Computational Intelligence, Volume 16, Number 3, 2000

PARSING AND INTERPRETATION IN
THE MINIMALIST PARADIGM

JAMES S. WILLIAMS AND JUGAL K. KALITA*

Department of Computer Science, University of Colorado

In this paper, we discuss how recent theoretical linguistic research focusing on the Minimalist
Program (MP) (Cho95, Mar95, Zwa94) can be used to guide the parsing of a useful range of natural
language sentences and the building of a logical representation in a principles-based manner. We discuss
the components of the MP and give an example derivation. We then propose parsing algorithms that
recreate the derivation structure starting with a lexicon and the surface form of a sentence. Given the
approximated derivation structure, MP principles are applied to generate a logical form, which leads to
linguistically based algorithms for determining possible meanings for sentences that are ambiguous due
to quantifier scope.

Key words: Natural language understanding, Minimalist Program, Principles-based parsing.

1. INTRODUCTION

In this paper, we introduce a framework for describing the grammar of natural
languages due to Noam Chomsky called the Minimalist Program (MP). We investigate
how to build a parser that produces syntax trees conforming to the MP and how aspects
of language that have bearing on meaning, but cannot be conveniently captured during
parsing, can be processed. The linguistic framework is discussed first, followed by the
computational implementation.

We first give a brief overview of the Minimalist Program (Chomsky 1995; Marantz
1995; Zwart 1994). The MP is the latest incarnation of Principles and Parameters gram-
mars that define language structure in terms of well-motivated principles and parameters
that adapt the principles to various natural languages. However, in this paper, we do not
describe a parser that implements the MP in all its cognitive implications, which are still
not completely understood and are being investigated. We feel that it is a worthwhile
exercise to use the basic principles of the MP to obtain rules and structures that enable
the traditional implementation of a parser. Parsing, however, is only a part of the pro-
cessing. There are many linguistic phenomena than can be handled only after a syntax
tree has been obtained. We discuss, among other issues, further processing of the parse
to handle issues in quantifier scoping. We think this part of the paper is interesting since
it shows how vexing linguistic phenomena can be handled using simple computational

techniques.

In writing the parser, we use a set of sentence types that have been considered by
those who have written parsers motivated by earlier versions of Principles and Param-
eters grammars. Merlo, in his paper on a parser based on an earlier version of Principles
and Parameters grammar, called the Government and Binding Theory (GB), wrote that
the set of sentences he chose constitutes a

“crucial test set for principle-based parsers: (they involve) complex interactions of principles
over large portions of the tree.” (Merlo 1995, pp. 521-522).

* Address correspondence to J. K. Kalita, Department of Computer Science, University of Colorado, Colorado
Springs, CO 80917; e-mail: kalita@pikespeak.uccs.edu

(© 2000 Blackwell Publishers, 350 Main St., Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.

378

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 379

The sentence types that Merlo covered and we also handle are as follows:

(1) Simple Transitive: John loves Mary.

(2) Simple Intransitive: John runs.

(3) Simple Passive: Mary was loved.

(4) Simple Raising: Mary seems to like John.

(5) Embedded Transitive: John thinks that Mary loves Bill.

(6) Embedded Intransitive: John thinks that Mary runs.

(7) Embedded Raising: Mary thinks that John seems to like Bill.

(8) Simple Question: Who does John love?

(9) Embedded Question: Who do you think that John likes?
(10) Embedded Question and Raising: Who did you think that John seemed to like?
(11) Embedded Wh-Question: *Who did you wonder why Mary liked?

Of course, Merlo’s assertion can be questioned. However, we believe that a parser
that can handle Merlo’s sentences and more in light of the MP can be considered an
important step in building so-called principles-based parsers. Later in the paper we
consider additional sentence types to illustrate the problems in interpretation that are
introduced by the use of quantifiers such as some and every either in simple sentences
or in the context of raising verbs such as seemm and appear. Examples of some such
sentences are given below.

(12) Someone attended every seminar.
(13) Everyone loves someone.
(14) Someone seemed to attend every class.
(15a) Someone persuaded John to attend every class.
(15b) Someone hoped to recite every poem.
(15¢) Someone believes John to be attending every class.
(16a) Someone expected every Democrat to win.
(16b) Someone expected every Democrat would win.
(17) Everybody beat his donkey.

We extend a GB theory grammar to work with MP for parsing sentences and label-
ing arguments according to positions in chains. We describe chain-building algorithms
necessary for approximating the MP derivation structures. Then, in Section 4 we dis-
cuss algorithms to build logical representation from approximate derivational structures
based on Horstein 1995. In Section 5, we describe the program we have built, in Sec-
tion 6 we compare it with other principle-based parsers, and in Section 7 we present
our conclusions.

2. THE MINIMALIST PROGRAM

The Minimalist Program (Chomsky 1995) generalizes principles developed within
the Government and Binding Theory (Haegeman 1994; Chomsky 1981; Culicover 1997)
so that derivations of sentences can be explained using the idea of least effort or least
work. The MP and GB both explain language in terms of a set of principles called the
Universal Grammar (UG) and a set of parameters fixed during language acquisition.

It is assumed that the Conceptual-Intentional (CI) system in the human brain
enables meaning comprehension and that the Cognitive System deals with sentence
formation. The Cognitive System produces the so-called Phonetic Form (PF) or the
surface word order with pronunciation details and passes it to the part of the brain

380 COMPUTATIONAL INTELLIGENCE

that pronounces the sentence. The interface between the Cognitive System and CI sys-
tem is called Logical Form (LF). The LF provides additional information that helps in
interpretation.

We are concerned here with the Cognitive System (Figure 1). The information that
the Cognitive System works with is termed Lexical Resources (LR). The Computational
System (CS) within the Cognitive System combines the Lexical Resources to derive a
sentence. A derivation begins with the LR and at a point called Spell-Out splits and
heads toward the PF and LF interfaces. Movements prior to Spell-Out are called overt
movements because they can affect word order in the spoken sentence; those after Spell-
Out are covert movements because they are not observed in speech but are required
for grammaticality reasons. The area between LR and Spell-Out is the Working Area
(Marantz 1995, pp. 360-361). After the derivation splits at Spell-Out, one copy of the
derivation goes to the PF interface and is pronounced. The other copy undergoes fur-
ther movements until it reaches the LF interface that is needed for semantic reasons.
The order of words at Spell-Out is the surface word order for the language. Different
languages have different surface word order characteristics because the overt move-
ments that occur in the languages are different even though they all start in the same
initial configuration.

2.1. Lexical Resources

An item in LR is composed of several types of features (see Table 1). Phonologi-
cal features indicate how to pronounce words. Semantic features indicate meanings of
words and are used by the Conceptual-Intentional system. Formal features, the only
ones used within the Compuational System, include categorial, ¢, and case features.
Categorial features are =N (nominal) and £V (verbal) (Haegeman 1994). These essen-
tially tell us the grammatical category of a lexical item. The ¢-features are person,
number, and gender; they are features of an overt expression. We assume that Lexi-
cal Resource items have a case feature even if it is not overtly marked. Case features
include nominative (the subject or actor case), accusative (the object or affected case),
and genetive (the possessive case). In English, case is not overtly marked except in the
case of pronouns.

Items in LR are of two types: lexical and functional. Lexical items correspond to
heads of phrases like NP and VP. Functional items are determined by principles of
UG and parameterization. Lexical and functional items occur in the syntactic tree as
it is built during the derivation of a sentence. Functional items are used to provide
targets where lexical items move during the process of derivation to meet grammaticality
requirements.

Lexical Resources (LR)

Computational
System (CS)

......... .

{Working
Area /

Spell-
Out

Phonetic Form (PF) Logical Form (LF)

FIGURE 1. Components of the Cognitive System.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 381

TaBLE 1. Formal Features for Lexical Items

Lexical item Formal features

Mary +N, =V (NP)
Case: accusative
¢ (3rd person, singular, feminine)

John +N, —V (NP)
Case: nominative
¢ (3rd person, singular, masculine)

loves —N, +V (verb)
Tense: present
¢ (3rd person, singular, masculine)
Assign case: accusative
¢ (3rd person, singular, feminine)

For example, in order to derive sentence (1) we place the lexical items Mary, John,
and Joves into the Working Area. We follow (Allen 1995) and assume that NPs can be
identified reliably. The CS attempts many derivations with a range of lexical items. Most
derivations crash (i.e., they fail) or do not result in the intended meaning. Among the
derivations that succeed, the one that is most economical is the grammatical derivation
of a sentence. The economy criteria for derivation have been stated informally for
the MP.

Formal features other than categorial features are used for checking. Checking
between two items refers to making sure one or more features on the two items agree.
The many such checks that are performed during the derivation process ensure that the
derived sentence is grammatical.

Checking matches identical features in two possible scenarios: a Head-Head or a
Spec-Head relation. A head of a phrase is the primary node of the phrase that defines
its essential characteristics. Head-Head checking is done when two heads are adjoined.
It is possible that during the process of derivation one head moves and attaches to
another head in a special manner called adjoining.

Spec-Head checking is done when features match between a head and its specifier.
A phrase can have a node called the specifier that provides an argument to the head.
For example, in the sentence John loves Mary, John is the subject of loves. This fact can
be represented by making the node John the specifier of the head node loves in a VP
phrase.

When paired features are checked they become “invisible” (Chomsky 1995, p. 229).
The lexical item loves has two sets of ¢-features. The first is for checking subject-verb
agreement, the second for object-verb agreement. In other words, one set of ¢-features
is checked at a functional node (named Agr,P) that ensures subject-verb compatibility,
and another set of ¢-features is checked at another functional node (named Agr,P)
that ensures object-verb compatibility.

We also require the functional items in Table 2 to be put in the Working Area. Agr
is an abbreviation for agreement, T for tense, and C for complementizer. As we have
seen already, there are two types of Agr: Agr, stands for Subject agreement and Agr,
stands for Object agreement.

A functional item has many features. Two sets of features that are relevant at this
time are N-features and V-features. N-features of a functional head (such as Agr,) are

382 COMPUTATIONAL INTELLIGENCE

TaBLE 2. Formal Features for Functional Items

Functional item Formal features

Agr, Weak N-features[$(3rd person, singular, masculine)]
Weak V-features[$(3rd person, singular, masculine)]
Agr, Weak N-features[$(3rd person, singular, feminine)]
Weak V-features[$(3rd person, singular, feminine)]
T Strong N-features[case: nominative]
Weak V-features[tense: present]
C

a bundle of features that are used, during derivation, to check agreement between the
functional head and its nominal argument. V-features are a set of features that are used
to check agreement between the functional head and the verb. For example, subject-verb
agreement in English (or, any language) is ensured using a two-step process. One step
matches the verb’s features with the functional head called Agr,. Another step matches
the subject NP’s features with the same functional head Agr,. The order in which these
two steps are carried out is a parameter of the language. Additionally, whether the
two steps are performed before or after Spell-Out is also language dependent. Features
that are checked before Spell-Out are called strong features because they trigger overt
movements of components in the derivation tree. Features that are checked after Spell-
Out are called weak features. These features need to be checked for grammaticality.

Which N-features and V-features are strong and which are weak is a parameter that
determines word order for a language. For English, the strengths of features are shown
in Table 3.

Movement of items is a fundamental activity of all Principles and Parameters theories
of grammar. These theories work by requiring that a lexical item move from its initial
location in the derivation structure tree to another location (specifically, a functional
item) to check features. N-features are checked against NPs in association with one
of the two Agr nodes, and V-features are checked against verbs on Agr nodes. As
noted earlier, for convergence, strong features must be checked prior to Spell-Out; weak
features are checked after Spell-Out. Designating some features as strong and others
as weak is the way the principle of Procrastinate, one of the main theoretical are pillars
of the MP, is implemented. Procrastinate is “a principle that prefers derivations that
hold off on movements until after Spell-Out...” (Marantz 1995, p. 357). Movements
before Spell-Out may change surface word order and are considered more expensive
compared to movements after Spell-Out that do not have outward effect. Since the
MP prefers derivations with lower cost, the MP prefers that items that can wait to

TaBLE 3. Strength of Functional
Item Features in English

Functional item features English

Agr N-features Weak
Agr V-features Weak
T N-features Strong

T V-features Weak

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 383

move until after Spell-Out must wait for movement. Convergence at the PF interface
overrides Procrastinate and forces some movement prior to Spell-Out. See Zwart (1994,
pp- 8-9), Marantz (1995, p. 357, 371-373), and Chomsky (1995, pp. 197-199).

2.1.1. Working Area and the Derivation of a Sentence. We now discuss how an example
sentence is derived in the MP. We start with a set of LR items and perform movements
to produce a derivation that succeeds (i.e., converges) at the PF and LF interfaces. For
a set of items, the one derivation, among the many possible, that converges with the
least effort is grammatical. Our description of the derivation follows those by Chomsky
(1995), Zwart (1994), and Marantz (1995).

Before we give a step-by-step description, let us look at the basic structure of a
phrase. The MP follows the tradition of the GB and uses only binary branching trees.
This is called the X-bar theory (Haegeman 1994; Culicover 1997). Figure 2 shows the
basic structure of an X-Bar phrase used in the MP. In this figure, X stands for any
lexical or functional category such as N, V, Agr,, and T. Therefore, we can instantiate
the phrase tree as NP, VP, or TP. X’ is the first level projection of X, and XP is the
phrase level projection of X. A phrase tree for any phrase category X may have two
important components: a specifier and a complement in addition to the head. The head
X is at the bottom of the phrase tree. The specifier attaches at the top level of a phrase
on its left in the case of English. The complement attaches to the lower level projection
X'. The specifier and the complement both provide arguments of the head X.

For our example we pick the verb loves and project a V' with an empty complement
that we fill with the NP Mary. If a constituent has an empty complement projected,
the MP requires that it be immediately filled with a constituent from the Working
Area (called generalized transformation) or with a constituent from within the projected
constituent itself (called singulary transformation).

We next project V' to VP with an empty specifier and perform another generalized
transformation to substitute the empty specifier with the NP John. The lexical items in
the specifier and complement positions of a verb must move from these initial positions
to check or license their features (Zwart 1994, p. 1).

Agr, is selected next and projected to Agr, with a complement position filled by
the VP. Agr is a functional head that ensures there is agreement between a verb and
its object. Such object-verb agreement is not required in a language like English, but
there are languages such as Hindi where verbs and objects must agree in form (in some
situations) (Mohanan 1994). Agr; is projected to Agr P. Due to weak N-features, Mary
will not move to [Spec, Agr] prior to Spell-Out, so the specifier is not projected.

Next, the T is selected and projected to T’ with Agr P as the complement. The
functional head called T contains a specification of a tense that is required by the verb
in a sentence; the actual verb later moves to T to make sure it has the same tense

~

Specifier

<

P

e

N\

Complement

o — X

FIGURE 2. Basic X-Bar phrase structure.

384 COMPUTATIONAL INTELLIGENCE

as is required of the sentence. T’ is projected to TP with no specifier (Marantz 1995,
p. 367). Agr, is selected next and projected to Agr, with TP as the complement. Now,
T raises and adjoins to Agr, since T’s N-features are strong and have to be checked
before Spell-Out. Adjoining is shown as a “4.” A head moving and adjoining to another
head is called head movement. Head movement creates a chain with two links. If the
two heads had features in common they could be checked now. However, the reason
T is raised to Agr is due to T’s strong N-feature, case, that must be checked before
Spell-Out (Marantz 1995, p. 367).

Next, Agr, is projected to Agr,P with the NP John, a constituent from within the
constituent being projected, as the specifier. This is a singulary transformation. The
movement from the [Spec, V] to [Spec, Agr,] occurs due to a principle called Shortest
Move which states that, “a constituent must move to the first position of the right kind
up from its source position” (Marantz 1995, p. 355). For an explanation see Chom-
sky (1995, pp. 181-186). This movement forms an A-chain. A chain is a set of nodes
linked together. Argument positions in a phrase tree can be classified into two types:
A-positions and A’-positions. A-positions hold arguments that can be assigned special
relations called 6- or thematic roles. A-positions of a transitive verb are its specifier
and complement; these are usually available as [Spec, Agr] and [Spec, Agr,] respec-
tively. Informally, 6-roles are also called case roles. Examples are roles such as AGENT,
PATIENT, and RECIPIENT between a verb and its arguments. A chain’s landing site (i.e.,
the node where the constituent finally lands) can be an A-position or an A’-position.
Therefore, chains can also be called A-chains or A’-chains based on where the moved
constituent finally ends up.

Movement within the MP follows a Copy Theory where a constituent is copied
from position to position. Now NP John’s N-features can be checked with the adjoined
heads. Formally, “A maximal projection a agrees with a (functional) head b only if a is
a specifier of b” (Zwart 1994, pp. 4-5). Of course, there are some restrictions on what
can occupy the specifier position of a phrase.

Finally, C is projected to C' with an empty complement that is filled with the AgrP.
The functional head called C is necessary to provide a location where complement
phrases in complex sentences can be parked. For example, that is a complementizer
which can reside in a C node. A complementizer allows us a mechanism to embed a
whole sentence within a sentence. See our example sentences, (5), (6), (7), (9), (10),
and (11). C' is projected to CP without a specifier. We have reached the point of Spell-
Out. The derivation splits with one copy being submitted to the PF interface. All strong
features have been checked and all items in the working area have been transformed
into one derivational structure.

2.1.2. Spell-Out to Logical Form. Movements from here on check weak features.
V raises and adjoins to Agr, to check its V-features with head-to-head checking. For-
mally, “A head a agrees with a (functional) head b only if a is adjoined to b” (Zwart
1994, pp. 4-5).

Agr, and the adjoined V have weak N-features that must also be checked, so [Spec,
Agr,] is projected and the nearest constituent Mary is moved. The accusative case of V
is checked with Mary and the weak N-features of Agr are also checked with Mary. The
“V + Agr,” complex is raised to “Agr, +T” complex so that V can check its features
with the weak V-features of T and Agr,. Thus, we see that it is possible to raise a
complex of nodes. All movements have occurred and the derivation converges at both
the PF and LF. Figure 4 sums up the derivation in a layout that saves space. In the
figure, solid lines indicate overt transformations to check strong features. Dashed lines
indicate covert transformations to check weak features. Italicized words represent the
position in a grammatical sentence, the ordering at Spell-Out.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 385

Lexical Resources

1) Create empty nodes. App'rox.imate
2) Label nodes. —{Derivation
3) Build chains. Structure.

Grammar

FIGURE 3. Approximating a derivation structure.

3. PARSING

We now describe how to parse sentences in the spirit of the MP. Instead of deriving
a sentence from LR, we recreate the derivational structure at Spell-Out by obtaining a
traditional parse of the sentence and then extending the syntactic tree by building chains.
In the previous section we described how lexical and functional items are combined to
form a derivation structure. At Spell-Out the derivation structure is copied and one
copy is sent to the PF interface and the other copy continues toward the LF interface.
The copy going to the PF interface is pronounced.

Our objective is to approximate the derivation structure given the sentence, the LR,
and a grammar. There are two steps to recreating the derivational structure. They are
labeled 1 and 2 in Figure 5. Step 1 is to recreate the structure at the point of Spell-
Out by determining the overt movements that have occurred. Step 2 is to extend the
derivation from the point of Spell-Out to the LF interface by determining the covert
movements. Step 3 is needed to obtain the logical form and is discussed a little later.

There are four substeps in the process of recreating overt movements. Following
these steps will give us an approximate derivational structure at Spell-Out (see Figure 3).

1. Obtain a syntactic parse for the input sentence.
2. Create empty nodes.
3. Label nodes.
4. Build overt chains.

Ccp

N
Spec C
C/\AgrsP
N
John Agry’
Agr, TP

FIGURE 4. The final derivation of John loves Mary.

386 COMPUTATIONAL INTELLIGENCE

Lexical resources (LR)

N Sp/ell-out

\ /
\ /
/

\

R}
@_./_.@
/N l
/ \\

» N —’@

\

\
\
Phonetic form (PF) \\ l
N\

4

FIGURE 5. Steps to create the derivation structure at the LF interface.

The first step parses the sentence. For our implementation, we use Allen’s
bottom-up parser described in Allen (1995, Chapts. 3-5). Based on our knowledge
of movements in the MP we determine how arguments moved from base positions to
the surface positions. We do this by labeling A- and A’-positions, creating empty nodes,
and then performing a procedure that builds chains. A’-positions are positions in the
phrase structure tree that contain arguments that cannot have 6- or thematic roles.
Chain building maps the arguments back to their base VP internal positions.

Our grammar also creates empty nodes. An empty node in the syntactic tree rep-
resents a position from which an argument has moved. In the MP, the movement of
an argument actually copies the argument to a new position at a higher level in the
tree. To recreate these positions, since they are not represented with words in the sur-
face sentence, we have rules that are associated with the grammar rules. This is one
way in which we have extended a simple syntactic structure in order to approximate a
derivation structure.

The grammar has been designed to cover the sentences described earlier. A parser
builds a syntactic tree for a sentence. When a rule is matched, the corresponding Node
Labeling rule is invoked to label nodes and create empty nodes. Finally, an algorithm
is applied to the syntactic structure to build chains. These chains represent the overt
movements (A and A’) that occurred prior to Spell-Out as well as the covert movements
(A) that occurred after Spell-Out. The base position of a chain shows the relationship
between the argument represented by the chain and the verb. Since verbs assign the-
matic or 6- roles to their arguments in base positions, we can determine the thematic
roles of the subjects and objects.

3.1. Grammar

The grammar in Table 4 was derived in part from Merlo’s grammar 3 (Merlo 1995,
p. 541). It has been adapted for the MP and to parse the example sentences. Operations
that create empty nodes and label argument nodes are listed under Node Labeling
Operations. We allow only noun phrases where clauses could be. For instance, in the
[Spec, C] position we allow only an NP. We have also explicitly listed rules for transitive,
intransitive, and raising verbs. Although this is not strictly necessary, it simplifies empty
node creation, node labeling, and chain building.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 387

TABLE 4. An English Grammar Based on the MP

No. LHS RHS Node labeling operations

R, S Ag

R, S c?

R, C* N2(C! Label N? as A’'H

R, C? C! Create empty node to C’s left; label A’

R, Agr? N2 Agr! Label N? as AH
Ry Agr? Agr! Create empty node to Agr!’s left; label Al

Ry, Agr: Agr! Create empty node to Agrl’s left; label AH
RlS Agl‘(ll) Agro Vtran

R16 Agro Vtran

R; Vi VL Create empty node to V. ’s left; label AF
Ry V. VL. Create empty node to Vi™"s left; label AF
R19 Vriais Vgais

Ry Vilm Vint C

Ryt Vi Vim

Ry thran Viran N? Label N? as AF

Ry Vi, Vi Create empty node to V,,,’s right; label A'F
R24 Vrlais Vrals ‘Agrs2

Ry; N° N

The notation used in the grammar is in a form that is slightly different from the
linguistic notations used earlier. A maximal projection (i.e., the phrase node such as
NP, VP, Agr,P, etc.) is shown here as the head with a “2” as the suffix. A bar node
(usually, a node with not a bar, as in N or P, but a prime such as N, P/, V', etc.) is
represented here as the head with a “1” as the suffix. Head nodes are represented as
the head (Agr,) or a head followed by a “0”. The specifier of Agr,, [Spec, Agr,], is a
noun phrase represented by N2, as in the rule (R;). Empty elements are inserted as a
position from which an explicit element may have moved.

A syntactic parse following the grammar for the simple transitive sentence John
loves Mary is thus:

[S[Agr? [N [N John]] [Agr![T* [AgrZ [Agr) [V Vb Viran loves]
[N’[N Mary 11111111

The brackets indicate the tree structure that corresponds to the parse.

388 COMPUTATIONAL INTELLIGENCE

This syntactic structure is different from the derivation structure. For example, the
[Spec, V] position has not been projected since there is no sentence element there. Our
empty node creation, node labeling, and chain-building rules help us determine when
to create an empty A- or A’-node and link that node with a chain to other nodes in
the sentence. The head nodes without a corresponding element in the sentence are not
created by the grammar.

Let us next consider the parse for the sentence Who do you think that John seemed
to like?, is given in Figure 6. It is a sentence that has an embedded wh- question and
an embedded raising verb seem. If we compare its syntactic structure with its derivation
structure, we will see several differences. As in the previous example, [Spec, V] is not
projected in the syntactic structure. Moreover, [Spec, Agr] in the lowest clause is not

S
N
C2
N2 Cl
q Agrs2
| did _—\
who N7 Agrsl
| ~
N T2
you V2int
el viint
Vint C2
ik e
RS
C Agrs2
PR
t}mt |N2 Agrsl
~
N T2
John V2rais
Vlrais

T
Vrais Agrs2
seémed o3 Agrsl

S
Agrs T2
| ~
to Agro2
N
Agrol
S~
V2tran
¢4 Viiran
N
Vtran e5

likJe

FIGURE 6. Parse for Who did you think that John seemed to like?

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 389

projected since the subject has risen to the higher [Spec, Agr,]. The specifier of C, [Spec,
C], of the lower clause is also not projected in the syntactic structure. The complement
of the transitive verb is also not projected for the same reason. However, transitive
verbs require objects. The argument that fills the object of the transitive verb is a chain.
The derivation structure is an extension of the syntactic structure.

One question that can be posed at this time is why our grammar rules do not cover
the use of expletives such as there and it. Expletives are of various kinds. Some have
case and ¢-features and others do not. Members of the first type need to have features
checked and do not allow raising of their nominal associate. The nominal associate of
the expletive there is the noun phrase a book in the sentence There is a book on the
shelf. The second type includes “pure expletives,” such as it and there in English, that
do not have case and ¢-features. This latter type does not need checking of features
and allows raising of the nominal associate (Chomsky 1995). We will not go into a lot of
detail here, for expletives are a complex topic. Even Chomsky says “development of the
theory of expletives requires much more careful examination” (p. 289). Considering the
difficulties involved in the study of expletives, we decided to ignore them completely in
our paper. However, we note that rule R7 in our grammar labels expletives as heads
of A-chains. This is not the right treatment for expletives. This is an unintended side
effect, but we refrained from correcting the error since the current paper is already
very long and if we attempt to cover expletives, the explanation of the relevant rules
will make it longer.

We also note that rule R24 allows ungrammatical sentences such as seems John to
escape. Such sentences can be disallowed by implementing what is called the Case Filter
(Haegeman 1994, p. 34; Culicover 1997). A Case Filter module can be easily added to
our grammar to rectify the situation.

3.2. Empty Node Creation

There are several rules in the grammar where empty argument positions (nodes)
are created. Empty nodes are created in positions that are based on observations of the
set of exemplar sentences. For example, in Rule Ry, an empty node is created to the left
of C!. This rule reflects that a derivation can have projected [Spec, C] position from
which an argument moved. This is an intermediate A’-position for a wh+ phrase. A wh-
phrase corresponds to a phrase containing a wh-word such as whom, which, and where.
In Rule Ry, a specifier position can also be projected to the left of Agri. This position
is a subject position that is normally filled at Spell-Out. When this rule applies it can
be due to an infinitival just below Agr! and a raising verb above. Since an infinitival
is considered to have no tense, the N-features of T will not check case. Therefore, the
subject raises to the next higher clause to get its case checked. Rules R;; and R4 are
similar. Both the subject of transitive and intransitive clauses have their base positions
within the VP. Due to strong N-features of T in English the subject always moves out
of the VP by Spell-Out (discussed later). Therefore this position will never be filled at
Spell-Out in English. We create the empty position in rules R;; and Rz to give us the
base position for the chain containing the subject. Rule R,; applies when the object has
moved prior to Spell-Out. This happens to check strong wh+ features. Figure 6 shows
the syntactic tree for one of the sentences discussed in Section 2. The empty nodes are
labeled e, to es.

3.3. Node Labeling

There are three kinds of movement: head, A, and A’. The latter two movements
are discussed here. In A-movement an argument in an A-position moves to another A-
position. An A-position is the subject, object, or object of a preposition. A’-movement

390 COMPUTATIONAL INTELLIGENCE

presents the movement of an argument to an A’-position, which in our discussion will
be [Spec, C].

3.3.1. A-Movement. A-movements can occur for different combinations of strong and
weak features. N- and V-features are associated with Agr and T and can be strong or
weak resulting in sixteen combinations. However, only the N-features cause NPs to
move. Strong N-features cause movement prior to Spell-Out and weak N-features after
Spell-Out. So there are actually four possible combinations of features that affect NP-
movement (A-movement). These are given in Table 5.

Of these four possibilities, only (2) holds for English and therefore, we will discuss
only its ramifications. For better understanding, the reader is referred to one of the
papers or texts on the Minimalist Program (Chomsky 1995; Marantz 1995; Zwart 1994;
Culicover 1997) or to (Williams 1997).

Combination (2) with strong N-features of T causes T to raise and adjoin to the next
highest Agr to check those features. N-features are checked in a Spec-Head relationship
and, due to Chomsky (1995), [Spec, T] is not projected (Marantz 1995, p. 367). The
Agr above T in a derivation tree is named Agr,. This means that the subject but not
the object will move to [Spec, Agr,] prior to Spell-Out to check the strong N-features
of T. Therefore, we can expect subject NPs to be in checking positions at Spell-Out.
The [Spec, Agr,] position is generally filled. If the position is not filled, it can be due to
an NP continuing movement in order to check strong features. An example of this is an
infinitival clause that does not have case as a strong N-feature of T and the argument
moves to a higher clause to check its case. Thus, a [Spec, Agr,] position will either have
an NP and be labeled AH or be empty and therefore labeled Al. We can expect the
base position of the subject [Spec, V] to always be empty. Objects are expected to be
in base positions since weak N-features of Agr will not force them to move prior to
Spell-Out. English is a language with this combination of T and Agr N-features.

3.3.2. A’-Movement. A’-movement has to do with the strength or weakness of
C’'s +wh features. Following Marantz (1995, p. 378), these are assumed to be strong
for English. With this assumption, and following the minimalist principle Shortest Move,
the closest element with +wh features will move to check the strong features.

A question that might arise at this point is: if +wh is a strong feature, how can one
explain why the sentence Who brought what? is good? Although, following authors such
as Marantz (1995), we assume +wh to be a strong feature, complexities arise in the
treatment of strong features in general. Lasnik (1999) states that the means by which
strong features determine movements (in the context of wh-movement and other situa-
tions) can be discussed by considering several competing theories such as the PF Crash
Theory (Chomsky 1993), the LF Crash Theory (Chomsky 1994) and the Virus Theory
(Chomsky 1995, pp. 219-394). Why the sentence Who brought what? is good will depend

TABLE 5. Possible N-Feature Strengths in Natural Languages

T N-features Agr N-features
(1) Weak Weak
(2) Strong Weak
3) Weak Strong

4 Strong Strong

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 391

on what theory is used and some other considerations. One such additional consider-
ation is whether the C (complementizer) node is created in the derivation before or
after PE. The discussion is outside the scope of our paper.

3.3.3. Labels. As a sentence is parsed, each A- and A’-position is assigned a label with
two letters in it: the first indicating whether it is an A- or A’-chain, the second: letter
indicating where it is in a chain—on the top, middle, or bottom. If the position is an A-
position, the label has an A prefix. For A’-positions the node label has an A’ prefix. If the
node is a head node of a chain, the label has a suffix of H. For intermediate and foot
nodes the labels are suffixed with I and E respectively. To summarize, one of the three
labels AH, AI, and AF is associated with each node in an A-chain. Correspondingly, an
A’-chain’s nodes are labeled with one of the three labels A’'H, A’'l, and A’'E. A chain
consists of one or more nodes. The first node, the head, is labeled AH (or A’H). If
a chain has two nodes then the first is the head and the second is the foot, AF (or
A'F). If a chain has three or more nodes then all the intermediate nodes are labeled Al
(or A'T).

3.3.4. Building Overt Chains. Chain building occurs after building the syntactic parse
and labeling the nodes. The parse is scanned left to right with the labels on nodes
indicating their positions within a chain. If a node is labeled as a head, AH or A’H,
then a new chain is started. If the node is intermediate, AI or A’l, then the node is
added to the chain on the top of the stack. If the node is a foot then we complete
the chain. For our example English sentences, the chains at the point of Spell-Out are
nested so that we can use stacks to keep track of the partially built chains. We have
a stack for A-chains and a separate stack for A’-chains. The chain-building algorithm
is given in Figure 7. The syntactic parse tree for the sentence Who did you think that
John seemed to like? with labels is given in Figure 8. Table 6 shows the steps to build
chains for our example sentence Who did you e, think e, that John seemed e; to e,
like es? Merlo gives an example of chain building for the same sentence (Merlo 1995,
p- 532).

3.3.5. Recreating Covert Movements. We now extend the derivation from Spell-Out
toward the LF interface by building covert chains. For English and our set of example

If node is labeled AH, or A'H Then
Create a new chain and push it on a stack.
(StackA for A-chains, StackA’ for A’ -chains).
Else If node is labeled AI or A'I Then
Pop partial chain off of appropriate stack
Insert node into chain
Push chain back onto stack
Else (nodes are AF or A'F)
Pop partial chain off of appropriate stack
Insert node into chain
End If

FIGURE 7. A chain-building algorithm.

392 COMPUTATIONAL INTELLIGENCE

S ___-N2label =A’H
>2:2
H
N2 Cl1
Agrs2
who I_N2 Agrsl
;| S~
{ N T2
i\ B
i you V2int

N2.label =AH -l yiint

.’/ . /\
/! Vint C2
{'I tink &3 1
el.label =AF e o~
/ C Agrs2
,” N
|'l tlJat /_|N2 Agrsl
! e ~
label =A’T y
c2.labcl =A y, N T2
/ | AN
/ John V2rais
i N
N2.label =AH Vlrais
T
Vrais Agrs2
see)nez’z"’_e3 Agrsl
;l, Aﬁ\TZ
/ I ~
j to Agro2
¢3.1abel =AlI A\gml
~
V2tran
‘_,_—-e4 Vltran
,-" Viran _e5
o | ;
e4.label =AF like |

e5.1abel =A’F

FIGURE 8. Parse with labels for Who did you think that John seemed to like?

TABLE 6. Chain-Building Steps for the Sentence Who did you e, think e, that John seemed e
to e, like es?

Word or empty Grammar rule Label Stack A Stack A’ Resulting chains

who C? > N2 C! AH Empty [who]

you Agr? - N? Agrl AH [you] [who]

e, V') VL AF Empy [who] [you,e]

e C? — (e, C! AT Empty [who, e,]

John Agr? - N2 Agrl AH [John] [who, €,]

es Agr? — (e3) Agr! Al [John, e3] [who, e,]

€4 Vtzran - (64) thran AF Empty [WhO, eZ] [JOhn7 €3, 64]

€s thran - V?ran (65) A'F Empty empty [WhO, €2, 65]

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 393

sentences, this is straightforward. A covert movement takes place when a transitive verb
has an object in a base position at Spell-Out. Following the Shortest Move principle, the
object moves to [Spec, Agr,].

4. GENERATING LOGICAL FORM

In linguistics, the term Logical Form (LF) is characterized as a level of syntactic
representation at which all grammatical structure relevant to semantic interpretation is
presented (Hornstein 1995, p. 3). It is also stated as the level at which logical properties
of a sentence are represented (Culicover 1997). In particular, various phenomena that
have impact on meaning such as quantifier scope, scope of negation, pronoun bind-
ing, etc., are represented explicitly at LE The LF structure is the one that is input to
semantic interpretation procedures.

In this section, we describe algorithms that take the derivations produced in the
previous section and interpret logically at the Conceptual-Intentional interface. One
problem is that the chains that we have built have more than one link. In order to
converge at the CI interface “any member of an A-chain can be deleted and all but
one must be” (Horstein 1995, p. 154). Convergence at the CI interface signifies that a
syntactic structure is legal. This requirement is derived from satisfying the Minimalist
principle of Full Interpretation which “excludes the presence of uninterpretable material
at the interface representations” (Zwart 1994, p. 7). In a chain there are multiple nodes
containing the same syntactic content, and for us to obtain the meaning of the sentence,
only one such node in a chain can be fully interpreted. Otherwise, it will lead to semantic
incoherence. This requirement is restated as assumption A, later in this section.

The sentences that we have discussed so far are straightforward in terms of selecting
an element from each chain to keep. For these sentences, any element will suffice
because the meaning representation for a noun phrase used will not affect the meaning
of another noun phrase from another chain. This is because they contain no quantifiers.
For example, if we look carefully at sentences (1) through (11) listed in Section 1, we
see that the noun phrases used are of two types. The first type consists of proper names
or referential noun phrases: John, Mary, and Bill. The second type consists of wh-words
such as who. The first type creates no problems of scope because each one is a proper
name and no matter which instance of it is chosen from a chain, there is no ambiguity
regarding the extent of its scope. A proper noun phrase, which can be considered a
constant, has scope everywhere in the sentence. The wh-word such as who also create
no problems. Older versions of Principles and Parameters grammars required wh-words
to be handled in a separate manner using a process called wh-movement before getting
to LF, but there is no such need when we consider wh-words in terms of the Minimalist
paradigm (Hornstein 1995, Chap. §).

However, for sentences that contain quantifiers, the relative order of the elements
does matter and therefore the element selected to remain in each chain matters. For
example, in a sentence such as (12), given below, there is ambiguity because we have
two quantifiers, someone and everyone. Quantifiers take scope over a certain domain
and they can affect the meaning of other elements in that domain. Depending on which
of these two quantifiers is assumed to have wider scope, there are two readings of
the sentence. Our goal in this section is to algorithmically determine different possible
interpretations of sentences that are ambiguous due to this phenomenon called relative
quantifier scoping. We cannot just randomly select one member of each chain to keep
and then remove the rest. For example, for the simple transitive sentence (12) we have
the structure given in Figure 9.

394 COMPUTATIONAL INTELLIGENCE

\AgrsP

Someone(l) Agrg’

TP
\
AgroP
Spec Agry’

every seminaKl) \VP

someone(2) Vv’
v NP
. attended

e every seminan2)

FIGURE 9. Possible positions for someone and every seminar in sentence (12).

(12) Someone attended every seminar.

There are two interpretations of sentence (12). The first interpretation has a mean-
ing corresponding to: For every seminar x, there is some person y that attended x. The
second interpretation has a meaning corresponding to: There is some person y, such
that for every seminar x, it is the case that y attended x.

In this sentence, we have two kinds of quantifiers. An indefinite quantifier has more
than one alternative for referents. For example, someone and a refer to a single entity
but neither one is specific as to which entity. Definite quantifiers have a single referent.
For example, everyone refers to every person within a single context. Another definite
quantifier is the as in the seminar. By the context we know the referent.

The ambiguity in sentence (12) lies in the relative scoping of the arguments. The
first interpretation has the universally quantified argument, every seminar, with wide
scope and it has the existentially quantified argument, someone, with narrow scope. The
second interpretation has someone with wide scope and everyone with narrow scope.

4.1. Quantifier Scoping Algorithm

Determining the scope of quantifiers when there is more than one quantifier in a
sentence is a difficult problem that has generated copious research. In older versions
of Principles and Parameters grammar, such as Government and Binding Theory, the
approach to handling quantifiers has been to use Quantifier Raising (QR), a process
in which quantifiers are forced to move at LF to the top of the phrase structure and
attach to a newly formed node (Haegeman 1994; Culicover 1997). If we have several
quantifiers in a sentence, all the quantifiers have to move from where they are to the
top of the syntactic tree and attach (the technical term is adjoin) to newly built nodes
on top. The quantifiers can move in various orders and, depending on the order of
movement, there are different scopes of quantifiers. A quantifier takes scope over a
quantifier below it.

The need for QR is obviated in the Minimalist Program. The movements that have
taken place during derivation leading to LF are all the movements that are needed.
However, since we have chains in the syntactic tree at LE, and a chain has several
nodes with the same content, we must delete all but one node from each chain at LE

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 395

as noted earlier. The choice of nodes to delete gives us the ambiguities in scope that
we see for quantifiers.

In linguistics literature, we find several approaches to handling the problem of
determining quantifier scope in the context of the Minimalist Program. Some such
approaches are due to Hornstein (1995), Szabolcsi (1997) and Beghelli and Stowell
(1997). Noting that different quantifiers behave differently in terms of scoping, Szablocsi
(1997) subcategorizes quantifiers according to their scoping behavior, thereby distin-
guishing them syntactically. She extends the representation of quantifiers by adding
features that identify their scoping properties and semantic properties as well. Then she
postulates new functional heads where noun phrases with determiners have to move to
be able to satisfy or check grammatical requirements. This is an approach researchers
have taken to solve many linguistic problems in the MP paradigm. However, others,
such as Hornstein, take issues with the proliferation of functional nodes. It is Horn-
stein’s opinion that the introduction of such new functional categories is quite often
satisfactory from the point of view of derivation but is not well-supported by empirical
data. Although this claim is disputed by others, we found Hornstein’s explanation of
many LF phenomena quite simple and elegant and decided to base our implementa-
tion on his ideas. In what follows, we discuss his approach briefly and discuss how we
implement it.

It needs to be noted that Stroik (1996) also presents an explanation of scopal prop-
erties of quantifiers and some other syntactic phenomena using a modified version of
the Scope Theory developed by Aoun and Li (1993). Stroik casts Aoun and Li’s theory
in the Minimalist framework; however, since we found Hornstein’s approach sufficient
for our work, we did not pursue Stroik’s approach. Moreover, out of the three theories
presented here, Hornstein’s seemed to be the simplest one to follow.

4.2. Hornstein’s Approach to Quantifiers

Hornstein (1995) states the following five assumptions in order to reanalyze quan-
tifier scoping in minimalist terms:

A;: At the CI interface an A-chain has at most one and at least one lexical link.

A,: A quantified argument Q; takes scope over a quantified argument Q, iff Q,
c-commands Q, (and Q, does not c-command Q).

Aj;: A definite argument must be outside the VP shell at the CI interface.

A4: NPs in English begin in VP internal positions and move out of the VP shell to
[Spec, Agr] positions for case checking.

As;: Movement is copying and deletion.

We have already discussed assumption A, earlier in this section. We have also seen
A, in practice during the derivation of the sentences we discussed earlier. NPs, subjects
or objects, start from inside the VP shell and move out either to [Spec, Agr,P] if it
is an object NP or to [Spec, Agr,P] if it is a subject NP. The movement is needed for
feature checking which can be done only in the context of a specifier and its head in
the Minimalist framework. However, A; imposes a stricter requirement that has impact
on quantifier scoping. Hornstein states this as a requirement following arguments made
by Diesing (1992). The linguistic discussions are outside the scope of this paper. The
other assumptions in the list above will be discussed at the appropriate points below.

4.3. Implementation of Hornstein’s Ideas

The algorithm depends on the chains that we formed in the last section following
assumption A,. In Figure 9, someone can be in the [Spec, Agr,] position or [Spec, V]

396 COMPUTATIONAL INTELLIGENCE

position. Similarly, every seminar can be in the [Spec, Agr,P] or the V complement
positions. All our examples here and in earlier sections have a c-command structure in
which an element on the left c-commands all the elements on the right in the sentence
that follows A,. The structural relation of c-command among elements of a syntax tree
is quite simple. This relation is used by linguists to specify conditions for the occurrence
or non-occurrence of many syntactic phenomena.

“We say that a c-commands B if « does not dominate B and every y that dominates a
dominates B.” [Chomsky95:35]

For example, if o is someone(1) and B is every seminar(1) then someone(1) c-commands
every seminar(1) since every node vy (Agr,P, C', or CP) that dominates someone(1) also
dominates every seminar(1). The leftmost quantifier in the sentence will have wide scope
with elements to the right within the domain of the leftmost quantifier.

The algorithm to determine the relative ordering of the elements has steps 3A, 3B,
and 3C.

1. Step 3A: Delete all definite elements that are within the VP Shell.

2. Step 3B: For each chain that has adjacent links without an intervening link from
another chain, delete all but one of the adjacent links.

3. Step 3C: Show all combinations of selecting one element from each chain and
removing all other elements.

In Section 3, we saw that elements moved from one position to another position to
check features. The positions an element moved through are represented by the chain.
The movement in the Minimalist Program is a copy and deletion theory. The element
is copied from position to position and then at the interfaces all but one element in the
chain are deleted (Marantz 1995, p. 373).

The VP shell has [Spec, V] and the V complement argument positions. By using
the following algorithm for step 3A, we satisfy A; and A5 and we partially satisfy A;.

Algorithm for step 34

For each definite element in the derivation Do
If element is in a [Spec, V] or V complement
position Then
Delete element
End If
End For

For our example (12), this step removes every seminar(2) in the V complement
position. This is shown in Figure 10.

In Step 3B, we are concerned with the relative ordering of elements from differ-
ent chains. Therefore, adjacent elements from the same chain have the same position
relative to elements from other chains and can be considered the same. This rule is
intended to reduce the number of redundant possibilities. This step partially satisfies
A, and A; and does not violate any of the other assumptions. It does not have an effect
on example sentence (12) but is useful in a case like that of sentence (13):

(13) Everyone loves someone.

Sentence (13) is shown in Figure 11 after applying Step 3A. In Figure 11, some-
one(1) and someone(2) form one chain with everyone(1) the only remaining element in
its chain. Someone(1) and someone(2) are both to the right of everyone(1) and do not

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 397

C’\
AgrgP
T

Someone(1Agrg’

every

/\V S
someoneQ\

\Y% NP
attended

FIGURE 10. The element every seminar(2) removed in sentence (12).

have a link from another chain between them so we can delete one of the two someones
to reduce the number of redundant possibilities.

Step 3C satisfies assumption A;. In this step we obtain the two possible interpreta-
tions for sentence (12) that are shown in Figure 12.

The algorithm for Step 3C is given below.

Algorithm for step 3C

For each element in chain 1 Do
For each element in chain 2 Do

For each element in chain N Do
Save selected element from each chain in a list.
End For
End For
End For

For each list of elements Do
Copy the derivation

C
~
<
AgrsP
N R
Everyone(l) Agls
~

TP

~N
Agrg

Spec Agry’

someone(1) \VJ

. V NP
. loves |
Tt someone(2)

FIGURE 11. The element everyone(2) removed in sentence (13).

398 COMPUTATIONAL INTELLIGENCE

C
~
C’\
AgrgP
P .
Someone(1A&ls
S~
TP
} groP
T
Spe Agry’
every seminar(l) vy
~
v’
NN
A% NP
attended
C
~
fok
~
A g\x\
Agrg’
~
TP
Agrg
Spec Agry’
every seminar(1l) AV4
someone(2y _Y’
v NP
artended

FIGURE 12. The two possibilities for scope: someone with wide scope or every seminar with wide
scope.

Traverse the derivation removing all the elements
that are not within in the list.
End

For each chain there is a FOR loop that iterates through each element. The loops
are nested so that at each iteration through the innermost loop there will be a different
combination of one element from each chain. Each combination of elements is saved.
For each combination a copy of the derivation is made and all the elements that are
not in the combination are removed from the derivation.

4.4. Handling Raising Verbs

The same simple approach due to Hornstein to handle quantifier scope can be
used to handle several other linguistic phenomena. In this section and the following, we
will discuss two such phenomena and show how we adapt the LF processor to handle
each case.

The first phenomenon we discuss concerns raising verbs. In English, verbs such as
seem and intend are called raising verbs in Principles and Parameters grammars (Hud-
dleston 1993, p. 226) because there are situations in which they force the subject to
move from an embedded sentence to the outer or containing or matrix sentence. Hud-
dleston (1993, Chap. 5) puts verbs into two classes: (1) those in the seem class are:
begin, appear, happen, fail, need, tend, finish, stop, and continue; those in the intend class
are desire, hate, like, want, believe, claim, know, report, and think. Verbs belonging to
these two classes are called raising verbs [Hudon, p. 226] in principles and parameters
grammars.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 399

The approach outlined by Hornstein is able to handle, in a straightforward manner,
many issues that complicate matters with regard to the computational processing of
sentences containing raising verbs. We can handle the following and similar sentences.

(14) Someone seemed to attend every class.
(15a) Someone persuaded John to attend every class.
(15b) Someone hoped to recite every poem.
(15c) Someone believes John to be attending every class.
(16a) Someone expected every Democrat to win.
(16b) Someone expected every Democrat would win.

Sentence (14) is ambiguous to many with regard to quantifier scoping. Sentences
(15) are unambiguous. Sentence (16a) is ambiguous to many, whereas sentence (16b)
is unambiguous.

For sentence (14), after the NPs have moved overtly and covertly, we have the following
syntactic structure at LF:

[Agr,P Someone; seemed [Agr,P someone, to [Agr,P (every class); [VP someone;
attended (every class),]]]]-

The term every class, is a definite NP and, following Hornstein’s assumption As,
it is deleted from inside the VP shell. Now, we are left with a chain containing three
instances of someone, and a chain containing only one instance of every class. All but
one instance of someone must be deleted following assumption A;. If we keep either
someone, or someone, by deleting all the others, someone takes wider scope over every
class following assumption A,. If we keep someone; and delete the others, we get the
other meaning where every class has wider scope. These two give us the ambiguity in
the sentence.

In the case of sentences (15a), (15b), and (15c), someone starts from the internal
position of the matrix VP (i.e., the VP that contains the embedded sentence). In each
case, every class starts within the internal position of the embedded VP. Whichever ele-
ments of the resulting chains we delete, it is impossible to get the indefinite NP someone
of the matrix sentence inside the scope of the definite NP every class of the embedded
sentence. This rules out ambiguity. In older versions of principles and parameters gram-
mars, one had to postulate other means for solving this problem.

The fact that sentence (16a) is ambiguous and sentence (16b) is not can also be
shown in a similar fashion.

4.5. Handling Possessives

We now discuss how we can extend our algorithm to handle simple possessives as
in the sentence:

(17) Everybody beat his donkey.

Here, there is a possessive his used as a determiner in the noun phrase his donkey. In
such a situation, his is considered a definite quantifier. Following Hornstein, we can
simply delete his donkey from inside the VP shell.

In sentence 17, the structure at LF is the following before deletion:

[Agr P every man [TP [Agr,P his donkey [VP every man [V’ beat his donkey]]]]].

Now, we need to delete the definite NPs from inside the VP shell. Here, both every
man and his donkey are definite NPs.

400 COMPUTATIONAL INTELLIGENCE

So, after deletion, we have the following, with deleted NPs in parentheses:
[Agr P every man [TP [Agr,P his donkey [VP (every man) [V’ beat (his donkey)]]]]]-

Now we have every man taking scope over his donkey. In this resultant struc-
ture, every man c-commands his donkey. Using Binding Theory we say that when the
antecedent c-commands the pronoun, binding is permitted. Thus, we can bind every
man with his donkey. Thus we have one donkey for each man if we do the binding.

Binding Theory is the module of GB and MP grammar that regulates the referential
properties of NPs (Haegeman 1994). The Binding Theory, which was enunciated in the
context of the Government and Binding Theory, applies in the context of the MP also.
It must be applied at the LF—the only phrase structure form available in MP.

But, the statement of Binding Theory says “binding is permitted,” which means that
although binding is permitted, it is not necessary. If we bind, we get one meaning, and
if we do not bind we get the other meaning. This gives us the two meanings of the
sentence.

Binding resolves the ambiguity in sentences like (17) and it is not a matter for
scoping. However, we do not believe we should add this piece of Binding Theory to
our algorithm unless we deal with the general binding problem. If we were to add it, a
reader is likely to see this small binding piece we have added to deal with a particular
problem and say “This seems to be a convenient solution to this problem but where
is your general binding solution?” We leave a complete implementation of the Binding
Theory to future research.

4.6. Handling Other Syntactic Phenomena

Many other syntactic phenomena that needed specialized techniques and princi-
ples in older principles and parameters grammars can be handled using the approach
espoused by Hornstein. Some examples of such phenomena are Empty Category Prin-
ciple (ECP), weak crossover, superiority, and polarity effects, and many instances of
interactions between binding and relative quantifier scope in addition to the simple
case of such interaction we saw earlier. Our LF processor can be easily adapted to han-
dle all of these phenomena. Since the linguistic concepts are difficult for the general
Al reader, we do not discuss them. However, we must emphasize that because Horn-
stein’s approach obviates the need for special operations such as quantifier raising, the
computational problems in implementation of an LF processor are simplified.

4.7. Comparison with Stabler’s Approach to Quantifiers

For quantifier phrases, Stabler (1978, and forthcoming) adopts a simple version of
the theory of quantifiers proposed by Szabolcsi (1997) and Beghelli and Stowell (1997).
He distinguishes the following four categories of quantifiers:

1. Negative determiners, such as no as in No boy showed up.

2. Distributive or universal determiners such as each and every.
3. Group denoting determiners such as the, some, a, one, three.
4. Counting determiners such as few and fewer than five.

Furthermore, following Beghelli and Stowell, Stabler assumes new special functional
categories, named ref, dist, and foc (or, share), to handle quantifiers. They pro-
vide specifier positions that distinguish among quantifiers. Quantifiers of a certain type
move to the specifier of a certain predesignated functional category to have their fea-
tures checked. In particular,

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 401

—_

Negative quantifiers are interpreted in the specifier of the functional category neg.

2. Distributive and universal quantifiers are interpreted in the specifier of the func-
tional category dist.

3. Group denoting quantifiers are interpreted in the specifiers of the functional cate-
gories ref, foc or in their case positions.

4. Counting determiners are interpreted in their case positions.

For purposes of derivation, Stabler allows the two basic movements that we discussed
earlier: generalized transformation and singulary transformation, although he uses them
with different names for them. However, in a somewhat nonstandard fashion (linguisti-
cally speaking), he divides singulary transformation (where a part of a structure moves
from a lower level and attaches to the top) into three separate movements: only the
phonetic features move, only the semantic features of a lexical item moves, all the fea-
tures (i.e., both semantic and phonetic features) move. Additionally, a quantifier (e.g.,
some) of a functional category (e.g., ref) may have several different lexical entries with
different sets of features. The combination of four different kinds of movements and
several lexical items for some of the quantifiers and functional objects allows different
possibilities for the resultant structure and associated ambiguities in interpretation of
sentences with multiple quantifiers. It is a clever approach, but we found the alternative
feature structure sets for quantifiers and functional objects difficult to motivate. Also,
because of the several new functional heads that are introduced, the derivation process
becomes lengthier and more complex.

Although Stabler has detailed outlines regarding how things are supposed to work,
we have not seen any description of a working program. Also, the sentences he handles
are much simpler those we have covered in our work.

4.8. Determining a Logical Representation Compositionally

A logical form representation can be determined compositionally using a semantic
lexicon and semantic rules associated with each grammar rule. We use the Montague-
semantics-based approach outlined in Dowty (1979), Dowty et al. (1992), and Chierchia
(1993) to obtain the semantic representation in first-order predicate logic. For detailed
discussion, the reader is referred to Williams (1997).

5. DESCRIPTION OF THE PROGRAM

The program is written in Common Lisp using the GCL (GNU Common Lisp)
interpreter that runs on Unix. It is a pipeline where the outputs of the previous step
become the inputs to the next step. For the first step in the pipeline we use Allen’s
bottom-up parser (Allen (1995), Chaps. 3-5) with the grammar described previously.
The second step is to build an approximate derivation structure at Spell-Out for each
of the syntactic parses. This step creates the empty nodes, labels all the argument posi-
tions, and builds chains following our chain-building algorithm. The third step in the
pipeline is to build chains for covert movements. Finally, we apply our Step 3 algo-
rithms to produce derivations that have the correct quantifier scoping and can be used
to determine a logical representation compositionally. Here, we show only the simplest
example. Details of other examples can be found in Williams (1997).

5.1. Details for John loves Mary

We obtain the syntactic parse by calling the routine get-parse-trees. This will
result in a list of parse trees, the first of which is shown next:

402 COMPUTATIONAL INTELLIGENCE

(AGRS2 7 ((1 N24) (2 AGRS129)) (N2 25 ((1 NO))
(N NIL ((LEX JOHN))))
(AGRS1 10 ((1 T228))
(T2 11 ((1 AGRO227))
(AGRO2 14 ((1 AGRO126))
(AGRO1 16 ((1 V2TRAN25))
(V2TRAN 18 ((1 V1TRAN24))
(VITRAN 22
((1 VIRAN1) (2 N223))
(VIRAN NIL ((LEX LOVES)))
(N2 25 ((1 N3))
(N NIL ((LEX MARY)))))))))))

The parse is one list. The first element is the category. The second element is the
rule number. The third element is a list showing the instances of the rules that are the
direct descendants. Finally the fourth and fifth elements are the descendants, which are
lists defined the same way as the parent.

The next command performs node labeling, empty node creation, and chain building
to give us an approximate derivation structure at the point of Spell-Out. Running the
routine called get-parses-with-chains results in:

(AGRS2 7 NIL
(N2 25 ((CHAIN 1) (LEX JOHN) (LABEL AH) (POS 10))
(N NIL))
(AGRS1 10 NIL
(T2 11 NIL
(AGRO2 14 NIL
(AGRO1 16 NIL
(V2TRAN 18 NIL
(EMPTY NIL
((CHAIN 1) (LEX JOHN)
(LABEL AF) (POS 16)))
(VITRAN 22 NIL
(VTRAN NIL ((LEX LOVES)))
(N2 25
((CHAIN 2) (LEX MARY)
(LABEL AH) (POS 17))
(N NIL)))))))))

As before, the derivation structure is shown in one list. The first element is the
category and the second is the rule number. Here, however, the third element is NIL
or a feature list for argument positions. One of the feature lists is:

((CHAIN 1) (LEX JOHN) (LABEL AH) (POS 10)).

This feature list shows that the argument is part of chain 1, has the lexeme John, is
labeled the head of an A-chain, and is uniquely identified as position 10. As in the
syntactic parse, the fourth and fifth elements, if they exist, are the descendants which
are themselves lists the same format.

If we look at the derivation closer we can see another argument with the lexeme
John that is labeled the foot of an A-chain and identified as position 16. This argument
is also part of chain 1 and is the foot of the chain. This is the base position for the
chain. The category is EMPTY meaning that it was an empty position that was created
and filled with the chain-building rules.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 403

The argument with lexeme Mary is the only member of its chain (chain 2), since we
are just at the point of Spell-Out and have not yet shown the movements for checking
weak features. Invoking a subroutine called cwf (which stands for check weak features)
gives us the derivation after our step 2, where covert chains are built:

((AGRS2 7 NIL
(N2 25 ((CHAIN 1) (LEX JOHN) (LABEL AH) (POS 10))
(N NIL))
(AGRS1 10 NIL
(T2 11 NIL
(AGRO2 14 NIL
(N2 25
((CHAIN 2) (LEX MARY) (LABEL AH)
(POS 117))
(N NIL) NIL)
(AGRO1 16 NIL
(V2TRAN 18 NIL
(EMPTY NIL
((CHAIN 1) (LEX JOHN)
(LABEL AF) (POS 16)))
(VITRAN 22 NIL
(VTRAN NIL ((LEX LOVES)))
(N2 25
((CHAIN 2) (LEX MARY)
(LABEL AH) (POS 17))
(N NIL)))))))))

We can see a new element with lexeme Mary that is in the [Spec, Agr] position,
the category N2 as the first child of AGRO2. Finally, if we execute our Step 3 algorithms
we obtain the final parse, which is not much different.

This derivation selected John and Mary both in their head positions; the other
combinations of John and Mary in their other chain positions are generated but are not
shown here.

6. COMPARISON WITH OTHER PRINCIPLES-BASED PARSERS

We briefly compare our effort at parser writing with those reported in various pub-
lished papers on principles-based parsing. As we have noted earlier, as far as we know,
ours is the first attempt at building a substantial program that obtains the parse of a
sentence conforming to the MP. Stabler’s papers discuss a computational approach to
the derivation of sentences in the MP and handling of quantifier scope issues Stabler
1997, an forthcoming. However, we have not seen any discussion on an implemented
parser and post-parse or LF processor. Hence, our discussion here is essentially con-
cerned with parsers based on an earlier version of Principles and Parameters grammar,
the Government and Binding Theory (GB Theory).

Surely, there are examples of efforts at writing very substantial grammars for various
natural languages, such as the XTAG project at the University of Pennsylvania (XTAG
1998). However, such efforts are not interested at all in basing their work on any cog-
nitive theory or principles, even partially.! In general, the coverage of principles-based
parsers is small because such parsers are still products of exploratory research.

! Private communication with Aravind Joshi, the principal behind the XTAG project.

404 COMPUTATIONAL INTELLIGENCE

Our processor was built to cover a set of sentences that have been used by Merlo
in his paper describing a parser that was based on the GB Theory (Merlo 1995). We
have added another set of sentences to illustrate how the scope of quantifiers and the
interaction between quantifier use and possessives can be handled. We believe that it
is a sufficiently large syntactic coverage for a program meant primarily to show how a
parser and an LF processor based on the MP can be written.

Two of the related main computational difficulties in building parsers that are
built to work with principles and parameters only are overgeneration and slow pars-
ing (Berwick, Abney, and Tenny 1992, p. 8). Because exclusive binary branching makes
the syntax trees very deep, the number of functional entries can become large and there
are many lexical entries (including several for each word), with the result that the prin-
ciples vaguely talk about economy without being explicit. Hence, as a compromise, we
have obtained rules based on a study of derivations of a large number of sentences.

Of course, it will be a great idea if we can derive the rules from the basic principles
of the MP. We have already started working on aspects of this problem. Our ongoing
research, not reported in this paper, attempts to give precision to the economy condi-
tions discussed in the MP. We have written a program that takes various lexical entries
and simulates the movements that the entries undergo during the process of derivation
of a sentence, and the optimality-driven causes for such movements. This will help us
understand the nature of the optimality or the economy conditions in precise terms.
Other researchers are working on expounding them in theoretical linguistic terms as in
Kitahara (1997) and Collins (1997). It will be a significant triumph if the rules can be
obtained automatically, but it is a huge challenge left for future research.

Berwick and collegues write that all the authors in their book (Berwick et al. 1992, p.
32) who wrote about building parsers based on GB, viz., Abney (1992); Correa (1992);
Dorr (1992); Fong (1992); Epstein (1992); Kashket (1992); and Johnson (1992) made
compromises as far as the modularity of the various theories and principles (there
are about twenty of them in GB). They put together several modules (theories and/or
principles) to form super modules. They did this to reduce the problems of overgenera-
tion and slow processing. Berwick commented that they did not lump all the principles
together because that would lead us back to rules again. However, we do not see even
this as wrong-headed; this was precisely the approach taken by Merlo (1995). There
are many standard, traditional, and efficient techniques for handling rules in compiler
design. People who work seriously with the design and implementation of compilers will
consider it unreasonable, with proper justification, if a traditional and proven technique
is not used. However, not everything is lost here. In the ideal case, we should be able to
obtain these rules programmatically based on the theories and principles. The problem
here is that the principles are vaguely worded. Even if they were not, an off-line a priori
computation of the rules will be the way to go. Our program does not do so, and we
leave it for future research.

Adapting the comments in Berwick et al. to our effort, we can say that what we
have done looks more like a conventional context-free, rule-based system. However,
the synthesized rules embody the principles of MP, and later principles like Binding
Theory still need to be applied at LE. The process of synthesizing several principles into
a super principle or into rules can be considered “compiling.” In the parsers reported
in Berwick et al., the authors took two approaches to this compile-time/run-time trade-
off. Some, like Dorr (1992), Epstein (1992), Fong (1992), and Kashket (1992) did most
of the work by hand; others like Johnson (1992) have taken a more automatic route.
We have used the by-hand approach, but would like to automate or semiautomate the
process in the near future.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 405

7. CONCLUSIONS

There are several other Principles- and Parameters-Based parsers, such as those of
Dorr (1992) and Lin (1993) that are based on the GB theory that predates the Mini-
malist Program. GB principles constrain X-bar structures. The principles are applied in
isolation on an X-bar structure to determine its grammaticality. Dorr essentially builds
all possible X-bar structures for a sentence and then applies the principles as each
structure is built, filtering out the illicit structures. Lin’s parser, which is network based
and is quite efficient, is also based on GB theory but Lin applies the GB “principles to
descriptions of X-bar structures rather than the structures themselves.”

The primary limitation of our system is that it only works for sentences with the
same syntactic structure as our example sentences. However, due to the Minimalist Pro-
gram being a relatively new theory there is not yet work outlining detailed examples
for an extensive number of sentences in an uncontroversial manner, such as there is
for Government and Binding Theory (Haegeman 1994; Lasnik and Uriagereka 1988S;
van Riemsdijk and Williams 1986). Williams (1997) obtains a significant set of deriva-
tions for sentences worked out to the precision that is needed for writing computer
programs. These derivations are glossed over in this paper in Section 2. Since Princi-
ples and Parameters approaches are intended to describe all natural languages, a natural
extension to our work would be to incorporate coverage for other languages. One of
the authors is working on applying the principles of the MP to some of the easternmost
Indo-European languages such as Assamese and Bengali.

The efficiency of the algorithms has not been our primary concern. In order to
improve program performance one may be able to incorporate the algorithms within
the parsing mechanism instead of explicitly creating and traversing the derivation trees.

Lin’s (1993, 1994) principles-based parser applies principles to descriptions of struc-
tures instead of the structures themselves. A structure description could be built for
the Minimalist Program by basing the network on the clause structure and adding more
constraints following the principles of Shortest Move, Procrastinate, and Greed. The algo-
rithms discussed in Sections 3 and 4 could possibly be built into the structure description
itself. For example, the network may look like the one given in Figure 13 in which nodes
are positions where overt elements are found. All the nodes are linked to a central node
which collects message items until it determines that a clause is completed. The mes-
sage item for a complete clause is then sent to the S node. Message items would be as
described in Lin (1994). An item is a triplet that describes a structure (surface-string,
attribute-values, sources) where surface-string denotes the contiguous words in the sen-
tence, attribute-values specify syntactic features, and sources describe the immediate
substructures. The S node would collect completed clause structures until it determined

N

//O\\

c [V, Comp]
\Y

[Spec, Agrs]

FIGURE 13. A possible network for message-based parsing with the MP.

406 COMPUTATIONAL INTELLIGENCE

the sentence was complete. Since the Minimalist Program has explained linguistic the-
ory in a more uniform and simpler way than Government & Binding theory, this parser
may be simpler with coverage equivalent to that of Lin (1993, 1994).

REFERENCES

ABNEY. S. P. 1992. Parsing by chunks. In Principle-Based Parsing: Computation and Psycholinguistics.
Edited by R. C. Berwick, S. P. Abney, and C. Tenny. Kluwer Academic Publishers, Dordrecht,
pp. 257-278.

ALLEN, J. 1995. Natural Language Understanding, 2nd ed. Benjamin Cummings Publishing, Menlo
Park, CA.

AOUN, J., and A. L1. 1993. The Syntax of Scope. MIT Press, Cambridge, MA.

BEeGHELLL, E, and T. STOWELL. 1997. Distributivity and negation: The syntax of each and every. In Ways
of Scope Taking. Kluwer Academic Publishers, Dordrecht.

BErWICK, R. C., S. P. ABNEY, and C. TENNY, Ed. 1992. Principle-Based Parsing: Computation and
Psycholinguistics. Kluwer Academic Publishers, Dordrecht.

CHIERCHIA, G., and S. MCCONNELL-GINET. 1993. Meaning and Grammar: An Introduction to Seman-
tics. MIT Press, Cambridge, MA.

CHOMSKY, N. 1981. Lectures on Government and Binding. Foris, Dordrecht.

CHOMSKY, N. 1993. Language and Thought. Moyer Bell, Wakefield, RI.

CHOMSKY, N. 1994. Bare phrase structure. MIT Occasional Papers in Linguistics 5, Department of
Linguistics and Philosophy, MIT, Cambridge, MA.

CHOMSKY, N. 1995. The Minimalist Program. MIT Press, Cambridge, MA.

CoLLINs, C. 1997. Local Economy. MIT Press, Cambridge, MA.

CORREA, N. 1992. Empty categories, chain binding, and parsing. In Principle-Based Parsing: Computa-
tion and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny. Kluwer Academic
Publishers, Dordrecht, pp. 83-122.

CULICOVER, P. W. 1997. Principles and Parameters: An Introduction to Syntactic Theory. Oxford
University Press, UK.

DIESING, M. 1992. Indefinites. MIT Press, Cambridge, MA.

DORR, B. J. 1992. Principle-based parsing for machine translation. In Principle-Based Parsing: Compu-
tation and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny. Kluwer Academic
Publishers, Dordrecht, pp. 153-184.

Dowrty, D. R. 1979. Word Meaning and Montague Grammar. R. Kluwer Academic Publishers, Dor-
drecht.

Dowry, D. R,, R. E. WALL, and S. PETERS. 1992. Introduction to Montague Semantics. Kluwer Aca-
demic Publishers, Dordrecht (reprint of 1981 edition, corrections).

EpsTEIN, S. 1992. Principle-based interpretation of natural language quantifiers. In Principle-Based
Parsing: Computation and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny.
Kluwer Academic Publishers, Dordrecht, pp. 185-198.

Fong, S. 1992. The computational implementation of principle-based parsers. In Principle-Based
Parsing: Computation and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny.
Kluwer Academic Publishers, Dordrecht, pp. 65-82.

HAEGEMAN, M. V. L. 1994. Introduction to Government and Binding Theory. Oxford Univerity Press,
UK.

HORNSTEIN, N. 1995. Logical Form, From GB to Minimalism. Blackwell Publishers.

HupDLESTON, R. 1993. Introduction to the Grammer of English. Cambridge University Press,
Cambridge, England (reprint of 1984 edition).

JOHNSON, M. 1992. Deductive parsing: The use of knowledge of language. In Principle-Based Parsing:
Computation and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny. Kluwer
Academic Publishers, Dordrecht, pp. 30-64.

KASHKET, M. B. 1992. Parsing Walpiri—A free word order language. In Principle-Based Parsing: Com-
putation and Psycholinguistics. Edited by R. C. Berwick, S. P. Abney, and C. Tenny. Kluwer Aca-
demic Publishers, Dordrecht, pp. 123-152.

KiTAHARA, H. 1997. Elementary Operations and Optimal Derivations. MIT Press, Cambridge, MA.

PARSING AND INTERPRETATION IN THE MINIMALIST PARADIGM 407

LasNIk, H. 1999. On feature strength: Three minimalist approaches to overt movement. Linguistic
Inquiry, 30(2):197-218.

LasNIK, H., and JUAN URIAGEREKA. 1988. A course in GB Syntax: Lectures on Binding and Empty
Categories. MIT Press, Cambridge, MA.

LiN, D. 1993. Principle-based parsing without overgeneration. In Proceedings of the 24th Annual
Meeting of the Association for Computational Linguistics, Columbus, Ohio.

LN, D. 1994. PRINCIPAR—An efficient, board-coverage, principle-based parser. In Proceedings of
COLING: the International Conference on Computational Linguistics.

MARANTZ, A. 1995. Government and Binding Theory and the Minimalist Program, Blackwell,
Oxford, UK.

MERLO, P. 1995. Modularity and information content classes in principle-based parsing. Computational
Linguistics, 21(4):515-541.

MoHANAN, T. 1994. Argument Structure in Hindi. CSLI Publications, Stanford University,
Stanford, CA.

STABLER, E. P. 1997. Computing quantifier scope. In. Ways of Scope Taking. Edited by Kluwer Aca-
demic Publishers, Dordrecht, pp. 155-192.

STABLER, E. P. Forthcoming. Parsing and generation for grammars with movement. http://www.humnet.
ucla.edu/humnet/linguistics/people/stabler/epspub.htm.

STROIK, T. 1996. Minimalism, Scope and VP Structure. SAGE Publications, Thousand Oaks, CA.

SzABOLCsI, A. 1997. Strategies for scope taking. In Ways of Scope Taking. Edited by Kluwer Academic
Publishers, Dordrecht, pp. 109-154.

THE XTAG Group. 1998. The XTAG project, http://www.cis.upenn.edu/ktag/home.html. Department
of Computer and Information Science, University of Pennsylvania, Philadelphia, PA.

vAN RIEMSDUK, H., and E. WILLIAMS. 1986. Introduction to the Theory of Grammar. MIT Press,
Cambridge, MA.

WILLIAMS, J. S. 1997. Natural language processing and the minimalist program. MS thesis, Department
of Computer Science, University of Colorado at Colorado Springs.

ZWART, C. J.-W. 1994. Introduction. Groningen Arbeiten zur germanistischen Linguistik, 37:1-17.

