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Parsing Engineering and Empirical RobustnessRoberto Basili and Fabio Massimo ZanzottoUniversity of Rome "Tor Vergata",Department of Computer Science, Systems and Production,00133 Rome (Italy),fbasili,zanzottog@info.uniroma2.it(Received 9 February 2002 )AbstractRobustness has been traditionally stressed as a general desirable property of any compu-tational model and system. The human NL interpretation device exhibits this property asthe ability to deal with odd sentences. However, the diÆculties in a theoretical explana-tion of robustness within the linguistic modelling suggested the adoption of an empiricalnotion.In this paper, we propose an empirical de�nition of robustness based on the notionof performance. Furthermore, a framework for controlling the parser robustness in thedesign phase is presented. The control is achieved via the adoption of two principles: themodularisation, typical of the software engineering practice, and the availability of domainadaptable components. The methodology has been adopted for the production of CHAOS,a pool of syntactic modules, which has been used in real applications. This pool of modulesenables a large validation of the notion of empirical robustness, on the one side, and of thedesign methodology, on the other side, over di�erent corpora and two di�erent languages(English and Italian). 1 IntroductionThe ability of dealing with odd (i.e. ill-formed or simply partial) sentences is largelyshown by humans. The human interpretation device is tolerant to phenomena likelack of the lexical information (e.g. foreign words), unknown words (e.g. propernouns never encountered before), and odd grammatical constructions (e.g. genderdisagreement, badly transcribed coordination structures or gaps in the informationstream as in remote/telephonic dialogue). The above form of tolerance is what hasbeen recently called robustness in NLP. The modelling of such phenomenon withincomputational devices (as early introduced in (Menzel1995)) is thus more than arelevant research area either for a better linguistic investigation as well as for designof large-scale NLP systems.Robustness has been traditionally stressed as a general desirable property of anycomputational model and system. In the software engineering practice, robustnessis (somewhat informally) de�ned as the degree to which a system or componentcan function correctly in the presence of invalid inputs or stressful environmental



2 R. Basili, F.M. Zanzottoconditions (IEEE1990). Although such a de�nition is satisfactorily used for anyinformation system it requires more speci�cation when used within a linguisticcomputational model or in NLP applications. In fact, it is needed a systematicde�nition of what kind of invalid input is here intended. For example, in syntax aformal de�nition of ungrammaticality is required. As this notion requires a com-plete de�nition of grammaticality, the circularity and moreover the criticality of thelatter notion (largely debated within and among linguistic theories) prevent from asystematic analysis. Furthermore, the notion of stressful environmental conditionshas to be interpreted in the linguistic analysis. The stress comes from two majorsources:� external/exogenous stress that is incompleteness in the context, i.e. missinginformation in the source sentences or lack of competence in a wider context(e.g. inter-phrasal context or discourse).� internal/inner/endogenous stress that is wrong/odd/misleading informationin the sentence. This can relate to legal information, e.g. high levels of syntac-tic and/or semantic ambiguity, or to illegal input evidence. As the latter hasbeen above considered as a case of noisy or invalid input, with the stressfulinformation we will refer to the former case where higher ambiguity levels areconsidered.Stressful environmental conditions (endogenous and exogenous) are also critical tobe formally de�ned since a comprehensive model at di�erent linguistic levels (evenpragmatic) would be required.As robustness in humans is a typical empirical phenomenon a di�erent de�nitionis required. It should thus be tighter to linguistic observation and consequently notexpressed formally, at least in a full way.1.1 Robustness in NL ParsingWhen looking only to NL parsing activity, robustness is possibly more speci�callyde�ned. Robustness in parsing is tight both to invalid input and endogenous stress.As ill-formedness is a characteristic form of invalid input, ungrammaticality cap-tures only this �rst aspect. Endogenous stress is mainly related to sentence com-plexity where lack of information (e.g. in the lexicon) may be the source of themajor failures. When the parser is faced with very complex structures, the result isa lower accuracy in the recognition. Robustness should be achieved by preservingmost of the information and this results in the so-called graceful degradation ofperformance (Menzel1995).The above (somewhat informal) de�nition of robustness in NL parsing has thusto take into account some notion of performance. Syntactic parsers indeed fail tosystematically propose the correct interpretations, especially when exposed to largeamounts of textual material. This is strictly true in real application environments.Performance criteria may largely vary among applications, where precision andcoverage (two of the mostly used measures) may assume quite di�erent relevance.



Parsing Engineering and Empirical Robustness 3A coherent view on robustness for NL parsing is thus tightly related to a relativenotion of performance and any attempt to study it should take this into account.Previous approaches to NL parsing robustness have proposed extensions of thegrammatical system (i.e. more rules) or changes in the representation (e.g. prob-abilistic layers around grammatical frameworks, as in PCFG). One of the moresystematic approaches (Menzel1995) relies just on a layered representation and ona modi�ed processing (i.e. preference based reasoning) to enforce autonomy andsupport expectation driven disambiguation in NL parsing. It is to be also noticedthat changes in the representation (especially of the parser output) usually charac-terized the so-called robust parsers where partial interpretations (e.g. NP chunks)are produced.Robust parsers are also based on the notion of under-speci�cation. Parsers ableto expose partial results are inherently more robust in the sense de�ned before withrespect to "monolithic" parsers. Under-speci�cation is obtained as, for example,some information (e.g. PP dependences) is left unanalysed and a not fully connectedgraph is output (e.g. (Abney1996; Basili et al.2000)).Finally, robust parsers are usually based on complex parsing architectures wherepools of modules are cooperatively applied to the source sentences. They add in-formation (e.g. syntactic labels after POS tagging or syntactic dependencies afterlexicalised analysis as in (Grinberg et al.1996)) or, in other cases, they prune anddisambiguate over redundant representations (e.g. PP attachment disambiguationover parse forests).The cooperation among modules usually relies on strategies like "disambiguateas late as possible", so that ultimate choices are made only when useful information(syntactic and semantic) is available.When under-speci�ed representations are adopted it is easier to allow di�erentcomponents to add evidence incrementally until disambiguation can be triggered.The results of such strategy are modular approaches to parsing. The parsingprocess is decomposed in subtasks organized in pools (i.e. cascades or pipelines ofindividual/independent components). Each module tries to maximally con�ne partof the overall ambiguity: an example relates to the NP boundaries that in chunking(e.g. (Abney1996)) are detected �rst. Whenever the modules are able to limit allsources of a given type of ambiguity as soon as possible, all the later phases inherit asimpler representation where more constraints can be applied to reduce complexity.The adoption of modular approaches to parsing raises the problem of exibleparsing architectures as no speci�c (deterministic) architecture is good for all casesand domains. A modular architecture is useful if it can be con�gured according to aspeci�c notion of robustness, well suited for the performance required in the targetdomain.Modular parsing architectures require the de�nition of possibly reusable modules.More robust parser can be obtained by re-con�gurable architectures/systems. Theresult is that also design methodologies are important for robustness. A method-ology for building re-con�gurable parsers is more useful if it allows controlling thedegree of robustness since the design phases.The above observations about robustness (sources, limits and their inuence on



4 R. Basili, F.M. Zanzottoparsing) emphasized the need for a more operational notion of it able to also inu-ence its direct measurement.1.2 Robustness in NL Parsing: the attempt of an empirical de�nitionAll the above observation did lead us to the following main assumptions:� Robustness can be hardly de�ned in a fully formal way, as it requires linguisticand deviant phenomena to be modelled.� Robustness has characteristics related to endogenous and exogenous stress,or invalidity in the source input.� Robustness has to deal with performance, and this latter is tightly related toa corpus/domain and to the application/task.Any serious attempt to deeply analyse and model robustness cannot neglect fromall the above assumptions. Although other approaches to robustness have reliedupon psycholinguistic analysis of its counterpart in human parsers, we will thusattempt a more data-driven analysis based on empirical evidence and measures.It should be in fact noticed that robustness is an important issue when large-scale analysis is undertaken. Any large corpus exhibits a "noise" (i.e. deviationfrom linguistic principles and also non linguistic phenomena) that determines lackin robustness in the underlying parsing system. It is evident how corpus phenomenaare diÆcult to be captured by a given theory. They in fact are irremediably changingthroughout di�erent corpora and sub-languages. Although the source theory is byitself very robust (as it is modelled on a subset of human language phenomenathat are its �nal scope), corpora tend to signi�cantly disclose from it. This tendsto replicate whenever new corpora are approached.In order to determine a more usable notion of robustness we can thus try acorpus-centred notion of it. A theory T 0 is thus more robust than a theory T , i�small changes in the corpus , i.e. �(C), implies small changes in the results, i.e.T 0(C) or T (C), i.e. �T 0(C)�C < �T (C)�C(1)where �C roughly represents changes from a corpus C to a corpus C 0. Notice howthe above de�nition tries to capture the notion of graceful degradation. T (C) hereimplies some notion of performance of the theory with respect to a data set. Al-though performance is strictly related to the target task, as di�erent applicationsmay require optimisation of di�erent phenomena, we will leave this issue not spec-i�ed at the moment. It does not prevent our analysis from drawing further (anduseful) consequences.However, it is evident that T (C) is measurable in large only if a NLP system Sis employed: S embodies T in its lexicons, grammars and control rules. When wemake reference to T (C), we are dealing indeed with a di�erent function, S(T;C),expressing a system S that, according to the theory T , is applied to the corpus C.This has consequences on the de�nition (1). Robustness of the process S(T;C) can



Parsing Engineering and Empirical Robustness 5be now rewritten as: �S(T 0; C)�C < �S(T;C)�C(2)where S(T;C) models the performance allowed by S in the application of a givenT to C.Equation (2) is useful as it allows decoupling the theory from its application tothe corpus. This emphasizes the role of T and S independently. The performanceS(T;C) strictly depends on:� The linguistic knowledge embedded in T that is its lexicons and rules, e.g.grammars� The assumptions that T makes about the input and output representation.For example the output of a parser can range from a single (i.e. the best) treeto a parse forest or a redundant syntactic graph.� The algorithmic assumptions implied by S. First of all, S can (or not) supporta speci�c decomposition of the process in several linguistic levels. Second, it isvery sensible to the adopted representation, where either single data structures(like charts) may serve all the process or independent representations are usedby di�erent subtasks.In view of measuring and thus assessing a more precise notion of robustnesswe can now rely on the above three aspects: when a computational framework isavailable to design a system S able to include aspects of one (or more) linguistictheory(ies) T and to support large scale performance evaluation over di�erent cor-pora, a (possibly) relative notion of robustness can be measured and exploited inview of target applications. Several systems S can be obtained via organizationsof di�erent architectures (e.g. cascades of di�erent parsing modules). Di�erent the-ories can be tested via tuning and adaptation of lexicons and grammars. Finallylarge-scale evaluation should be made available with respect to changes in the cor-pora or against some of their separate and independent subsets related to di�erentsyntactic aspects or built according to di�erent complexity.The purpose of this paper is to de�ne and study:� A parsing framework for design of systems S that support the applicationof di�erent theories T (without major revisions). Notice that this does notreduce to de�ning a general formalism (or generalizing existing ones). Exist-ing formalisms (e.g. feature structures as in HPSG) have been often criticizedas they can be weak with respect to robustness: in (Menzel1995) the tightintegration among syntactic and semantic language levels in HPSG is seen asa potential source of complexity for robustness. The required full constraintsatisfaction (at syntactic and semantic level) can even prevent a suitable man-agement of problematic situations where more exibility is mandatory. More-over, formalisms are often divergent and a single unifying formalism is notavailable. Trends in several NLP application areas (e.g. IE as in (MUC1995;Pazienza1997) suggest that heterogeneous architectures can be often success-fully de�ned.



6 R. Basili, F.M. ZanzottoThe de�nition of such a framework is instead mostly related to the designphase of the target NLP system S, where software infrastructures play amajor role.� A unifying representation of grammatical information for the target systemsS able to transparently support the intermediate parsing phases.� A suitable notion of performance by which S(T;C) can be modelled. Thisnotion will allow the systematic assessment of robustness in which applicationswill act as Turing-like tests.The following sections will present, �rst, the principles underlying the requiredframework (section 2), some parsing architectures reecting the framework, i.e.modular and lexicalised parsers (section 3.1), and, �nally, experimental evidencesderived from the latter (section 4) that will be discussed in the last section 5.2 A modular, possibly pipelined, and lexicalised architecture for robustnatural language parsingThe parsing design methodology should allow the production of systems that can beeasily con�gured in order to achieve the desired degree of robustness. The proposeddesign methodology is based on two principles: the one inherited from the engi-neering practice, i.e. the modularisation, and the other more proper of the AI �eld,i.e. the availability of "self"-adaptable components. Modularisation imposes a clearseparation between the activities performed by each module with evident bene�tson reusability (modules are loosely coupled among them). Furthermore, the atten-tion to "self"-adaptable components goes in the same direction. Knowledge-basedapproaches require an intensive work for tuning the general-purpose tool to the par-ticular application environment (modules are loosely coupled with the knowledgedomain).2.1 Modular approaches: robust redundant voting policies vs.computationally attractive cascadesIn the software engineering practice, modularisation is suggested as a method forthe production of easy-to-reuse pieces of systems, i.e. the modules. In order to bere-usable, these modules have to be characterized by high internal cohesion andloose coupling. Modularisation speeding up the initial system construction allowsconcentrating the e�orts in �ne-tuning the system to the particular applicationscenario.Once the modularisation is accepted as an added value of the design approach,the next step is deciding which is the desirable composition of the modules for thetasks that the overall systems are designed for. In the syntactic parsing systemstudy, di�erent approaches have been proposed for combining modules together:parallel vs. pipelined combining methods have been adopted.Again from the engineering practice, redundancy is a well-known method againstsystem failures. Hence, an increase on the "degree" of system robustness can be



Parsing Engineering and Empirical Robustness 7obtained duplicating the modules devoted to a particular task. This principle hasbeen applied also to syntactic parsing in (Worm and Rupp1998). In (Worm andRupp1998), syntactic processors implementing di�erent theories/models indepen-dently produce competing interpretations of the sentence. A chart based uniformrepresentation is envisaged and a voting mechanism is applied to decide whichinterpretation should be chosen or to combine di�erent partial analysis. The "com-peting" parsers di�er from the point of view of the information they produce overthe input sentence: they range from deep parsers based on HPSG formalisms toshallow parsers based on �nite-state cascades or HMM rules. A "prefer-the-deeper-analysis-whenever-available" is adopted and the sentence interpretations are ob-tained mixing together partial interpretations. The combined parser is "robust" inthe sense that a reasonable (eventually degraded) response is (generally) produced.Pipelined approaches (i.e. module cascades) have the disadvantage/advantageto be more deterministic. Processing redundancies are avoided and �nite-state-automaton cascades generally adopted (Hobbs et al.1996) and (A��t-Mokhtar andChanod1997). In the perspective of real world applications where time constraintsare important, they result to be more appealing since their computation time is in-herently lower with respect to redundant approaches. Moreover, the integration ofdi�erent approaches in a cascade-fashion is postulated in (Abney1996; Collins1996).In (Collins1996), a stochastic approach is applied over symbolically processed tex-tual material: an intermediate level of phrase interpretation is adopted (i.e. theNP kernels). This work suggests the possibility to integrate symbolic and sub-symbolic approaches. The same mixture exists in (Carroll and Briscoe1998) wheresub-categorization frames and statistical parsing approach has been positively in-tegrated.The computational appealing and the suggested possibility of plugging modulesinspired by di�erent theories in the processing chain are nice features of pipelineapproaches that can be capitalized in our robust methodology for building up re-con�gurable syntactic parsers.The modularisation we want to push here is �ne-grained: the components areresponsible of the detection of some syntactic phenomenon and are interested ona syntactic representation of the sentence that disburdens their analysis. The ob-servations are translated in requirements for the formalism that has to transferthe syntactic analysis among modules. The unifying formalism must exhibit thepossibility of data encapsulation and partial analysis storage.2.2 Grammars, Lexicons and "self"-adaptable componentsModularisation design principles (high cohesion and loose coupling) by themselvesdo not guarantee that the "linguistic" modules are conceived to be reusable in agiven operational environment (i.e. sub-language/domain). It is also a wide sharedperception that some shallower syntactic material can be produced with rules inde-pendent from the domain (for instance the NP-chunking). These latter approachescan lead to the de�nition of modules that have a low degradation of the perfor-mances when exposed to the new working conditions. However, it is a well-known



8 R. Basili, F.M. Zanzottolimitation that, in order to obtain accurate syntactic parsers, current methodologiespropose domain dependent approaches. The domain dependent resultant parsers aregenerally based on a wide knowledge of the domain. The challenge in this �eld isto propose approaches able to learn selective rules with the minimal supervision.This is undoubtedly a positive aspect in the perspective of speeding up the tuningto an operational scenario.The knowledge based approaches need information on the given application do-main in the form of distributional frequencies of linguistic phenomena (Collins1996)or lexicalised rules (Pollard and Sag1994). Generally statistical approaches are su-pervised: prediction rules are estimated on syntactically annotated corpora (thePenn Treebank (Marcus et al.1993), the Susanne corpus (Sampson1993), etc.).These latter are expensive extensional representations of the grammatical intuitionsof the annotators over a large amount of textual material. On the other hand, lex-icalised approaches are based on precise intuitions of the grammar writers inspiredby "real" corpus textual material. Both the approaches provide high performanceproducts. However, the tuning e�ort is high since, from the one side, portions ofthe corpora have to by annotated and, on the other side, grammatical rules haveto be hand-written.Knowledge based approaches are applicable in this framework if the required in-formation can be learnt automatically with a low level of human supervision. There-fore, processors based on simple syntactical lexicalised sub-categorization frames(e.g. the verb lemma and the prepositions of the arguments) result to be applica-ble. In fact, this kind of "unpretentious" information is learnable with unsupervisedalgorithms (Brent1993; Basili et al.1997).In the framework we propose that modules like:� shallow analysers that take decisions over simple and domain independentphenomena� lexicalised analysers based on syntactic sub-categorization frames and cou-pled with a weakly supervised learning modulesare more attractive since loosely coupled with the domain. They speed up the pro-duction of the system and the satisfaction of the performance (robustness) criteria.3 Parsing Engineering in the practice:CHAOS, a pool of syntactic processorsThe robust methodology for producing syntactic parsers proposed in the previoussection foresees:� the decomposition of the parsing process in (possibly) pipelined activitiescharacterized by high cohesion and low coupling� the de�nition of a uniform formalism supporting data exchange in the �ne-grained decomposition



Parsing Engineering and Empirical Robustness 9� the setting up of modules characterized by a low coupling with the applicationdomainIn this section, we propose a case study where the above principles are applied inthe production of CHAOS, a pool of syntactic parsing modules, which has beenused in real applications (as text classi�cation in TREVI (Basili et al.August 1998)and hyper-textual linking in NAMIC (Basili et al.2001)) throughout di�erent do-mains (�nance, sport, medicine, etc.) and di�erent languages (English and Italian).The decomposition principles are discussed in sec. 3.1. The uniform formalism isintroduced in sec. 3.2. The module pool is described in sec. 3.3 where grammaticaland lexicalised modules are discussed.3.1 Decomposition principles in CHAOSThe decomposition of a syntactic parsing process into di�erent modules has to bemotivated by the e�ective possibility of identifying sub-components with an highdegree of internal cohesion and a loose degree of coupling. The wide shared as-sumption that verbs control the semantics of the sentence and, thus, their syntacticprojections constrain the overall syntactic interpretation can be an interesting in-spiring principle for the modularisation. For instance, in the sentence extractedfrom an economical newspaper article:The executives and the employees say the Acme company, whose revenues plungedto $783 million for the quarter ended Dec. 31, 2000 from $1.67 billion for thecomparable period in 1999, is furiously trying to cut costs.the role of the verb plunge is central in the sub-sentence. If the sub-categorizationframe ( plunge, (Subj) (PP:from) (PP:to) )1related to the particular realisation were available, interpretations connecting to-gether for example for the quarter ended Dec. 31, 2000 from $1.67 billion in asingle prepositional phrase are obviously inadmissible. Since verbs play a key rolein producing the correct interpretation of the sentence, a module devoted to thiskind of phenomena is very appreciated. In fact, during the design activity it allowscontrolling the performances and thus the satisfaction of the constraints.If this processor is available, the loose coupling principle imposes a �rst decompo-sition between processors devoted to the detection of phenomena inuenced by theverb syntactic projections and those that are not. Then, since a pipeline is gracefullyimposed, it should be decided what should be usefully done before the verb attach-ment detection and what should be done after. An interesting intermediate level1 The represented grammatical realization of plunge expects a subject, (Subj), and twoprepositional phrases, one with the preposition from, (PP:from), and the other withthe preposition to, (PP:to).



10 R. Basili, F.M. Zanzottobetween the words and the sentences is the notion of chunk (Abney1996). Chunksare both psycho-linguistically motivated and computationally attractive. These aregenerally phrase kernels, as NPs (Collins1996), whose boundaries can be detectedvia �nite state automata. Furthermore, meaningful portions of these chunks, i.e.their syntactic heads and their potential governors, are emphasized. In our case,chunks are also the sentence fragments for which the spans are not inuenced byany verbal syntactic projection. The activity of chunk detection should be donebefore the verb argument detection, since the knowledge gathered in the chunk-ing phase obviously disburdens the verb argument detection. As already stated insec. 2, the notion of phrase kernels has been used also in stochastic approach toparsing as in (Collins1996). This does not limit the integrability between symbolicand sub-symbolic modules. Moreover, the same consideration applies for the verbsub-categorization based module since, as argued in (Carroll and Briscoe1998), itdoes not prevent the e�ective integration of statistical processors. The un-retrievedverbal argument as well as the NP-modi�er detection will have a clear bene�t ifdone after the verb argument detection. The search spaces of the later processorsare constrained by relations drawn by the verb argument matcher.The inspiration principle for the design of the module pool is then the concernof using in the best way the disambiguating power of the verb sub-categorizationframes. The module competences are partitioned accordingly and their positions inthe pipeline chain are then derived.3.2 An unifying formalism: XDGThe proposed �ne-grained modularisation of syntactic parsing requires a uniformformalism able to, on the one hand, represent partial analysis owing betweenthe modules and, on the other, show to the (eventually pipelined) modules onlythe information relevant for the single steps. In fact, processors dealing with theverb argument detection as well as the pp-attachment problem are interested tobe exposed to the input as a chain of V P , NP , and PP -kernels where relevantfeatures as the phrase heads and the prepositions of the PP s are highlighted. Thisnice property is owned by constituency-based syntactic representation scheme asthe one inspiring the charts underlying the VIT formalism (Worm and Rupp1998).In the software engineering, this information-hiding attitude is referred as dataencapsulation.However, the constituency-based approach has a limitation: the traditional notionof constituent as a subsequence of words in the analysed sentence. This limits itsapplication in a �ne-grained modularised framework. For instance, a pp-attachmentresolution module should be free to draw the conclusion that a PP -kernel is the V P -kernel without postulating the structure of the rests of NPs/PPs between the two.A dependency-based annotation scheme (Tesniere1959; Grinberg et al.1996) is moreindicated to cope with this kind of problem, but it is not well-suited for informationhiding: the nodes of the graph are always words, no encapsulation of the informationis foreseen. As an instance, the pp-attachment module has to navigate the structurein order to extract the key information to perform its choices (the preposition



Parsing Engineering and Empirical Robustness 11and the noun head of the PP-kernel as required by the pp-attachment resolutionalgorithm presented in (Brill and Resnik1994; Ratnaparkhi and Roukos1994)).The formalism we have de�ned is a mixture inheriting the positive aspects ofthe two (apparently diverging) approaches: the data encapsulation and the partialanalysis storage attitude. The proposed annotation scheme is an extended depen-dency graph (XDG). It is a dependency graph whose nodes C are constituents andwhose edges D are the grammatical relations among the constituents, i.e.XDG= (C;D)The XDG set is completely de�ned when the node tags, �, and the edge tags, �,are fully speci�ed, i.e. it will be denoted by XDG��. The � and � tag sets dependupon the level of the syntactic analysis (and the underlying grammatical theory).The XDG formalism eÆciently models the syntactic ambiguity. In general, al-ternative interpretations for dependencies are represented by alternative d 2 D. Auseful property can be imposed on xdgs to select a single (partial) syntactic inter-pretation. A planar xdg is a single (although possibly partial) syntactic reading.Planarity (Grinberg et al.1996) interdicts crossing links, thus is can be used toselect unambiguous sentence fragments. An unambiguous partial interpretation isany planar subgraph of an xdg.3.3 The module poolA module P of the modular syntactic parser is a processor that, using a speci�c setof rules R, adds syntactic information to the representation of the sentence, i.e.P : R�XDG�� ! XDG�0�0(3)so that P (r; xdg) = xdg0, where xdg and xdg0 are the input and the enhanced graph,respectively. This implies that syntactic processors SP s are modelled as functionsover XDGs, and their nature is reected by properties of those functions. As anyPi module foresees the use of its own rule bases (elements in Ri), the �rst argumentof a function Pi can be omitted for sake of synthesis, so that hereafter equation 3will be written as Pi : XDG�� ! XDG�0�0with Pi(xdg) = P (xdg; ri) = xdg0.Actions that a module P perform on the XDG can bemonotonic or non-monotonic.Monotonic modules preserve all the choices (i.e. nodes and arcs, as constituents anddependencies already recognized) expressed by the input graph.Furthermore, with respect to the input XDG, the ability of a module P refer to:� constituent gathering, for processors grouping set of words into larger con-stituents;� dependency gathering, where nodes are left untouched and only dependenciesare added.



12 R. Basili, F.M. ZanzottoFinally, a further distinction can be done with respect to the parameter Ri ofeach processor Pi. Pi is a lexicon-driven processor when Ri is lexicalised (e.g. a verbsub-categorization lexicon, ri). Pj is a grammar-driven processor when Rj does notinclude any lexicalised form of syntactic information (e.g. categorial or PSG rules).According to the above de�nition several processors can be de�ned. An overallmodular parserMP is thus de�ned as a cascade of processing modules (P1; :::; Pn),via composition of processors:MP : XDG�� ! XDG�0�0with MP (xdg) = Pn Æ Pn�1 Æ : : : Æ P2 Æ P1(xdg)The modules actually used in CHAOS are described in the next sections.3.3.1 Grammar-driven componentsIn order to be loosely coupled with the special language, the grammar-driven com-ponents should have general (and possibly under-speci�ed) rules. Decisions willbe taken by modules having high-expectations on the behaviour of the words (i.e.the lexicalised components). The two grammar-driven components adopted in theCHAOS pool are: (1) a chunker (Abney1996) and (2) a shallow syntactic analyser(Basili et al.1992).The chunker is the component that has to pack ambiguity independent from verbvalency information. It, thus, provides a set of (possibly) complex sentence frag-ments as kernels of nominal phrases NPK (e.g. [The executives] and [the employees]say ...) or prepositional modi�ers PPK (e.g. ... plunged [to $783 million] [for thequarter] ...). Basic information related to a chunk is a syntactic category (e.g. NPK,PPK, etc.), a potential governor and a grammatical handler possibly di�erent fromthe governor. It recalls quite closely the notion of instance of morpho-syntactic tem-plate in most dependency based parser. In terms of the XDG notion introducedabove, a chunking process matching grammatical rules (the chunk prototypes) overa part-of-speech tagged sentence (�0=fVerb, Noun, Preposition, Adjective ...g) andproduces an xdg whose nodes are chunks, characterized by a governor, and thesyntactic category (�=fVPK, NPK, PPK, ...g), i.e.:Chunker : XDG�0�0 ! XDG��It is a machine computationally complex as a �nite-state automaton since it ispossible to express the chunk prototypes as regular expressions. The coupling withthe domain is small since it postulates and uses only prototypical descriptions ofsimple structures.The shallow syntactic analyser aims to draw relations among the chunks withoutusing deep information (sub-categorization lexicons). The grammatical recognitionis based on a shallow parsing strategy presented in (Basili et al.1992). A discontin-uous logic grammar formalism is here used to model matching of non-adjacent (i.e.



Parsing Engineering and Empirical Robustness 13expressed by gaps) modi�ers and speci�ers. Logical patterns as feature structuresare used to express legal realizations of constituents with gaps: skip rules are usedto express sentence fragments among head and dependents. Such fragments aresimply skipped by the parser and left unanalysed although logical constraints (viauni�cation) are imposed to their feature description. The result of the analysis is anXDG enriched with potentially ambiguous grammatical relations. The ambiguityis modelled via a plausibility score. In term of the formalism introduced, the shallowdependency parser is: SSA : XDG�� ! XDG��where XDG�� have chunks as nodes (� and � are �=fVPK, NPK, PPK, ...g and�=fSUBJ, DIROBJ, PPMOD, ...g).3.3.2 Self-adaptable componentsThe precision of the whole syntactic parsing can be controlled if high expectationson the word behaviour are postulated. This is generally obtained by using lexicalisedrules, i.e. rules activated by particular lexical items. Many of these rules dependtightly on the domain since they capture word meanings. This is particularly truefor verbs. For instance, the verb operate, in the medical sub-language, can have themeaning of "perform a surgery on" and, thus, has the sub-categorization structure(operate, (SUBJ,PP:on)). In the �nance sub-language it is likely to express themeaning of "operate in a market sector" and, consequently, the preferred readingis provided by the frame (operate, (SUBJ,PP:in)). This di�erence can resultin very high performance variation. Furthermore, it is important to activate thesubpart of the lexicon that can provide improvements in the particular domain.Modules based on sub-categorization lexicons are valuable in this framework ifunderlying lexicons are re-con�gurable and tuneable to the particular sub-language.In (Basili et al.1997; Basili et al.1999), the possibility of acquiring this form ofknowledge has been demonstrated to be e�ective in a shallow parsing environment.Therefore, a speci�c processor, the Verb Argument Syntactic Matcher,V ASM : XDG�� ! XDG��is adopted in the pool. It matches verb argument structures and organizes the de-tected phrase fragments into a hierarchy of clauses. V ASM is a lexicalised processorable to work at di�erent levels of lexicalisation that processes XDG�� whose nodesare chunks (� and � are �=fVPK, NPK, PPK, ...g and �=fSUBJ, DIROBJ, PP-MOD, ...g). Successful matches add to the target xdg dependency arcs also calledicds, i.e. inter-chunk dependencies. An original feature is the speci�c combinationof the argument matching with the clause recognition. As sentences have more thanone verb de�ning di�erent sentence clauses, the matching of argumental icds alsodetermines the set of detected clause boundaries. In this perspective, coordinationand subordination between clauses are approached on the basis of verb argumentrecognition. The recognition of the complete hierarchy of the sentence clauses isre�ned incrementally along with the matching of argumental icds for the di�erent



14 R. Basili, F.M. Zanzottoverbs ( see (Basili et al.1998a) for technical details). In V ASM , the role of lexicalinformation is not only to �ll slots of lexical entries, but also to control, via planarityconstraints, the matching for other verbs and the activity of the grammar-drivenmodules. The kind of suggested analysis has been also adopted for Italian where therelatively free order of arguments in sentence often require control rules to judgeamong competing slot �llers.The use of sub-categorization frames introduces a graceful correlation among thesyntax and the semantics analysis as sub-categorization frames shallowly conveythe semantics of the words (verbs, in this case). The integration of the two level ofanalysis allows the propagation of semantic constraints in the later phases of theprocess of syntactic analysis.4 Measuring Empirical RobustnessOnce a framework for modular and lexicalised parsing has been settled, the studyof robustness as it has been de�ned in section 1.2 can be carried out. The aim ofthe experiments is:� to validate some of the proposed parsing architectures,� to study the contribution of lexicon and grammar-driven modules to the over-all robustness as an empirical validation,� to assess the viability of the proposed approach to robustness and derivegeneral principles about it.For these targets, several corpora of two di�erent languages (English and Italian)have been studied and contrastive analysis has been carried out. In order to �t theabove objectives, a cross-domain analysis has been �rstly applied. Di�erent systems(i.e. parsing architectures S embodying di�erent theories T ) have been investigatedacross text collections in di�erent domains. Then a large-scale reference corpus (thePenn Treebank, (Marcus et al.1993)) is used to evaluate the potentials of lexicalisedarchitectures for parsing of English. Partitions of di�erent complexity have been�rstly derived. System performances (and thus robustness) are then systematicallymeasured to get a quantitative evaluation of system degradation.To assess the role of sub-categorization lexicon, two di�erent parsing architecturesare contrastively compared. The �rst lexicalised parser (hereafter referred as Lex) ischaracterized a cascade of chunking, verb argument detection, and shallow syntacticanalysis: Lex(xdg) = SSA Æ V ASM Æ Chunker(xdg)The verb argument detection, driven by a sub-categorization lexicon, has beencarried out by adopting as a source an automatically induced verb lexicon. The ac-quisition model, described in (Basili et al.1997) has been independently carried outover the entire collections. The results are di�erent lexicons independently adoptedduring testing. In this case the underlying theory T is changing among domainsaccording to the speci�c nature of the sub-language, while the system S is ex-pressed by a common architecture (i.e. the chain of processing steps), identical forthe di�erent domains.



Parsing Engineering and Empirical Robustness 15As a contrastive architecture, a second parser (No Lex) has been also appliedmade by the chunker and the shallow syntactic analysis:No Lex(xdg) = SSA Æ Chunker(xdg)Major di�erences between the two con�gurations, applied to XDG structures, isthat the Lex parser depends strictly on a domain speci�c verb lexicon, while thesecond does not rely on any form of lexical knowledge.In section 4.1 the �rst set of experiments is described. Section 4.2 discuss theresults obtained from the Penn Treebank. An overall discussion is then carried outin Section 5.4.1 Evaluating cross-domain Robustness: parsing Italian textsThe evaluation of parsing performances has been possible over three extensive col-lections of Italian texts:� Legal, an excerpt of legal documents on Italian V.A.T. laws, of about 320; 000words� ENEA, a collection of technical and scienti�c papers on the environment(about 350; 000 words)� Sole24Ore, a collection of news from the most important �nancial newspaperin ItalyThese corpora are related to quite di�erent topics, show very di�erent stylesand represent a good basis for cross-domain analysis. They all are not annotated.As extensive controlled annotated corpora were not still available at the time ofthe experiments, resources have been manually derived for them. A pre-existentconstituency-based annotated collection of sentences for the Legal collection andtwo ad hoc annotated collections for the other domains have been used. Note thatthe annotated portions represent small subsets of the source collections. The mainfeatures of the annotated portions of the three corpora are reported in Tab. 1. Thesize of the entire source corpora is relevant instead as they inuence the qualityand coverage of the corresponding acquired lexical information (subcategorizationframes). Table 1. Features of the three annotated corporaENEA Sole24Ore Legal#words 1,149 494 1460#sentences 56 22 80av. #words per sentence (20.51) (22.45) (18,25)av. #verbs per sentence 2.14 3.1 2.2average chunk length 1.53 1.44 1.54



16 R. Basili, F.M. ZanzottoAlthough no correspondence emerges between average sentence size and averagechunk length (row 3 vs. row 5), both parameters are related to the overall complexityof the test sets. It seems that the Legal is simpler than the ENEA corpus, whilethe more complex seems to be the Sole24Ore corpus.The F -measure obtained by the two parsers (Lex and No Lex) is reported inFig. 1 for the three domains.
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Fig. 1. F -measures of the Lex and No Lex parsers over three Italian corporaResults show that the lexicalised architecture signi�cantly outperforms the shal-low No Lex parser. The synthetic data for the Lex parser include inter-chunk verbdependencies (argumental if postulated by the lexicon or ambiguous) as well asnoun modi�ers. Data suggest that chunk analysis provides an e�ective word group-ing: at least two words over three appear in a non-singleton chunk (as shown inTable 1).The Lex system is e�ective (F -value > 70%) for all the di�erent domains.The cross-domain analysis also shows that the relative complexity of the corpora(Legal < ENEA < Sole24Ore) is also reected by decreasing performance forboth the two parsers. This suggests that the inherent complexity of the corpus canbe well captured.



Parsing Engineering and Empirical Robustness 17Table 2. Performance on the Legal corpus using two lexiconsIcd Rec Prec Rec Prec(LexLIFUV ) (LexLIFUV ) (Lex) (Lex)Argumental 28.7 % 88.5 % 29.9 % 89.1 %Unambiguous 53.6 % 85.8 % 54.4 % 86.3 %All 67.4 % 71.6 % 68.1 % 72.1 %By capitalizing on this we can thus evaluate the degradation in performance of thetwo parsers along the increase of complexity of the domain. The �rst major result isthus that equation (2) can be consistently used to express robustness. The outcomeof the �rst experiment is thus that the lexicalised (Lex) parser is more robust as itsperformances do not decrease rapidly at the increase of the corpus complexity. Thisis strikingly clear if we compare this against the rapid degradation of the No Lexparser.The Lex parser is always fed with a domain speci�c lexicon, directly acquiredon the text collections. Further evidence is thus needed to assess the role that theparser con�guration (system S) plays on the resulting robustness. As the evaluationis biased by the lexical information, in order to ultimately validate the e�ectivenessof the Lex architecture over the other parser we should experiment with di�erentlexicons.As large sub-categorization lexicons are rare resources for the Italian language, werelied on LIFUV (Delmonte1992), a manually compiled lexical knowledge base thatencodes syntactic and semantic selectional restrictions in lexicalised frames. Thenumber of verbs covered by lexicalised frames is about #1,500. In order for the Lexarchitecture to use LIFUV, a compiled form with only sub-categorization frames hasbeen extracted from the source syntactic-semantic frames. Lex has been thus fedwith only syntactic constraints where sense information (expressed in LIFUV viaaspectual categories and Jackendo�-like semantic primitives) has been neglected.We will refer hereafter this parser as the LexLIFUV .The results obtained for the two parsers over the Legal corpus are reported inTable 2. Recall and precision over this corpus have been measured against the twosources lexical information. The di�erent rows refer to argumental icds (i.e. thosedependencies postulated by the lexicon that are less frequent, so that their overallrecall is low), unambiguous (i.e. dependencies not conicting with other possiblesyntactic readings) and all dependencies in the classes: V-SUBJ, V-OBJ, V-PP,N-PP.The performance results of Table 2 are very similar. Not surprisingly the use ofdata-driven learning provides even a better lexical information. This is a con�rmingevidence of the viability of lexicalised parsing architectures for NLP applications.Moreover, the use of di�erent (but consistent) sub-categorization informationdoes not signi�cantly modify performances. It seems that slight changes in linguistictheory, imposed by switching from a syntactic (automatically acquired) lexicon



18 R. Basili, F.M. Zanzottoto another (richer) lexicon (i.e. LIFUV), are not impacting on robustness. Thissuggests that the architecture (shared by the two parsers as a cascade of chunkingand lexicalised dependency analysis) is the major responsible for the robustnesssuggested in the �rst experiment (shown in Figure 1). Again, the role of the referencesystem S with respect to robustness is much more important than changes in thegrammatical theory T .4.2 Evaluating Robustness in English parsingThe evaluation of English parsing can rely on large syntactically annotated cor-pora (e.g. Penn Treebank (Marcus et al.1993) and Susanne (Sampson1993)). Amajor problem in reusing the annotated material in the evaluation activity is theactual mismatch of the grammatical hypothesis between the reference corpus (i.e.constituency based parse trees) and the parser outputs (i.e. XDGs). In fact, thegrammatical hypothesis not only impacts on the reference representation but alsoon rules used to express grammatical phenomena via annotations.The required mapping is not easy. Previous works suggested that the underly-ing grammar increases linearly in number of rules with the number of sentences(Gaizauskas et al.1998). Low error rate in translation can be guaranteed only forsome given syntactic relations. Since the aim is to comprehend the e�ects of the lex-ical information in parsing, syntactic relations like V-SUBJ, V-OBJ, V PP, and N-PPhave been extracted with a suitable degree of con�dence. Details of the rewritingalgorithm are in (Basili et al.1998b).One of the main bene�ts of using the Penn Treebank (PT) is that it provides con-sistent syntactic data (no grammatical noise) that can be exploited by the machinelearning techniques needed for verb sub-categorization frame acquisition. The kindof lexical learning adopted in the Lex architecture is thus optimal as it is based onsupervised data.The experiments aim to demonstrate that the Lex architecture improves the pars-ing accuracy and robustness. Moreover, automatic acquisition of the sub-categorizationlexicon is shown viable for a bootstrapping approach to parsing. In order to properlyset-up the experiments several assumptions have been made:� Di�erent phenomena may exhibit di�erent levels of complexity, so that in-dividual measurements have been made of the di�erent syntactic aspects.For example, independent evaluation of speci�c grammatical relations (e.g.V-SUBJ, V-OBJ, V-PP and N-PP has been carried out.� Performance levels of the proposed architectures have been observed through-out all the available material (about 44,000 sentences in the PT)� As robustness is to be investigated, we need to observe the behaviour of thesystem with respect to increasing levels of complexity. This allows quantifyingrobustness in terms of accurate performance with respect to stressful input.The grammatical phenomena of interest in evaluating of the Lex architectureare those dependent on the verb sub-categorization information. Table 1 focuseson the set of verb dependencies, and provides evidence of the role of the lexicon in



Parsing Engineering and Empirical Robustness 19their recognition (i.e. V-OBJ, V-OBJ and V-PP). It also shows how the informationavailable for verbs impacts on the ambiguity of strictly related phenomena, i.e.prepositional modi�ers of noun (or nominal groups), N-PP.
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Fig. 2. Performance of Lex and No Lex Architectures over di�erent syntactic phenomenaIn Fig. 2 the values of F -measure obtained for the di�erent phenomena are shown.The performances of the two systems seem in agreement: a decreasing accuracy isshown correspondingly by both the parsers. This suggests a precise relative com-plexity of the observed phenomena. The di�erent measures have been thus organizedaccording to decreasing levels of the task complexity. As expected, the Lex parseris outperforming the non-lexicalised one. Except for the subject recognition taskthe Lex shows about 8-10% better performance on the other tasks.Table 4.2 shows recall and precision scores of the two parsers on the most complexphenomena, N-PP attachments. Note that any decision made according to the verballexicon reects, because of the planarity constraints, on the attachments of PPs tonouns. The Table shows an increase of the precision with a corresponding smallloss in term of coverage. The global e�ect is described by an improvement of theF -measure: F (�) = 0:73 without lexicon vs. F (�) = 0:78 with lexicon.In order to take into account robustness a second and more speci�c experiment



20 R. Basili, F.M. ZanzottoLexicon plaus Link Type R P F (� = 0:5)no any N-PP 0.85 0.65 0.73yes any N-PP 0.82 0.75 0.78Table 3. noun phrases-prepositional phrases attachmentTable 4. Size of the the subcorporaSubcorpus Number of syntactic dependenciesC0 507C1 11,746C2 27,639C3 35,313C4 39,163C5 40,748C6 = others 41,799has been run. Corpus has been split according to sentence complexity, and dif-ferent sub-corpora have been derived. The behaviour of the two parsers has thusbeen studied over such subsets that express the di�erent complexity levels of thetarget sentences. The estimation of the sentence complexity has been de�ned inorder to capture aspects like average number of words, average number of syn-tactic dependencies and number of clauses. Given a sentence s, its complexitySentenceComplexity(s) is de�ned by:SentenceComplexity(s) = #LV (s) + #LN(s)#Clauses(s)(4)where #LV (s) and #LN(s) are the number of verbal and nominal links (i.e. V-PPand N-PP) de�ned by the oracle for s, while #Clauses is the number of clauses inthe sentence s.Each subcorpus Ci is thus made of the sentences whose complexity is below i+1,i.e. Ci = fsjSentenceComplexity(s) < i+ 1g i = 0; 1; 2; :::; 5(5)The result is a set of 6 subcorpora that include sentences of increasing complex-ity. Table 4 reports the size of the di�erent subsets in terms of total number ofgrammatical dependencies in the corresponding sentences. As expected very com-plex phenomena tend to be very rare. As values of SentenceComplexity(s) up to8 have been observed but for very few sentences, a seventh corpus other has beencreated by collapsing all the sentences in C6, C7 and C8, as shown in the Table 4.



Parsing Engineering and Empirical Robustness 21Over each of the created Ci corpus has been evaluated the performance of thesystems.
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Fig. 3. Parser performance vs. sentence complexity in the Penn TreebankAs the Fig. 3 suggests decreasing values of F -measure according to increasingcorpus complexity. Now robustness can be assessed by the simple observation that:� it is proportional to a given parser performance index. F -measure is here used,although di�erent criteria may be employed as well.� it is inversely proportional to the factor expressed in Eq. 2, i.e.�S(T 0;C)�C < �S(T;C)�CNow, assume that �S(T;C) is given by �F , �C can be express as the percentageof new sentences in Ci with respect to Ci�1, i.e.�C = jCij � jCi�1jjCij i = 1; :::; 6(6)Finally, the following robustness index Rob has been measured:Rob(i) = F (i) � �Ci�Fi i = 1; :::(7)estimated by Rob(i) = F (i) � 1jF (i)� F (i� 1)j � jCij � jCi�1jjCij(8)Figure 4 reports values of the Eq. 8 for the two parsers.As expected the proposed score captures the tolerance of the Lex architecture tocomplex phenomena, i.e. those stressful conditions to which robustness should refer.
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Fig. 4. Robustness of the two parsersPolynomial interpolation is shown to suggest the superiority of the Lex parser, andalso its trend with respect to asymptotic behaviour of complexity.5 DiscussionThe early proposal of this paper was that robustness could be usefully studied asan empirical phenomenon. The diÆculties of other, more theoretical approaches,and the need for a systematic measurement of parser robustness suggested the useof a quantitative model of robustness close to the notion of graceful degradation ofperformance (used elsewhere, e.g. (Menzel1995)).This view on robustness has been analysed against substantial experimental ev-idence over di�erent corpora in two languages, Italian and English.In all cases, a performance (and thus data) driven notion of robustness emergefrom the tests, where increasing levels of complexity in the input are signi�cant in-dicators for assessing robustness. The signi�cance of such properties of the adoptedcorpora is enforced by the fact di�erent architectures (i.e. independent parsers) re-sult similarly weak on speci�c data sets. This suggests that performance indexes canbe used to organize systematic experiments aiming to observe a resulting empiricalnotion of robustness.



Parsing Engineering and Empirical Robustness 23Aspects like di�erent syntactic phenomena or inherent sentence complexity havebeen used in Italian and English respectively to monitor degradation of perfor-mance. In Italian, corpora of di�erent complexity were available and they havebeen used to evaluate the tolerance of the target parsers to increasing stressfulinput.In English the availability of a (single) large-scale resource allowed a di�erent ex-perimental set-up. First, sentences have been separated according to an "inherent"notion of complexity (Eq. 4). Then the di�erent sub-corpora obtained have beenused to simulate increasing levels of stress, such that quanti�cation of robustnesswas allowed.All the tests suggested that architectural issues play a critical role on robustness(at least for parsing). Architectural choices are decomposition of the parsing task,uniqueness of the representation (against possibly conicting approaches, e.g. prob-abilistic vs. logic models) as well as algorithmic principles. Among the latter, theexploitation of lexical knowledge suited for the target domain results an inuentialfactor.The adoption of domain speci�c lexicons is made available by the exploitation ofmachine learning techniques (see details in (Basili et al.1997)). Although viability oflexicalised parsing architectures was not the focus of this paper, experiments showthat overall parsing performances are satisfactory (about 80% of F -measure on thePenn Treebank). As a further result all the tests suggest the strong bene�cial impactof lexical information on robustness. This emphasizes researches like in (Carroll andBriscoe1998) dealing with the contribution of lexical syntactic knowledge to parsing.As an overall result, the paper also emphasizes the role of parser design in theachievement of robustness. Whatever the formalism is, a design framework able tosupport modular parsing via uniform representations (i.e. constrained but under-speci�ed data structures) and composition mechanisms plays a major role. Thisapproach is not in contrast with previous work in this area (e.g. (Menzel1995;Worm and Rupp1998)). Every redundancy (or voting) approach to robustness isbased in fact on modular architectures. Although two strictly pipeline architectures(i.e. deterministic cascades of di�erent processors) have been experimented in thispaper, the bene�ts of modularity on robustness have been proofed on a large scale.This validates the overall consistency of the proposed de�nition of robustness.6 ConclusionsRobustness in parsing is a critical problem for linguistic modelling as well as forapplications of natural language processing. The diÆculties in a theoretical explana-tion of robustness suggested the adoption of a more empirical notion. The positiveside e�ects of the proposed de�nition are:� a systematic reference to performance, that is a desirable feature in view ofspeci�c applications where di�erent kinds of robustness may be required� a quantitative model able to capture some essential aspects of robustness withrespect to linguistic input (i.e. invalid or complex sentences) and, mainly, ex-ogenous stress, like lacks in available knowledge (e.g. poor lexical information)
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