
P A R S I N G A S D E D U C T I O N l

Fernando C. N. Pereira

David H. D. Warren

Artificial Intelligence Center

SRI International

333 Ravenswood Ave., Menlo Park CA 04025

A b s t r a c t

By exploring the relationship between parsing and
deduction, a new and more general view of chart parsing
is obtained, which encompasses parsing for grammar
formalisms based on unification, and is the basis of the
Earley Deduction proof procedure for definite clauses.
The efficiency of this approach for an interesting class of
grammars is discussed.

1. I n t r o d u c t i o n

The aim of this paper is to explore the relationship
between parsing and deduction. The basic notion, which
goes back to Kowaiski (Kowalski, 1980} and Colmerauer
{Colmeraucr, 1978), h'zs seen a very efficient, if limited,
realization in tile use of the logic programming language
Prolog for parsing {Colmerauer, 1978; Pereira and
Warren, 1980). The connection between parsing and
deduction was developed further in the design of the
Eariey Deduction proof procedure (Warren, 1975), which
will also be discussed at length here.

Investigation of the connection between parsing and
deduction yields several important benefits:

• A theoretically clean mechanism to connect parsing

with the inference needed for semantic

interpretation.

llandling of gaps and unbounded dependencies "on

the fly" without adding special mechanisms to the

parser.

:\ reinterprecation and generalization of chart

parsing that abstracts from unessential data-

structure details.

* Techniques that are applicable to parsing in related
formalisms not directly based on logic.

IThis work wa~ partially supported by the Defense Advanced
Research Projects Agency under Contract N00039-80-C-0575 with
the Naval Electronic Systems Command. The views and conclusions
contained in this article are those of the authors and should not be
interpreted as representative of the official policies, either expressed

or imp{led, of the Defense Advanced Research Projects Agency or the

United Slates Government.

• Elucidation of parsing complexity issues for related

formalisms, in particular lexieal-functional grammar

(LFG).

Our study of these topics is still far from complete;
therefore, besides offering some initial results, we shall
discuss various outstanding questions.

The connection between parsing and deduction is based
on the axiomatization of context-free grammars in
def ini te clauses, a particularly simple subset of first-
order logic (Kowalski, 1080; van Emden and Kowalski,
1976). This axiomatization allows us to identify context-
free parsing algorithms with proof procedures for a
restricted class of definite clauses, those derived from
context-free rules. This identification can then be
generalized to inc{ude larger classes of definite clauses to
which the same algorithms can be applied, with simple
modifications. Those larger classes of definite clauses can
be seen as grammar formalisms in which the atomic
grammar symbols of context-free grammars have been
replaced by complex symbols that are matched by
unification (Robinson, 1965; Colmerauer, 1978; Pereir3
and Warren, 1980}. The simplest of these formalisms is
definite-clause grammars (DCG) (Pereira and Warren,
1980).

There is a close relationship between DCGs ~nd other
~,rammar formalisms based on unification, such as
Unification Grammar {UG) (Kay, 1070), LFG, PATR-2
{Shieber. 1083) and the more recent versions of GPSG
(Gazdar and Pullum, 1082).

The parsing a{gorithms we are concerned with are
onl ine algorithms, in the sense that they apply the
constraints specified by the augmentation of a rule a~
soon as the rule is applied. In contrast, an olTline parsing
algorithm will consist of two phases: a context-free
parsing algorithm followed by application of the
constraints to all the resulting analyses.

The pap('r is organized as follows. Section 2 gives an
overview of the concepts of definite clause logic, definite
clause grammars, definite clause proof procedures, and
chart parsing, Section 3 discusses the connection betwee
DCGs and LFG. Section 4 describes the Earley
Deduction definite-clause proof procedure. Section 5 then
brings out the connection between Earley Deduction and
chart parsing, and shows the added generality brought in
by the proof procedure approach. Section 6 outlines some
oi the problems of implementing Earley Deduction and
similar parsing procedure~. Finally, Section 7 discusses
questions of computational complexity and decidability.

£37

2. B a s i c N o t i o n s

2.1. D e f i n i t e Clauses

A d e f i n i t e c l ause has the form

P:Q~&... &Q..

to be read as " P is true if Q1 and ... and Qa are true". If

n --~ 0, the clause is a u n i t clause and is written simply as

P.

P and QI Qn are literals. P is the p o s i t i v e literal

or h e a d of the clause; Ql , Qn are the negat ive

literals, forming the b o d y of the clause. Literals have the
forn~ pi t I tk), where p is the p r e d i c a t e of arity k and

the t i the arguments . The arguments are t e r m s . A

term may be: a v a r i a b l e {variable names start with
capital letters); a c o n s t a n t ; a c o m p o u n d t erm

J~tl , . . . , t m) where f is a functor of arit$ m and the t i are

terms. All the variables in a clause are implicitly
universally quantified.

A set of definite clauses forms a p r o g r a m , and the
clauses in a program are called i n p u t c lauses . A
program defines the relations denoted by the predicates
appearing in the heads of clauses. When using a definite-
clause proof procedure, such as Prolog (Roussel. 1975), a
goal s t a t e m e n t

requests the proof procedure to find provable instances of
P.

2.2. Definite Clause G r a m m a r s

Any context-free rule

i ' ~ o r 1 . . . O n

can be translated into a definite clause

xlSo.S~) : %/S0 ,S l) & .., & %(S~ . l .S .) .

The variables S i are the s t r i n g a r g u m e n t s , representing

positions m the input string. For example, the context-free
rule "S ~ NP VP" is translated into "s(S0,S2)
np{,qO.Sl} k" vp(S1,S2)," which can be paraphrased as
"'there is an S from SO to $2 in the input string if there is
an NP from SO to S1 and a V'P from S1 to 82."

Given the translation of a context-free grammar G with
start symbol S into a set of definite clauses G" with
corresponding predicate s, to say that a string w is in the
grammar 's language is equivalent to saying that the s tart
goa l S{po,pj is a consequence of G" U W, where Po and p

represent the left and right endpoints of u,, and W is a set
of unit clauses that represents w.

It is easy to generalize the above notions to define
DCGs. DCG nonterminals have arguments in the same
way that predicates do. A DCG nonterminal with u
arguments is translated into a predicate of n+2
arguments, the last two of which are the string points, as

in the translation of context-free rules into definite
clauses. The context-free grammar obtained from a DCG
by dropping all nonterminal arguments is the c o n t e x t -
f ree s k e l e t o n of the DCG.

2.3. Dedu.ction in Definite Clauses

The fundamental inference rule for definite clauses is
the following r e s o l u t i o n rule: From the clauses

B ¢= A l £: ... & A m . (l)

C : D 1 & ,.. & D i & ... & D n. (2}

when B and D i are unifiable by substitution a, infer

a f t =

D 1 & ... Di . 1 & A t & ... & A m & , D i + 1 ... & Dn. ~ (3}

Clause (3) is a d e r i v e d clause, the reso ivent of {1) and
(2).

The proof procedure of Prolog is just a part icular
embedding of the resolution rule in a search procedure, in
which a goal clause like (2) is successively rewritten by
the res,qution rule using clauses from the program (1).
The Prolog proof procedure can be implemented very
efficiently, but it has the same theoretical problems of the
top-d¢.wn backtrack parsing algorithms after which it is
motif?led. These problems do not preclude its use for
creating uniquely efficient parsers for suitably constructed
grammars (Warren and Pereira, 1983: Pereira, 1982), but
the broader questions of the relation between parsing and
deduction and of the derivation of online parsing
algorithms for unification formalisms require that we look
at a more generally applicable class of proof procedures.

2.4. C h a r t P a r s i n g a n d the E a r l e y A l g o r i t h m

Chart parsing is a general framework for constructing
parsing algorithms for context-free grammars and related
formalisms. The Earley context-free parsing algorithm,
although independently developed, can be seen as a
particular case ,)f chart parsing. We will give here just
the basic terminolog-y of chart parsing and of the Eartey
algorithm. Full accounts can be found in the articles by
Kay (Kay. l.qS0} and Ear ley /Ear ley , 1970).

The state of a chart parser is represented by the c h a r t .
which is a directed graph. The nodes of the chart
represent positions in the string being analyzed. Each
odge in Ihe chart is either a c t i v e or pass ive . Both types
of edges are labeled. A passive edge with label ,V links
node r to node .~ if the string between r and s h,~ been
analyzed as a phr,'tse of type N. Initially, the only edges
are passive edges that link consecutive nodes and are
labeh,d with Ihe words of the input string (see Figure I}.
Active edges represent partially applied grammar rules.
In the siml)le~.t case, active edges are labeled by d o t t e d
rules. A dolled rule is a grammar rule with a dot inserted
some~vhcre on its right-hand side

X - - - % ... ~i-I • ~ i - ' " % {4)

An edge with this label links node r to node s if the
sentential form ~! ... o%1 is an analysis of the input string

between r and s. An active edge that links a node to

138

itself is called e m p t y and acts like a top-down prediction.
Chart-parsing procedures start with a chart containing
the passive edges for the input string. New edges are
added in two distinct ways. First, an active edge from r to
s labeled with a dotted rule {4) combines with a passive
edge from s to t with label a i to produce a new edge from

r to t, which will be a passive edge with label X if a i is

the last symbol in the right-hand side of the dotted rule;
otherwise it will be an active edge with the dot advanced
over cr i. Second, the parsing strategy must place into the

chart, at appropriate points, new empty active edges that
will be used to combine existing passive edges. The exact
method used determines whether the parsing method is
seen as top-down, bottom*up, or a combination of the
two.

The Earley parsing algorithm can be seen as a special
case of chart parsing in which new empty active edges are
introduced top-down and, for all k, the edge combinations
involving only the first k nodes are done before any
combinations that involve later nodes. This particular
strategy allows certain simplifications to be made in the
general algorithm.

3. D C G s a n d L F G

We would like to make a few informal observations at
this point, to clarify the relationship between DCGs and
other unification grammar formalisms - - LFG in
particular. A more detailed discussion would take us
beyond the intended scope of this paper.

The diffl,rcnt nolational conventions of DCGs and LFG
make the two formalisms less similar on the surface than
the), actually are from the computational point of view.
The object~ that appear ,as arguments in DCG rules are
tree fragments every node of which has a number of
children predetermined by the functor that labels the
node. Explicit variables mark unspecified parts of the
tree. In contrast, the functional structure nodes that are
implicitly mentioned in LFG equations do not have a
pred(,fined number of children, and unspecified parts are
either omitted or defined implicitly through equations.

As a first approximation, a DCG rule such as

s(s(Subj,Obj)) ~ np(Subj) vp(Obj} (5)

might correspond to the LFG rule

S - - KP v P (6)

I s u b j = i I obj----- t

The DCG rule can be read as "an s with structure

i i

/ \

Subj Obj

is an np with structure Subj followed by a vp with

structure Obj." The LFG rule can be read as "an S is an

NP followed by a V'P, where the value of the subj
attribute of the S is the functional structure of the NP

and the value of the attribute obj of the S is the

functional structure of the VP." For those familiar with

the details of the mapping from functional descriptions to
functional structures in LFG, DCG variables are just
"placeholder" symbols (Bresnan and Kaplan, 1982).

As we noted above, an apparent difference between
LFG and DCGs is that LFG functional structure nodes,
unlike DCG function symbols, do not have a definite
number of children. Although we mu~t leave to a
separate paper the details of the application to LFG of
the unification algorithms from theorem proving, we will
note here that the formal properties of logical and LFG or
UG unification are similar, and there are adaptations to
LFG and UG of the algorithms and data structures used
in the logical case.

4. E a r l e y D e d u c t i o n

The Earley Deduction proof procedure schema is named
after Earley's context-free parsing algorithm (Earley,
1970), on which it is based Earley Deduction provides
for definite clauses the same kind of mixed top-down
bottom-up mechanism that the Earley parsing algorithm
provides for context-free grammars.

Earley Deduction operates on two sets of definite clauses
called the p r o g r a m and the s ta te . The program is just
the set of i n p u t c lauses and remains fixed. The state
consists of a set of derived clauses, where each nonunit

.:Iause has one of its negative literals selected; the state is

continually being added to. Whenever a nonunit clause is

added to the state, one of its negative literals is selected.

Initially tile state contains just the goal statement (with
one of its negative [iterals selected}.

There are two inference rules, called i n s t a n t i a t i o n and
r educ t ion , which can map the current state into a new
one by adding a new derived clause. For an instantiation
step, there is some clause in the current state whose
selected literal unifies with the positive literal of a
, o n u n i t clause C in the program. In this case, the
derived clause is a[C], where cr is a most general unifier
([~obinson, 1965} of the two literals concerned. The
selected literal is said to i n s t a n t i a t e C to a[C].

For a reduction step, there is some clause C in the
current state whose selected literal unifies with a unit

clause from either the program or the current state. In
this case, tile derived clause is s iC ' l , where a is a most
general unifier of the two Iiterals concerned, and C" is C
minus its selected literal. Thus, the deriydd clause is just
the res,)lvent of C with the unit clause and the latter is
said to reduce C to a(C" I.

Before a derived clause is added to the state, a check is
made to see whether the derived clause is subsumed by
any clause already in the state. [f the derived clause is
subsumed, it is not added to the state, and that inference
step is said to be blocked.

In the examples that follow, we assume that the selected
literal in a derived clause is always the leftmost literal in
the body. This choice is not optimal (Kowalski, 1980),
but it is sufficient for our purposes.

For example, given the program

139

cl.X:,Z) = c(X,Y) & c(Y,Z). (7)
c(1,2). (8)
c(O.,3). (g)

and goal statement

ass(Z) ~ c(l,Z). (10)

here is a sequence of clauses derived by Early Deduction

ass(Z) = c(t.Z), goal. statement (11)
c(I,Z) = c(I,$) It c(Y,Z). (11) £nstantlates (7) (12)
ass(2). (8) reduces (II) (13)
c(1,Z) = c(2,Z). (8) reduces (12) (14)
c(2,Z) = c(2.T) & c(Y,Z). (14) instantlatee (7) (15)
c(1.3). (9) reduces (14) (15)
arts(3), (16) reduces (11) (17)
c(2,Z) ~ c(3,Z). (9) reduces (15) (18)
c(3,Z) = c(3.T) It c(Y,Z). (18) inst~nC£aCes (7) (19)

At this point, all further steps are blocked, so the
computation terminates.

Earley Deduction generalizes Earley parsing in a direct
and natural way. [nstantiation is analogous to the
"predictor" operation of Earley's algorithm, while
reduction corresponds to the "scanner" and "completer"
operations. The "scanner" operation amounts to
reduction with an input unit clause representing a

terminal symbol occurrence, while the "completer"

operation amounts to reduction with a derived unit clause

representing a nonterminal symbol occurrence.

5. Chart Parsing and Earley Deduction

Chart parsing {Kay, I980) and other tabular parsing

algorithms (Aho and Ullman, 1972; Graham et al., I980)

are usually presented in terms of certain (abstract) data

structures that keep a record of the alternatives being

explored by the parser. Looking at parsing procedures as

proof procedures has the following advantages: (i)
unification, ~aps and unbounded dependencies are
automatically handled: (ii} parsing strategies become
possible that cannot be formulated in chart parsing.

The chart represents completed nonterminals {passive
edges) and partially applied rules {active edges). From the
standpoint of Earley Deduction, both represent derived
clauses that have been proved in the course of an attempt

to deduce a goal statement whose meaning is that a string

belongs to the language generated by the grammar. An

active edge corresponds to a nonunit clause, a passive

edge to a unit clause. Nowhere in this definition is there

mention of i.he "endpoints" of the edges. The endpoints

correspond to certain literal arguments, and are of no

concern to the (abstract) proof procedure. Endpoints are

just a convenient way of indexing derived clauses in an

implementalion to reduce the number of nonproductive

(nonunifying) attempts at applying the reduction rule.

We shall give now an example of the application of

Earley Deduction to parsing, corresponding to the chart

of Figure I.

The CFG

S - , NP VP

NP --- Det N

Det ~ NP Gen

Det ---* Art

Det ---, A

V'P --. V NP

corresponds to the following definite-clause program:

s(S0,S) = np(S0,Sl) & vp(SI,S). {20)

np(S0,S) ~ det{S0,Sl) & n(S1,S). (21)

det(S0,S} = np(S0,Sl) & gen(SI,S). (22}
det(S0,S) ~ art(S0,S). (23)

det(S,S). (24)

vp{S0,S) = v(SO,~l) & np(Sl,S}. (25)

The lexical categories of the sentence

oAg ath~ 1 's2h usband3hit4 Ulrich s (26)

can be represented by the unit clauses

n(0,11. (97}

gen(l,2). (28)

n(2,3). (29}

,.(3..t). (301
n{.ts). 131)

Thus. the t~k of determining whether (26) is a sentence
can be represented by the goal statement

ans ~ s(0.5). (32)

If the sentence is in the language, the unit clause a s s will
be derived in the course of an Eariey Deduction proof.
S.ch a pro(_)f could proceed as fol lows:

• ns = s(0,5), goal statement (33)
s(0,5) = np(O,Sl) • vp(Sl,5).

(33) instantiates (20) (34)
np(O,S) = det(O, Sl) I n(SI,S).

(34) inst,&nt,£a, tes (21) (35)
det(O.S) = np(O.5t) It gen(SI.S).

(35) £nstanr, i~tes (22) (35)
det(O.S) = crt(0,S). (35) inst~ntiates (23) (37)
np(0.S) ~ n(O.5)'. (24) reduces (35) (38)
up(0.1). (27) reduces (38) (39)
s(0"~5~ = ':p(I_,5) (39) reduces (34) (40)
vp(i.5) ~ v(I,SI) ~ np(Sl,5).

(40) instant, in.tee (25) (41)
der,(0,S) *=-gen(1.S). (39) reduces (36) (42)
det(0.2) (28) reduces (42) (43)
np(O-S)" ~ n(2.S) (43) reduces (35) (44)
np(O.3). . (29) reduces (44) (45)
s(O,5) = vp(3,5). (45) reduces (34) (46)
det(O,3) = gen(3.S). (45) reduces (35) (47)
vp(3.5) ~ v(3.$I) It np(SI,5).

(46) instanti~tes (25)" (48)
vp(3_,5) ~ np(4.5). (30) reduces (48) (49)
ap(4,5) = det(4,St) ~t n($1,5),

(49) inst~ntiates (21) (50)
det(4.S) = np(4,Sl) It gen(Sl,S).

(50) instantiatss (22) (51)
det(4,S) ~ ~rt(4.S). (50) instantiates (23) (52)
np(4.S) = det(4_~Sl) It n(SI,S),

(51) inet&ntiLtes (21) (53)
up(4,5) = n(4,5). (24) reduces (50) (54)
np(4.S) = n(4.S) (24) reduces (53) (55)
up(4_-,5). - (31) reduces (54) (56)
vp(3.5) (56) reduces (49) (57)
det'~4~'S) = gen(5,S). (56) reduces (51) (58)

s (0 , 5) . (67) reduces (46) (59)
an• . - (69) reduce• (33) (60)

Note how subsumption is used to curtail the left recursion
of rules (21) and (22), by stopping extraneous
instantiation steps from the derived clauses (35) and (36).
As we have seen in the example of the previous section,
this mechanism is a general one, capable of handling
complex grammar symbols within certain constraints that

will be discussed later.

The Earley Deduction derivation given above

corresponds directly to the chart in Figure 1.

In general, chart parsing cannot support strategies that
would create active edges by reducing the symbols in the
right-hand side of a rule in any arbi trary order. This is
because an active edge must correspond to a contiguous
sequence of analyzed symbols. Definite clause proof
procedures do not have this limitation. For example, it is

very simple t.o define a strategy, "head word nar¢,ng -
(NlgCord, 19801, which would use the" reduction rule to

infer

np(SO,S) = deqS0,2) & rel{3,S}.

37 40 49 51 58

44 48 63

vp

F i g u r e 1: ('har t vs. Earley Deduction Proof

Each arc in tile chart is labeled with the number of a
clause in the proof. In each clause that, corresponds to a
chart arc, two literal arguments correspond to the two
endpoints of the arc. These arguments have been
underlined in the derivation. Notice how the endpoint
arguments are tile two string arguments in the head for
unit clauses {passive edges) but, in the case of nonunit
clauses (passive edges), are the first string argument in the
head and the first in the leftmost literal in the body.

As we noted before, our view of parsing as deduction
makes it possible to derive general parsing mechanisms for
augmented phraso-structure grammars with gaps and
unbounded dependencies. It is difficult (especially in the
case of pure bottom-up parsing strategies} to augment
chart parser~ to handle gaps and dependencies
(Thompson, 1981}. However, if gaps and dependencies
are specified by extra predicate arguments in the clauses
that correspond to the rules, the general proof procedures
will handle those phenomena without further change.
This is the technique used in DCGs and is the basis of the
specialized extra.position grammar formalism (Pereira,
t081).

The increased generality of our approach in the area of
parsing strategy stems from the fact that chart parsing
strategies correspond to specialized proof procedures for
definite clauses with string arguments. In other words, the
origin of these proof procedures means that string
arguments are treated differently from other arguments,
as they correspond to the chart nodes.

from the clauses

np(S0,S} '-- det(SO,Sl} & n(SI,S2) & rel(S2,S).

[NP --- Det N Rei]

n(2,3).
[There is an N between points 2 and 3 in the input]

This example shows that the class of parsing strategies
allowed in the deductive approach is broader than what is
p,,ssible in the chart parsing approach. It remains to be
shown which of those strategies will have practical

importance as well.

6. I m p l e m e n t i n g E a r l e y D e d u c t i o n

To implement Earley Deduction with an efficiency
comparable, say. to Prolog, presents some challenging
problems. The main issues are

• t l o w to represent the derived clauses, especially the

substitutions involved.

• ttow to avoid the very heavy computational cost of

subsunlption.

• How to recognize when derived clauses are no longer

2This particular strategy could be implemented ia a chart parser,
by changing the rules for combining edges but the generality
demonstrated here would be lost.

ihl

needed and space can be recovered.

There are two basic methods for representing derived
clauses in resolution systems: the more direct c o p y i n g
method, in which substitutions are applied explicitly; the
s t r u c t u r e - s h a e l n g method of Bayer and Moore, which
avoids copying by representing derived clauses implicitly
with the aid of variable binding environments. A
promising strategy for Earley Deduction might be to use
copying for derived unit clauses, structure sharing for
other derived clauses. When copying, care should be
taken not to copy variable-free subterms, but to copy just
pointers to those subterrns instead.

It is very costly to implement subsumption in its full
generality. To keep the cost within reasonable bounds, it
will be essential to i n d e x the derived clauses on at least
the predicate symbols they contain - - and probably also.
on symbols in certain key argument positions. A
simpfification of full subsumption checking that would
appear adequate to block most redundant steps is to keep
track of selected literals that have been used exhaustively
to generate instantiation steps. If another selected literal
is an instance of one that has been exhaustively explored,
there is no need to consider using it as a candidate for
instantiation steps, Subsuvnption would then be only
applied to derived unit clauses.

A major efficiency problem with Earley deduction is
that it is difficult to recognize situations in which derived
clauses are no longer needed and space can be reclaimed.
There is a marked contrast with purely top-down proof
procedures, such as Prolog, to which highly effective
~pace recovery techniques can be applied relatively easily.
The Eartey algorithm pursues all possible parses in
parallel, indexed by string position. In principle, this
permits space to be recovered, as parsing progresses, by
deleting information relating to earlier string positions, l't
amy be possible to generalize this technique to Earley
Deduction. by recognizing, either automatically or
manually, certain special properties of the input clauses.

7. D e c i d a b i l i t y a n d C o m p u t a t i o n a l
C o m p l e x i t y

It is not at. all obvious that grammar formalisms based
on unification can be parsed within reasonable bounds of
time and space. [n fact, unrestricted DCGs have Turing
machine power, and LFG, although decidable, seems
capable of encoding exponentially hard problems.
llowever, we need not give up our interest in the
complexity analysis of unification-based parsing. Whether
for interesting subclasses of, grammars or specific
~rammars of interest, it is still important to determine
how efficient parsing can be. A basic step in that direction
is to estimale the cost added by unification to the
operation of combining {reducing or expanding) a
nontcrmin.~l in a derivation with a nonterminal in a
grammar rule.

Because definite clauses are only semidecidable, general
proof procedures may not terminate for some sets of
definite clauses. However, the specialized proof
procedures we have derived from parsing algorithms are
s t ab l e : if a set of definite clauses G is the translation of a

context-free grammar, the procedure will always
terminate (in success or failure) when to proving any s tar t
goal for G. More interesting in this context is the notion
of s t r o n g s t a b i l i t y , which depends on the following
notion of off 'line p a r s a b i l i t y . A DCG is offline-parsable
if its context-free skeleton is not infinitely ambiguous.
Using different terminology, Bresnan and Kaplan
(Bresnan and Kaplan, 1982) have shown that the parsing
problem for LFG is decidable because LFGs are offline
parsable. This result can be adapted easily to DCGs,
showing that the parsing problem for offline-parsable
DCGs is decidable. Strong stabili ty can now be defined: a
parsing algorithm is strongly stable if it always terminates
for offline-parsab[e grammars. For example, a direct DCG
version of the Earley parsing algorithm is stable but not
strongly so.

In the following complexity arguments, we restrict
ourselves to offline-parsable grammars. This is a
reasonable restriction for two reasons: (i) since general
DCGs have Turing machine power, there is no useful
notion of computat ional complexity for the parser on its
own; (ii) (.here are good reasons to believe that
linguistically relevant grammars must be offliae-parsable
{Bresnan and Kaplaa, 1982).

In estimating the added complexity of doing online
unification, we start from the fact that the length of any
derivation of a terminal string in a finitely ambiguous
context-free grammar is linearly bounded by the length of
the termin:fi string. The proof of this fact is omitted for
lack of spa~.e, but can be found elsewhere (Pereira and
Warren, 1.q83).

General definite-clause proof procedures need to access
ttle values of variables {bindings} in derived clauses. The
strueture-sh:lring method of representation makes the
lime to access a variable binding at worst linear in the
length of 1he derivation. Furthermore, the number of
variables to be looked up in a derivation step is at worst
linear in the size of tile derivation. Finally, the time (and
space) to finish a derivation step, once all the relevant
bindings are known, does not depend on the size of the
derivation. Therefore, using this method for parsing
offline-parsable grammars makes the time complexity of

each step at worst oIn 2) in the length of the input.

Some simplifications are possible that improve that time
bound. First, it, is possible to use a v a l u e a r r a y
rcpresenta~i(m of hinding~ (Bayer and Moore. 1972} while
exploring any given derivation path. reducing to a
constant the variable lookup time at the cost of having to
save and restore o(n} variable bindings from the value
array each time the parsing procedure moves to explore a
different derivation path. Secondly, the unification cost
can be mode independent of the derivation length, if we
for~o the o c c u r s check that prevents a variable from
being bound to a term containing it. Finally, the
combination of structure sharing and copying suggested in
the last section eliminates the overhead of switching to a
different derivation path in the value array method at the
cost of a uniform o(log n) time to look up or create a
var iabl , binding in a balanced binary tree.

When adding a new edge to the chart, a chart parser

142

must verify that no edge with the same label between the
same nodes is already present. In general DCG parsing
(and therefore in online parsing with any unification-
based formalism}, we cannot check for the "same label"
(same lemma), because lemmas in general will contain
variables. \Ve must instead check for subsumption of the
new lemma by some old lemma. The obvious

subsumption checking mechanism has an o(n 3) worst case
cost, but the improved binding representations described
above, together with the other special techniques
mentioned in the previous section, can be used to reduce
this cost in practice.

We do not yet have a full complexity comparison
between online and offline parsing, but it is easy to
envisage situations in which the number of edges created
by an online algorithm is much smaller than that for the
corresponding offline algorithm, whereas the cost of
applying the unification constraints is the same for both
algorithms.

8. C o n c l u s i o n

We have outlined an approach to the problems of
parsing unification-based grammar formalisms that builds
on the relationship between parsing and definite-clause
deduction.

Several theoretical and practical problems remain.
Among these are the question of recognizing derived
clauses that are no longer useful in Earley-style parsing,
the design of restricted formalisms with a polynomial
bound on the number of distinct derived clauses, and
independent characterizations of the classes of offline-
parsable grammars and languages.

A c k n o w l e d g m e n t s

We would like to thank Barbara Grosz and Stan
Rosenschein for their comments on earlier versions of this
paper.

R e f e r e n c e s

.\. V. Aho and .I. D Ullman, The Theory o/Parsing,
Translation and Compiling (Prentice-flail,

Englewood Cliffs, New Jersey, 1972).

R. S. Boyer and J S. Moore, "The Sharing of Structure

in Theorem-Proving Programs," in Machine

Intelligence 7, B. Meltzer and D. Michie, eds.,

pp. 101-116 (.John Wiley & Sons, New York, New

York. 1.q72}.

.1. Bresnan and R. Kaplan. "Lexical-Functional

Grammar: A Formal System for Grammatical

Representation," in The Mental Representation of
Grammatical Relations, J. Bresnan, ed.,

pp. 173-281 (NflT Press, Cambridge, Massachusetts,
1982).

A. Colmerauer, "Metamorphosis Grammars," in Natural
Language Communication with Computers, L. Bole,

ed. (Springer-Verlag, Berlin, 1978). First appeared as

'Les Grammaires de Metamorphose', Groupe

d'Intelligence Artifieielle, Universitd de Marseille 17,
November 1975.

J. Earley, "An Efficient Context-Free Parsing

Algorithm," Communications of the ACM, Vol. 13,

No. 2, pp. 94-102 (February 1970).

G. Gazdar and G. Pullum, Generalized Phrase Slructure

Grammar: A Theoretical Synopsis (Indiana

University Linguistics Club, Bloomington, Indiana,

1982).

S. L. Graham, M. A. Harrison and W. L. Ruzzo, "An

Improved Context-Free Recognizer," ACM

Transactions on Programming Languages and

Systems, Vol. 2, No. 3, pp. 415-462 (July 1980).

NI. Kay, "Functional Grammar," Prec. of the Fifth
Annual A[celing of the Berkeley Linguistic Society,

pp. 142-158. Berkeley Linguistic Society, Berkeley,

California (February 17-19 19791 .

M. Kay, "Algorithm Schemata and Data Structures in

Syntactic Processing," Technical Report , X~EROX

Pale Alto Research Center , Pale Alto, California

(1980). A version will appear in the proceedings of

the Nobel Symposium on Text Processing,
(h,t henburg, 1980.

R. A. Kowalski. Logic for Problem Solving (North

Holland. New York, New York, 1980}.

M. C. Mc('ord, "Slot Grammars," American Journal of
Computational Linguistics, Vol. 6. No. 1. pp.

2",,5-2Sli (Januar.v-March 1980).

F. C N. Pereira. "Extraposition Grammars," American

Journal of Computational Linguistics, Vol. 7, No. 4.

pp. 243-256 (October-December 1981).

F. C. N. Pereira. Logic for Natural Language Analysis.
Ph.D. thesis. University of Edinburgh. Scotland.
1982.

F. C'. N. Pereira and D. H. D. Warren. "Definite Clause

Grammars for Language Analysis - a Survey of the

Formalism and a Comparison with Augmented

Transition Networks," Artificial Intelligence, Vot.
13. pp. 231-278 (19801.

F. C. N. Pereira and D. H. D. Warren, "Parsing a.s

Deduction," Forthcoming technical note , Artificial

Intelligence Center, SRI International , Menlo Park,
California { 1983).

143

J. A. Robinson, "A Machine-Oriented Logic Based on the
Resolution Principle," Journal of the AGM, Vol. 12,
pp. 23-44 (January 1965).

P. Roussel, "Prolog : Manuel de Rdf6rence et

Utilisation," Technical Report, Groupe d'Intelligence

Artificielle, Universitd d'AJx-Marse.ille II, Marseille,

France {1975).

S. Shieber, Personal communication, 1983.

H. Thompson, "Chart Parsing and Rule Schemata in
GPSG," Proc. of the 19th Annual Meeting of the
Association for Computational Linguistics,
pp. 167-172, Association for Computational
Linguistics, Stanford University, Stanford, California
(June 29-July 1 1981).

M. H. van Emden and R. A. Kowalski, "The Semantics

of Predicate Logic as a Programming Language,"

Journal of the AC~V[, Vol. 23, No. 4, pp.
73.3-742 [October 19781.

D. H. D. Warren. Earley Deduction. Unpublished note,

1975.

D H. D. Warren and F. C. N. Pereira, An Efficient

Easily Adaptable System for Interpreting Natural

Langu.~e Queries. To appear in the American

Journal of Computational Linguistics., 1983.

144

