixels long. After dropping multiplicative constants, this

yields a linear complexity of O(HW ) when only horizontal

and vertical paths are used.

When diagonal paths are used, the complexity slightly

increases. We count a total of 4(H + W ) diagonal paths

(for four principal diagonal orientations). The diagonal paths

have unequal length, bounded though by H+W . This yields a

slightly higher complexity of O((H +W )2), yet still a linear

factor of the support size card(D)=HW .

Therefore, the complexity of PPO and PIPO is proportional

to the number of pixels in the images, and independent of the

length L and the tolerance ǫ of incomplete paths, which is an

improvement with respect to the state of the art.

B. Timings

PPO have a low complexity and have been designed to

address the timing issues of classical path operators. We

compare here the timings of PO, RPO and CPO with the

approach used in this paper (PPO). Fig. 16 shows a benchmark

for complete and incomplete paths. The gain is huge and we

verify that PPO run in constant time with respect to L. For

complete paths, the computation time is reduced by a factor 75
between PO and PPO, with k=1. The gap between incomplete

path openings and parsimonious incomplete path openings is

even larger. We reduce average time by a factor 3100 with

k=10.

In another experiment, we benchmark PPO against param-

eters β, ǫ and k, with the same image of size 768×576. We

check in Fig. 17 that the timings are independent of β (except

for β=1, which does not use the weighted distance map λ).

Regarding the gap tolerance ǫ, an overhead is introduced for

ǫ > 1 by the closing step. With the parsimony parameter

k, timings decrease with 1
k as expected from the theoretical

complexity.

The last benchmark, Fig. 18, exhibits the execution time

against the image size. The timings confirm the linear com-

plexity of the algorithm.

VIII. CONCLUSIONS

This paper presents a new family of parsimonious operators

for image processing, based on paths. In comparison with
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classical path openings, only a relevant subset of paths is used

to retrieve similar information.

The extraction of paths is decoupled from the path filtering,

which brings two major advantages: i) a new, general scan

strategy allows tuning the search continuously from local to

global, which gives the possibility to find a trade-off between

accuracy and robustness to noise; ii) it allows defining different

operators alongside the same collection of paths, to operate

on the same objects. For instance, the combination of a path

opening with a closing allows reconnecting discontinued bright

structures, thus achieving results similar to those obtained with

incomplete path openings, tolerant to missing pixels in paths.

An efficient filtering algorithm [33] is used to compute

openings or closings alongside a path. It runs in O(1) per

pixel regardless the size. It decreases the complexity of both

path opening and incomplete path opening to a constant.

Consequently, the timings are several orders of magnitude

lower in comparison with classical (incomplete) path openings,

with comparable results. Hence, PPO are usable in high-

throughput, industrial applications. Additionally, this filtering

algorithm allows : i) using arbitrary data accuracy (integer

or floating point), and ii) handling the border effect in two

different ways (extending the support with −∞V or with ∞V ).

We provide a thorough study of the accuracy to show

that processing a conveniently chosen subset of paths can

provide a result sufficient for certain applications. Such a

parsimonious approach has allowed us to bridge the gap

between an interesting methodological tool (path openings)

and a practical, computation intensive, real-world application.

This work opens different research perspectives.

Parsimonious path operators can be extended to 3D images.

In fact, a first series of tests shows that starting from the 3D

image borders, and using a 3D graph, gives interesting results.

However, parameter β has to be chosen with care, since the

size of blind regions tends to be larger on 3D images. On the

other hand, the fragmentation due to occlusions (cf. Fig. 11)

is smaller in 3D.

The proposed strategy only uses paths seeded at the image

border. Other starting points could be considered, for example

with a random placement, as in the geodesic voting approach

[3]. This could help alleviate the blind region problem that may

occur sometimes in images with a lot of branching features.

Other morphological parsimonious image representations can

be also considered, based for example on image extrema, or

image ridges and valleys.

Finally, instead of closing-opening, one can also use the

rank-max opening to filter the paths in Eq. 10. This will make

the PPO behave more like IPO rather than the RPO.
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has been financed by the French “Département de Seine et
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