
PARSING AND SYNTACTIC ERROR RECOVERY FOR 

CONTEXT-FREE GRAMMARS BY MEANS OF COARSE STRUCTURES 

Ernst-Wolfgang Dieterich 

Institut fur Informatik der TU MUnchen, 8 MUnchen 2, Arcisstr. 21 

Introduction 

In a l l  high level programming languages there are some pattern s of tokens often 

cal led del imi ters by which a program is coarsely structured, i . e .  which characterize 

certain substructures of a program. Such patterns determine a "coarse structure" (cs) 

of a grammar. For example, begin...end w i l l  be character is t ic  brackets for <block> 

and i f . . . t h e n . . . e l s e . . . f i  a character is t ic  pattern for < i f  statement> in an Algol- 

l i ke  language. In addit ion, the st r ing occurring between i f  and then in a correct 

program is known to be reducible to the nonterminal <Boolean expression> using only 

a certain subgrammar. A programmer, too, t r i es  to understand a possibly incorrect 

program by f i r s t  looking for  the syntact ic structure of cs tokens. 

In th is  paper we describe two applications of coarse structures: s impl i fy ing the 

parsing process and analysing and correcting syntax errors where global rather than 

local context is used. In section 1 we introduce a rest r ic ted type of coarse struc- 

tures. For a general de f in i t i on  of coarse structure we refer  to [3 ] .  In section 2 

we state the theoret ical  resul ts for  the s imp l i f i ca t ion  of the parsing process 

achieved by means of coarse structures which is the topic of section 3. The las t  

section 4 deals with the appl icat ion of coarse structures to error recovery. 

I. Definitions and notation 

Let G = (V,T,P,Z) be a context-free grammar, where V is the vocabulary of G, T c V 

the set of terminals,  N := V - T the nonempty set of nonterminals, P a f i n i t e  set 

of productions and Z E N the axiom. V X denotes the set of a l l  words over V and 

V + := V x - ~}  where ~ is the empty word. For x E V X Ig(x) is the length of the 

word x, i . e .  the number of symbols in x. -~-> is the usual re la t ion direct ly derived 
with respect to G and =~=> ( ~ )  the t rans i t i ve  ( t rans i t i ve  and re f lex ive)  

closure of -~->. A rightmost der ivat ion is  represented by the re lat ions -~-> , =~--> , 

and E~> . S(G) :: {x / Z ~ >  x} is the set of sentential forms of G. 
G { ~ i f X E K  

For any K~ V we define the homomorphism h K as hK(X ) := otherwise. 



181 

A set K c V is cal led kernel alphabet of G i f f  for  a l l  productions N::=x E P where 

N E K we have hK(X ) # ~. 

The elements of a kernel alphabet are called kernel tokens. A kernel alphabet K deter- 

mines the set of kernel productions PK := { X::=x E P / hK(X ) # ~}. 

Let N K :={ X / 3X::=x E PK } and N ~ :={ X' / X E N K} with N' N V = B. The set P' 

ofproduct ions is defined by the fol lowing algorithm: 

(1) P' := P - PK ; 

(2) X::=x E p' with X E N K is  replaced by X' : :=x ; 

(3) i f  X::=aYb E p' with Y E N K we add X::=aY'b to P'. 

The kernel-free subgr~mar with axiom u E (V-K) x is defined as 

Gf(K,u) = (VUN'U~u},Tf,Pf,Zu) where Tf : :  T u N K and Pf := P' u{ Zu::=u}, Z u ~ V. 

Let Sf(u) be the set of a l l  sentent ial  forms of Gf(K,u), then we have Sf(u) ~ {V-K) x. 

The K-coc~se s t r u e t ~ e  CS(G,K) of G is a system of rules 

R := {(XoAlX1...AnX n <--  M and X~E Sf(u~), o~¢~n) / 

M::=UoAlUl...AnU n E PK' A I " "An E K +, Uo...u n E (V-K) X} 

U {(~x$ <--  Z' and x E Sf(Z))} with $,Z' ~ V. 

A rule of CS(G,K) is applicable only i f  X~E Sf(u¢) holds for  a l l  ~. A I . . .A  n is called 
kernel pat tern.  

Example 1: Consider the fol lowing extract  of an A lgo l - l i ke  grammar G with axiom 

<block>: 

1, <block> ::= 

2. <decl> ::= 

3. <decl part>::= 

4. <stmt l i s t > : : =  

5. <stmt> : : :  

6. < i f  clause>::= 

7. <expr> ::= 

8. <sexpr> ::= 

begin <decl> , <stmt l i s t>  enid I begi n <stmt l i s t>  end 

<decl part> r <decl> ; <decl part> 

type id I type id = <sexpr> 

<stmt> l<stmt> ; <stmt l i s t >  

id := <expr> I <block> f 

< i f  clause> <stmt l i s t >  f i  I 

< i f  clause> <stmt l i s t >  else <stmt l i s t >  f i  

i_f_f<expr> then 

<sexpr> f <sexpr> = <sexpr> 

id I <sexpr> + id 

I f  we choose the kernel alphabet K ={ .b.e.g.i.n, . , end, i f ,  then, < i f  clause>, else, f i  } 

the rules of the K-coarse structure CS(G,K) are 

( begin x . y en_~d <-- <block> and x E Sf(<decl>), y E Sf(<stmt l i s t> )  ), 

( begin x end <--  <block> and x E Sf(<stmt l i s t > )  ), 

( < i f  clause> x f i <-- <stmt> and x E Sf(<stmt l i s t > )  ), 



182 

( < i f  clause> x else y f i  <-- <stmt> and x,y E Sf(<stmt l i s t> )  ),  

( i f  x then <-- < i f  clause> and x E Sf(<expr>) ),  

( $ x $ <-- Z' and x E Sf(<block>) = {<b lock>} ) .  

The kernel token of the th i rd  a l te rnat ive  of production 5. is < i f  clause> f i .  The 

kernel- free subgrammar Gf(K,<stmt l i s t> )  consists of the fol lowing productions: 

Z<stmt l i s t >  ::= <stmt l i s t >  
<stmt l i s t >  : : :  <stmt> I <stmt> ; <stmt l i s t >  I <stmt'> I <stmt'> ; <stmt l i s t >  

<stmt'> ::= id := <expr> I <block> 

<expr> : : :  <sexpr> I <sexpr> = <sexpr> 

<sexpr> ::= id I <sexpr> + id u 

I t  can be shown that the set of a l l  str ings reducible te Z' by CS(G,K) is exact ly 

the set of sentential forms of G enclosed by ~. 

According to the i n t u i t i v e  idea of coarse structures the syntact ic structure of the 

kernel tokens should be recognized in a very simple way. This can be achieved by 

the fol lowing res t r i c t ions :  

A K-coarse structure is cal led 

- s i m p l e  i f f  i t  does not contain two rules with kernel patterns a and b such that 

( i )  a = Ibr  with l , r  E K + or 

( i i )  a = Ic ,  b = cr with c , l , r  E K x and c # ~, I r  # ~; 

- deterministic iff 

( i )  fo r  each rule (XoAlXl...AnXn <-- M and x~E Sf(u~), o~_~n) we have 

U O : U n = £~ 

( i i )  there are not two d i f fe ren t  rules in R with the same kernel pattern. 

The K-coarse structure of example 1 is simple and determinis t ic .  

Replacing the conditions x~ E Sf(u~) contained in the rules of a simple determinist ic 

K-coarse structure by the weaker conditions x~ E (V-K) ~ we get the K-structure 

St(G,K) of G. There is a one-to-one mapping from the rules of CS(G,K) to those of 

St(G,K). 

The cs phrases are recognized by means of the rules of a K-structure, and the corres- 

ponding rules of the K-coarse structure contain a l l  the information about how to 

parse the remaining " f ine structure".  

Note that kernel-free subgrammars may possess fur ther  K'-coarse structures. 



183 

2. Properties of kernel- f ree sub grammars 

The substrings of a program occurring between two tokens of a kernel pattern of a 

K-structure have to be parsed by uniquely determined kernel- f ree subgrammars. In 

th is  section we study how d i f f i c u l t  i t  is to parse these str ings in comparison to 

the tota l  grammar. From our de f in i t i on  of kernel- f ree subgramm, ars we could expect that 

there are less local ambiguities than in the total  grammar. In that case the parsing 

algorithm for  each subgrammar becomes simpler (or at least not more d i f f i c u l t )  than 

that  for  the tota l  grammar. Note that the axioms of kernel- f ree subgrammars are always 

substrings of r igh t  hand sides of productions. 

In th is  section we present the solut ion for  the class of LR, LL, BRC, and precedence 

grammars. For def in i t ions  we refer  to [1].  

Let G = (V,T,P,Z) be a context- f ree grammar, CS(G,K) a K-coarse structure and u a 

nonempty substring of a r igh t  hand side of a production of G. 

Theorem I:  I f  G is LR(k), then Gf(K,u) is LR(k') for  some k' ~ k. 

Proof: In the fol lowing we use the index f instead of Gf. Suppose Gf(K,u) := Gf = 

(Vf,Tf,Pf,Zu) is not LR(k). Then there are two rightmost derivat ions in Gf 

(1) Z u -~-> u ~---> aAw -~-> abw, w E T ~ 
f f 

X (2) Z u -~-> u ~ >  cBx -~-> aby, x C Tf 
f 

and 

with Firstk(w ) = Firstk(Y ) and aAy # cBx, i .e .  a # c or A # B or y # x. 

Because u is a substring of a r igh t  hand side of a production, there is a rightmost 
der ivat ion in G 

(3) Z ___r:~>dut with t E T ~. 
G 

The terminal alphabet of Gf consists of some terminals and some nonterminals of G. 

Therefore we can wr i te  Firstk(w) = Firstk(Y) = XoNlXl...NmX m with m_>o, x~ E T x, 

o~<_m, and Ne, C N N Tf,  l~t~m. Replacing the f i r s t  m nonterminals N 1 . . . . .  N m of 

w and y by terminal str ings t l , . . . , t  m with N.~G:r---> t~we get 

(4) w ~=->w' E T X and y ~m>y '  E T x. 
G G 

I t  can be shown that each t ~ #  ~. Therefore we have 

(5) Firstk(w'  ) = Fi rstk(Y'  ) = Firstk(xot lx1. . . tmXm). 



I84 

Combining ( I )  up to (5) we have 

(6) Z ~m> dut ~ >  daAw't -~-> dabw't 
G G 

(7) Z ~ >  dut ~ >  dcBx't -~-> daby't 
G G 

(8) F i r s t k (w ' t  ) = F i r s t k (Y ' t  ). 

I f  y # x, then we have y ' t  # x ' t .  Otherwise we have da # dc or A # B, i .e .  

daAy't # dcBx' t ,  a contradict ion to the LR property of G. D 

Because of the symmetry between the de f in i t i on  of LR and LL grammars as well as 

between rightmost and leftmost derivat ions an analogous statement holds for LL 

grammars. 

Theorem 2: I f  G is (m,n)-BRC, then Gf(K,u) is (m',n')-BRC for  some m' ~ m, n' ~ n. 

Proof: Suppose Gf(K,u) is not (m,n)-BRC. Then there are two rightmost derivat ions 

in Gf 

(1) &mzu&n -- -> &mu&n 

(2) &mzu&n -- -> &mu&n 

with (3) Ig(x)  ~ Ig(y) 

r -~:-> &maAw&n -~-> &mabw&n , w E Tf 
f 

~__-> &mcBx&n - [ ->  &mcdx& m &ma'by&n 
f = , f 

y £ T x 
f 

(4) Lastm(a' ) = Lastm(a ) and Firstn(W ) : Firstn(Y ) 

such that a'Ay # cBx, i . e .  a' # c or A # B or x # y. Furthermore there is a r igh t -  

most derivat ion in G 

(5) &mz&n ~---> euf with f E Tx& n, 
G 

Subst i tut ing each nonterminal in Firstn(W) = Firstn(Y) by an appropriate terminal 

s t r ing and the other nonterminals in w and y by some others we get w' and y '  and 

analogously to the previous proof Firstn(W' ) = Firstn(Y'  ). Combining (1) and (2) 

with (5) we get two rightmost derivat ions in G with the same n symbols to the r ight  

and the same m symbols to the l e f t  of a possible r ight  hand side but not with the 

same parsing act ion, a contradict ion to the (m,n)-BRC property of G. m 

Theorem 3: I f  G is an operator precedence or a simple precedence grammar, then 

Gf(K,u) is of the same type. 



185 

Proof__: Let u = A I . . .A  n and ~ be an endmarker not in V, we have ~ , f  X and Y.>f $ 

for  a l l  X c FirstGf(Al  ) and a l l  Y C LastGf(An ) where Gf := Gf(K,u), I f  we have 

A ~f B then A ~ B holds where ~f and ~ is one of the precedence re lat ions of Gf(K,u) 

and G, respect ively,  I f  A' ~ f  B, A ~ f  B' or A' ~f  B holds then we also have A ~ f  B. 

Since u is a substring of a r igh t  hand side of a production of G, we have A ~  A~+ 1 

as well as A~ ~f A~+ I for  l~f~n-1. Therefore i f  Gf(K,u) has two or more d i f fe ren t  

re lat ions between two symbols then the same is val id in G, which contradicts the 

assumption. [] 

One could think u to be any substring of a sentential  form occurring in a rightmost 

or a leftmost der ivat ion,  respect ively.  The fol lowing examples show that in such a 

case we can get kernel- f ree subgrammars which are more complicated than the total  

grammar. 

Example 2: We consider the fol lowing grammar G: 

Z::=$ E $ E::=E + T ! T T::=T ~ F ! F F::=( E ) J i 

G is known to be LR(1). There are sentent ial  forms of rightmost derivat ions a sub- 

s t r ing of which is E {+ i} n, n~o, I t  can easi ly  be shown that for  each n ~ o 

Gf({~},  E {+ i} n) is LR(2n+I) but not LR(2n). 

Example 3: The grammar with the productions 

Z::=S L $ L::=N A C N::=M B M::=K A K::=B 

is an operator and a simple precedence grammar, The st r ing MBA is a substring of the 

rightmost sentent ial  form SMBAC~. Because of the axiom production ZMBA::=MBA of 

Gf := Gf({$},MBA) we get the re]at ion B ~f A in addit ion to the re lat ion B'>f A 

such that Gf is neither a simple nor an operator precedence grammar, m 

3. S imp l i f i ca t io  9 of parsing 

The resul ts of section 2 suggest that the use of coarse structures s impl i f ies parsing 

of context- f ree grammars. In order to demonstrate the power of th is strategy we 
consider the fol lowing grammar: 

Example 4: o. Z::=A 

I .  A::=[L then B] 

2. A::=[B i f  L] 

3. L::=L+I 8. B::=B+C 

4. L: :=I  9. B::=C 

5. L::=A lo. B::=A 

6. I : : = i  I i .  C::=i 

7. I : :=(L)  12. C::=(B) 



186 

Since the sublanguages for  L and B are ident ical  the grammar is neither LR nor LL. 

We choose the kernel alphabet K = { [ ,  ] ,  i f ,  the~ which determines a simple deter- 

min is t ic  K-coarse structure. The only two kernel-free subgrammars are Gf(K,L) and 
Gf(K,B) both of which are (I,o)-BRC, n 

Simpl i fy ing the syntact ic analysis in th is  way we ar r ive  at the fol lowing problem: 

Given a unique context-free grammar G we wish to parse i t  by means of a simple 

determinist ic K-coarse structure such that a l l  kernel-free subgrammars are of a 

given "simple" grammar class X. Because parsing of coarse structures is oriented 

bottom-up on pr incipal  we w i l l  choose only bottom-up classes, e.g. 

X E {LR(k), (m,n)-BRC / m , n , k ~ .  

In order to f ind an appropriate kernel alphabet K we proceed as fol lows: 

(1) We construct an X-parser for  G, 

(2) I f  G is an X-grammar we are done. Otherwise several ambiguous entr ies w i l l  

occur in the parsing table. These entr ies correspond to a set of critical pairs 

of productions, Now we may t r y  to construct a simple determinist ic K-coarse 

structure such that none of i t s  kernel-free subgrammars contains a c r i t i c a l  pair 

of productions, i . e .  the K-coarse structure separates the c r i t i c a l  pairs of 

productions. 

To that end we consider the augmented grammar G' derived from G [1]as a directed 

graph Gr(G') as follows [6] :  

Each production is a vertex in Gr(G'). Let p = N::=n, p' = M::=m E P, then there is 

an arc from p to p' i f f  n = aMb for  some a,b E V X. Note that for a reduced augmented 

grammar G' the graph Gr(G') is connected where a vertex corresponding to the axiom 

production Z'::=Z is an ancestor of each other vertex. A K-coarse structure divides 

the grammar G' into several kernel-free subgrammars. This is represented in Gr(G') as 

fol lows: ( i )  Each vertex corresponding to a kernel production is deleted from Gr(G') 

together with each arc s tar t ing or ending in th is vertex; Gr(G') is divided into a 

set of connected subgraphs. ( i i )  For each kernel-free subgrammar with axiom u deter- 

mined by the K-coarse structure we have to insert  a vertex corresponding to the axiom 

production Zu::=u and a l l  arcs according to the above de f in i t i on .  Thus in general 

some connected subgraphs are recombined into one connected subgraph. Changing some 

nonterminals N into N' and introducing some new productions according to the def i -  

n i t ion  of kernel- free subgrammars does not change the subgraphs essent ia l ly .  Now a 

kernel-free subgrammar with axiom u consists of a l l  productions corresponding to 

vert ices which are descendants of the vertex corresponding to Zu::=u. 

In constructing an appropriate K-coarse structure we have to determine for each 

c r i t i c a l  pair  (p,p ' )  of productions sets of vert ices such that in the subgraph of 

Gr(G') without these vert ices there is no common ancester of p and p ' .  Such sets 

of vert ices are cal led separating sets. Because we are interested only in simple 



I87 

determinist ic  K-coarse structures some of the separating sets for  a c r i t i c a l  pair  

of productions are rejected from the beginning. Now we have to construct a kernel 

alphabet K such that CS(G',K) is simple and determinist ic  and the set of the kernel 

productions contains the productions corresponding to a separating set for  each 

c r i t i c a l  pair  of productions. For deta i ls  cf .  [3 ] .  In the las t  step we have to 

guarantee that no axiom production w i l l  recombine two productions of a c r i t i c a l  pair .  

Example 5: From example 4 we derive the fol lowing graph Gr(G'): 

:=[B i f  1. 2. I A: L] 

3.t . t,-rs, lo. < 

For each XE {(m,k)-BRC,LR(k) / m>_l,k_>o} we have the two c r i t i ca l  pairs of 

productions: (5 . , I o . )  and (6 . ,11. ) .  A separating set for  both i s {  I . , 2 . }  . 

Looking for  a simple determinist ic K-coarse structure with 1. and 2. as kernel 

productions we get the one given in example 4. The vert ices corresponding to the two 

axiom productions ZL::=L and ZB::=B are ancestors of only the l e f t  and r ight  framed 

part of the graph, respect ively,  m 

4. Syntactic Error Recovery 

In the philosophy of top-down programming a programmer chooses a certain construct 

such as a block or a loop which has to do something, and in a second step he develops 

th is  construct. In general such constructs are characterized by special del imi ters,  

i , e .  in our terminology by special kernel patterns. This way of program development 

in mind we suppose that kernel tokens are syntac t ica l ly  more important than other 

symbols. Using a simple determinist ic  K-coarse structure for  syntact ic error reco- 



188 

very in connection with bottom-up parsing y ie lds the fol lowing advantages: 

( i )  syntact ic errors are separated on two levels:  errors in the coarse structure 

where we have to repair  the hK-image of the program, and errors in certain sub- 

grammars where error recovery is often much simpler than in the tota l  grammar; 

( i i )  i f  e f f ic iency doesn't matter, e.g. in a separate syntax check, we can f i r s t  bui ld 

up and eventual ly repair  the syntact ic structure of the kernel tokens. I f  a reason- 

able repair  is impossible we can stop the parse of that par t icu lar  part of the pro- 

gram asking the programmer for  correction of th is error.  Thus in the case of serious 

errors l i ke  missing end s we avoid the usual l i s t i n g  of senseless error messages 

l i ke  " i d e n t i f i e r  not declared" e tc . ;  

( i i i )  looking for  a kernel pattern enclosing the error posit ion we use, in contrast 

to most of the other error recovery methods, global rather than local context for  

repair ing the error.  

In order to f ind a kernel pattern as close to the error posit ion as possible we 

favour large kernel alphabets. 

I f  a bottom~up parser detects some syntax error i t  has to search in the stack for  

the longest s t r ing An...A 1 of kernel tokens which is a pref ix  of a kernel pattern. 

Three cases are possible: 

(a) i t  f inds kernel tokens B I . . . . .  B m in the input such that A$. . .AIBI . . .B m ~ n )  is a 

kernel pattern. The error posit ion is between A 1 and B1; 

(b) some of the kernel tokens of the input form a kernel pattern which has to be 

reduced before the pattern pref ix  in the stack can be completed; 

(c) no kernel pattern enclosing the error posit ion can be found because there is no 

pre f ix  of a kernel pattern or th is pref ix  cannot be completed, i . e .  an error in the 

coarse structure is detected. 

In the f i r s t  case the kernel-free subgrammar in which the error occurs is uniquely 

determined and an appropriate repair ing algorithm can be used. 

Example 6: We consider the fol lowing erroneous sentences of the grammar of example 1. 

(1) begin id = id + id;  type id = id. id := id + id end 

(2) begin id = id + id ;  id := id + id en_~d 

In both cases the error posit ion is between the second and the th i rd symbol of the 

program. We use the K-coarse structure given in example 1. Then in program (1) we 

f ind the enclosing kernel pattern begin end indicat ing that the error has to 

be corrected in the kernel-free subgrammar Gf(K,<decl>). Correcting th is error a 

type w i l l  be inserted a f te r  the begin symbol. In program (2) the enclosing kernel 

pattern is begin end and the correction has to take place in the kernel-free 



189 

subgrammar Gf(K,<stmt l i s t > )  where the minimum distance correct ion w i l l  be changing 

the " : "  to a " :=" .  Thus we can d is t ingu ish  the two l oca l l y  ident ica l  error s i tuat ions 

by means of kernel context.  A t h i r d  type of such an error  is given in example 7. 

Af ter  having reduced some kernel patterns case(b) w i l l  lead to case(a) or case(c). 

I f  there is an error  in the coarse structure (case(c)) we have to repair  the syntac- 

t i c  s t ructure of  the kernel tokens. This can be done using a local correct ion method 

fo r  kernel tokens s im i la r  to that  introduced in [2] or a modi f icat ion of the algorithm 

of [5] generalized from pairs of brackets to patterns. As another p o s s i b i l i t y  we 

present the appl icat ion of a generalized precedence method in parsing the kernel 

tokens together wi th an appropriate error  recovery method. 

Let K c V be a kernel alphabet of the context- f ree grammar G = (VoT,P,Z) and 

A,B E V. Then we define the fo l lowing re la t ions on V [4 ] :  

A ~[K] B :~ 3u E (V - K) x 3v E V x such that  B::=uAv E P 

A ~[K] B :~ 3u E V x 3v E (V - K) x such that  B::=uAv E P 

A ~[K] B :~ 3u E (V - K) ~ 9v,w E V x 3C E N such that C::=vAuBw E P 

We denote the transitive (transitive and reflexive) closure of m[K] and ~[K] by 

~[K] and ~[K] ( ~[K] and ~{K] ). Using products of relations and the inverse 

( )- I  of a relation we define the generalized precedence relations for kernel tokens 

as follows: 

-[K] := 

<.[ K] : = 

->[K] := 

~[K] n (K × K) 

~[K](E[K])  -1 n (K x K) 

5[K] ~[K] (~ [K ] ) - I  n (K , K) 

Now we can parse the hK-image of a program according to a usual precedence method 

with the only modi f icat ion that a reduction w i l l  cause pushing the l e f t  hand side 

L onto the stack only i f  L is  a kernel token. In addi t ion an error  recovery method 

fo r  precedence parsers (e.g. [7 ] )  may be appl ied. 

I t  should be noted that  we have only to require d is jo intness between ~[K] and 

~[K] U ~[K] (weak precedence), since in a simple K-coarse st ructure no kernel pattern 

can be a pos t f i x  of another kernel pattern.  

A l l  blank entr ies in our precedence matr ix correspond to the empty re la t ion  (!) of 

[7] .  As correct ing actions we admit delet ion or inser t ion of a kernel token. I f  in 

one s i tua t ion  both correct ions are possible the decision about the r i gh t  correct ion 

can sometimes be made by looking fo r  special symbols in the kernel- f ree environment. 

The fo l lowing example w i l l  i l l u s t r a t e  the proposed method for  error  recovery of 



190 

kernel tokens: 

Example 7: F i r s t  we give the tab le  o f  the general ized precedence re l a t i ons  fo r  the 

grammar and the kernel alphabet given in example 1. For b rev i t y  we omit the [K]. 

<i f clause> 

begin <" "- - <" <" 
2- 

< .  <"  < .  

end .> ,> .> .> .> .> 

< i f  clause> <. <. <. ~ '= 

i f  

then .> .> ,> ,> ,> 

eise <. <. <. ' --' 

i~i .> .> .> .> .> .> 

Consider the f o l l ow ing  erroneous program: 

begin id = id + id then begin i f  id = id + id ;  .type id . 

i f  id  = id id := id + id e lse id := id f i ;  id := id end f i  end 

The f i r s t  e r ro r  again occurs between the second and t h i r d  symbol of  the program. 

Looking fo r  an enclosing kernel pat tern we detect  an e r ro r  in the coarse s t ruc ture .  

According to our precedence a lgor i thm the f i r s t  begin is pushed onto the stack. 

The empty r e l a t i o n  holds between begin and then. There are two equa l ly  expensive 

cor rec t ions :  de le t i ng  then or i nse r t i ng  i__ff in f r on t  of then. In the f i r s t  case 

the ke rne l - f ree  s t r i ng  preceeding then must y i e l d  a statement in which a " :="  

has to occur. Because th i s  is not the case we choose the second a l t e r n a t i v e . l f  in 

some s i t u a t i o n  no appropr ia te  cor rec t ion  can be done we stack the element and t r y  

to make a minimum distance cor rec t ion  when an erroneous r i g h t  hand side is to be 

reduced. (Cf. the cor rec t ion  o f  the f i r s t  i__ff in our example.) We get the fo l l ow ing  

s t ruc tu re  f o r  our example: 

begin f i  end f i  end Q then begin 

< i f  clause> 

i f  i f  o e lse 

del--~ete ] ~_~en I 1 
< i f  c lause~ , 



191 

The completely corrected program wi l l  be given in example 8. 

The only information we get from an algorithm correcting the kernel tokens is the 

correction point within the hK-image of the program. No problem arises when the 

algorithm decides to delete a kernel token. But i f  we have to insert a token A~ in  

order to y ie ld the pattern AI . . .A m we do not know i ts  exact posit ion in the program. 

Let N::=AIUlA2...Um_IA m be the corresponding kernel production. I f  the density of 
fur ther errors in the f ine structure is not too large we have some c r i te r ia  to 

determine the exact position where A~ is to be inserted. 

For 1<~< m we parse a pref ix of the substring s occuring between A~_ I and A + I 

using the kernel-free subgrammar G1 := Gf(K,U~_l). I f  we reach the str ing u~_ I we 

have to test the next k input symbols b = BI. . .B k (k~l).  There are three cases: 

( I )  b E Follow~l(u~_1)a and b ~ First~2(u ) a where 

Follow~l(u)~ := {z / Z u m ~ >  aux and z E First~l(u)}^ and G2 := Gf(K,u~). 
G1 

Then parsing in G1 is continued. 

(2) b { Follow~Z(u 1 ) and b E First~2(ue). A~ is to be inserted and the 

remainder of s is to be parsed occording to G2. 

(3) b C Follow~l(u~_l ) n First~2(u~). There is no exact cri terium where A~. 
should be inserted. 

For ~= m First~2(u~) m must be replaced by Follow~3(N) ~ with G3 :=  Gf(K,Z). 

Because we have not a parser for Gf(K,Ul) working from r ight  to l e f t  we use for 

~=  1 a stronger condition, for example: the terminal alphabet of Gf(K,Ul) does not 

contain a symbol preceeding the l e f t  hand side N in any sentential form of G. Note 

that this set as well as Follow and F i rs t  can easily be constructed form the 
given (sub-)grammars [1]. 

I f  we consider the production <block>::= begin <stmt l i s t >  end of the example 

grammar we get a formal cri terium why i t  is impossible to determine the exact place 
where to insert  a missing end : 

For a l l  k~l we have Follow~l(<stmt l i s t> )  = Follow~2(<block>) 

with G1 := Gf(K,<stmt l i s t> )  and G2 := Gf(K,<block>). 

Example 8: During the parse of the fine structure we get the following corrections 
for the program of example 7: 

1. The missing i f  is to be inserted af ter the begin. 

2. In Gf(K,<decl>) a type wi l l  be inserted at the place of the deleted i f .  
3. The missing then is to be inserted af ter "id = id" ,  since 



192 

id : :  ¢ Follow~l(<expr>) and id : :  E Follow~2(<if clause>) with 

GI := Gf(K,<expr>) and G2 := Gf(K,<block>). 

Thus we get the following corrected program: 

begin i f  id = id + id then begin type id = id + id; type id . 

i f  id = id then id := id + id else id := id f i ;  id := id end f i  end 

Conclusion 

Using the term "coarse structure of a context-free grammar" in accordance with a 

natural understanding and parsing of programs we have treated two of i ts  main appli- 

cations: we showed that two-level parsing by means of coarse structures can simplify 

the parsing process and that the concept of coarse structures can advantageously be 

used for syntax error recovery using global rather than local context of the error 

position. 

Acknowledgement 

The author is grateful to J. Ciesinger and W. Lahner for helpful discussions. 

References 

[1] AHO,A.V., ULLMAN,J.D.: The Theory of Parsing, Translation, and Compiling, 
Vol. I ,  Prentice Hall, Inc., Englewood Cl i f fs ,  N.J., 1972 

[2] CIESINGER,J.: Generating error recovery in a compiler generating system, 
Informatik Fachberichte 1, 4. GI-Fachtagung Uber Programmier- 
sprachen, 1976, 185-193 

[3] DIETERICH,E.-W.: Grobstrukturen kontextfreier Grammatiken, Fachbereich 
Mathematik der TU MUnchen, Dissertation, 1975 

[4] EICKEL,J.: Methoden der syntaktischen Analyse bei formalen Sprachen, Lecture 
Notes in Economics and Mathematical Systems, Vol. 78, 1972, 37-53 

[5] MEERTENS,L.G.TH., VAN VLIET,J.C.: Repairing the paranthesis skeleton of 
Algol 68 programs, Stichting mathematisch centrum, Amsterdam, 
IW 2/73, 1973 

[6] VOLLMERHAUS,W.: Die Zerlegung von kontextfreien Semi-Thue-Systemen mit Anwen- 
dung auf das Analyseproblem kontextfreier Sprachen, Beitr~ge zur 
Linguistik und Informationsverarbeitung, 12, 1967, 23-35 

[7] WIRTH,N.: PL36o, A Programming Language for the 36o Computers, JACM 15.1, 
1968, 37-74 


