
Parsing Non-Recursive Context-Free Grammars

Mark-Jan Nederhof
�

Faculty of Arts

University of Groningen

P.O. Box 716

NL-9700 AS Groningen, The Netherlands

markjan@let.rug.nl

Giorgio Satta

Dip. di Elettronica e Informatica

Università di Padova

via Gradenigo, 6/A

I-35131 Padova, Italy

satta@dei.unipd.it

Abstract

We consider the problem of parsing

non-recursive context-free grammars, i.e.,

context-free grammars that generate finite

languages. In natural language process-

ing, this problem arises in several areas

of application, including natural language

generation, speech recognition and ma-

chine translation. We present two tabu-

lar algorithms for parsing of non-recursive

context-free grammars, and show that they

perform well in practical settings, despite

the fact that this problem is PSPACE-

complete.

1 Introduction

Several applications in natural language processing

require “parsing” of a large but finite set of candidate

strings. Here parsing means some computation that

selects those strings out of the finite set that are well-

formed according to some grammar, or that are most

likely according to some language model. In these

applications, the finite set is typically encoded in a

compact way as a context-free grammar (CFG) that

is non-recursive. This is motivated by the fact that

non-recursive CFGs allow very compact represen-

tations for finite languages, since the strings deriv-

able from single nonterminals may be substrings of

many different strings in the language. Unfolding

such a grammar and parsing the generated strings✁
Secondary affiliation is the German Research Center for

Artificial Intelligence (DFKI).

one by one then leads to an unnecessary duplica-

tion of subcomputations, since each occurrence of

a repeated substring has to be independently parsed.

As this approach may be prohibitively expensive, it

is preferable to find a parsing algorithm that shares

subcomputations among different strings by work-

ing directly on the nonterminals and the rules of the

non-recursive CFG. In this way, “parsing” a nonter-

minal of the grammar amounts to shared parsing of

all the substrings encoded by that nonterminal.

To give a few examples, in some natural lan-

guage generation systems (Langkilde, 2000) non-

recursive CFGs are used to encode very large sets

of candidate sentences realizing some input con-

ceptual representation (Langkilde calls such gram-

mars forests). Each CFG is later “parsed” using a

language model, in order to rank the sentences in

the set according to their likelyhood. Similarly, in

some approaches to automatic speech understand-

ing (Corazza and Lavelli, 1994) the
✂

-best sen-

tences obtained from the speech recognition module

are “compressed” into a non-recursive CFG gram-

mar, which is later provided as input to a parser. Fi-

nally, in some machine translation applications re-

lated techniques are exploited to obtain sentences

that simultaneously realize two different conceptual

representations (Knight and Langkilde, 2000). This

is done in order to produce translations that preserve

syntactic or semantic ambiguity in cases where the

ambiguity could not be resolved when processing

the source sentence.

To be able to describe the above applications in an

abstract way, let us first fix some terminology. The

term “recognition” refers to the process of deciding

 Computational Linguistics (ACL), Philadelphia, July 2002, pp. 112-119.
 Proceedings of the 40th Annual Meeting of the Association for

112

whether an input string is in the language described

by a grammar, the parsing grammar ✄✆☎ . We will

generalize this notion in a natural way to input rep-

resenting a set of strings, and here the goal of recog-

nition is to decide whether at least one of the strings

in the set is in the language described by ✄✝☎ . If the

input is itself given in the form of a grammar, the

input grammar ✄✟✞ , then recognition amounts to de-

termining whether the intersection of the languages

described by ✄✟✞ and ✄✠☎ is non-empty. In this paper

we use the term parsing as synonymous to recog-

nition, since the recognition algorithms we present

can be easily extended to yield parse trees (with as-

sociated probabilities if either ✄✡✞ or ✄✠☎ or both are

probabilistic).

In what follows we consider the case where both✄✠☎ and ✄✟✞ are CFGs. General CFGs have un-

favourable computational properties with respect to

intersection. In particular, the problem of deciding

whether the intersection of two CFGs is non-empty

is undecidable (Harrison, 1978). Following the ter-

minology adopted above, this means that parsing

a context-free input grammar ✄☛✞ on the basis of a

context-free parsing grammar ✄✝☎ is not possible in

general.

One way to make the parsing problem decidable

is to place some additional restrictions on ✄✡✞ or✄✠☎ . This direction is taken by Langkilde (2000),

where ✄ ✞ is a non-recursive CFG and ✄ ☎ repre-

sents a regular language, more precisely an
✂

-gram

model. In this way the problem can be solved us-

ing a stochastic variant of an algorithm presented

by Bar-Hillel et al. (1964), where it is shown that the

intersection of a general context-free language and a

regular language is still context-free.

In the present paper we leave the theoretical

framework of Bar-Hillel et al. (1964), and consider

parsing grammars ✄✆☎ that are unrestricted CFGs,

and input grammars ✄✟✞ that are non-recursive

context-free grammars. In this case the parsing (in-

tersection) problem becomes PSPACE-complete.1

Despite of this unfavourable theoretical result, algo-

rithms for the problem at hand have been proposed

in the literature and are currently used in practical

applications. In (Knight and Langkilde, 2000) ✄✡✞ is
1The PSPACE-hardness result has been shown by Harry B.

Hunt III and Dan Rosenkrantz (Harry B. Hunt III, p.c.). Mem-
bership in PSPACE is shown by Nederhof and Satta (2002).

unfolded into a lattice (acyclic finite automaton) and

later parsed with ✄✆☎ using an algorithm close to the

one by Bar-Hillel et al. (1964). The algorithm pro-

posed by Corazza and Lavelli (1994) involves copy-

ing of charts, and this makes it very similar in be-

haviour to the former approach. Thus in both al-

gorithms parts of the input grammar ✄☛✞ are copied

where a nonterminal occurs more than once, which

destroys the compactness of the representation. In

this paper we propose two alternative tabular algo-

rithms that exploit the compactness of ✄✡✞ as much

as possible. Although a limited amount of copying

is also done by our algorithms, this never happens in

cases where the resulting structure is ungrammatical

with respect to the parsing grammar ✄ ☎ .
The structure of this paper is as follows. In Sec-

tion 2 we introduce some preliminary definitions,

followed in Section 3 by a first algorithm based on

CKY parsing. A more sophisticated algorithm, sat-

isfying the equivalent of the correct-prefix property

and based on Earley’s algorithm, is presented in Sec-

tion 4. Section 5 presents our experimental results

and Section 6 closes with some discussion.

2 Preliminaries

In this section we briefly recall some standard no-

tions from formal language theory. For more details

we refer the reader to textbooks such as (Harrison,

1978).

A context-free grammar is a 4-tuple ☞✍✌✏✎✒✑✓✎✕✔✖✎✗✙✘
, where ✌ is a finite set of terminals, called the

alphabet, ✑ is a finite set of nonterminals, including

the start symbol ✔ , and
✗

is a finite set of rules hav-

ing the form ✚✜✛✣✢ with ✚✥✤✦✑ and ✢✧✤★☞✩✌✫✪✬✑ ✘ � .
Throughout the paper we assume the following con-

ventions: ✚ , ✭✮✎✰✯✱✯✰✯ denote nonterminals, ✲ , ✳✴✎✰✯✱✯✱✯ de-

note terminals, ✵ , ✶ , ✢ are strings in ☞✩✌✷✪✦✑ ✘ � and✸ ✎✺✹ are strings in ✌ � . We also assume that each

CFG is reduced, i.e., no CFG contains nonterminals

that do not occur in any derivation of a string in the

language. Furthermore, we assume that the input

grammars do not contain epsilon rules and that there

is only one rule ✔✻✛✼✢ defining the start symbol ✔ .2

Finally, in Section 3 we will consider parsing gram-

2Strictly speaking, the assumption about the absence of ep-
silon rules is not without loss of generality, since without ep-
silon rules the language cannot contain the empty string. How-
ever, this has no practical consequence.

113

mars in Chomsky normal form (CNF), i.e., gram-

mars with rules of the form ✚✜✛✽✭✿✾ or ✚✜✛✼✲ .

Instead of working with non-recursive CFGs, it

will be more convenient in the specification of our

algorithms to encode ✄✟✞ as a push-down automaton

(PDA) with stack size bounded by some constant.

Unlike many text-books, we assume PDAs do not

have states; this is without loss of generality, since

states can be encoded in the symbols that occur top-

most on the stack. Thus, a PDA is a 5-tuple ☞✍✌✏✎❁❀❂✎❃✏❄❆❅✰❄❈❇ ✎ ❃❊❉ ❅✴❋✺● ✎❁❍ ✘ , where ✌ is the alphabet as above,❀ is a finite set of stack symbols including the initial

stack symbol
❃ ❄❆❅✰❄■❇

and the final stack symbol
❃❊❉ ❅✴❋✺●

,

and ❍ is the set of transitions, having one of the fol-

lowing three forms:
❃❑❏✛ ❃▼▲

(a push transition),❃▼▲◆❏✛ ❖ (a pop transition), or
❃ P❏✛ ▲

(a scan

transition, scanning symbol ✲). Throughout this pa-

per we use the following conventions: ◗✧✎ ❃ ✎ ▲ ✎❘❖
denote stack symbols and ❙✬✎❯❚❱✎❳❲ are strings in ❀ �
representing stacks. We remark that in our notation

stacks grow from left to right, i.e., the top-most stack

symbol will be found at the right end.

Configurations of the PDA have the form ☞❨❙✬✎✺✹ ✘ ,
where ❙❩✤▼❀ � is a stack and ✹❬✤❭✌ � is the remain-

ing input. We let the binary relation ❪ be defined by:☞❫❲❴❙✬✎ ✸ ✹ ✘ ❪❵☞❛❲❜❚✬✎❳✹ ✘ if and only if there is a transi-

tion in ❍ of the form ❙ ❏✛❝❚ , where ✸❡❞❣❢ , or of

the form ❙ P❏✛ ❚ , where ✸❤❞ ✲ . The relation ❪ �
denotes the reflexive and transitive closure of ❪ . An

input string ✹ is recognized by the PDA if and only

if ☞ ❃✮❄✐❅✰❄❈❇ ✎✺✹ ✘ ❪ � ☞ ❃❊❉ ❅✴❋✺● ✎ ❢ ✘ .
3 The CKY algorithm

In this section we present our first parsing algorithm,

based on the so-called CKY algorithm (Harrison,

1978) and exploiting a decomposition of computa-

tions of PDAs cast in a specific form. We start with

a construction that translates the non-recursive input

CFG ✄✟✞ into a PDA accepting the same language.

Let ✄✟✞ ❞ ☞✩✌✮✎✍✑✓✎❘✔✖✎ ✗✙✘ . The PDA associated

with ✄✟✞ is specified as

☞✍✌✮✎❳❀❂✎❦❥❧✔✫✛✣♠✟✢✴♥✍✎❦❥♦✔✻✛✣✢♣♠✴♥✍✎q❍ ✘ ✎
where ❀ consists of symbols of the form ❥ ✚r✛s✵★♠✶t♥ for ☞❨✚✜✛✣✵✉✶ ✘ ✤ ✗ , and ❍ contains the following

transitions:

♠ For each pair of rules ✚✈✛✇✵✉✭①✶ and ✭②✛✇✢ ,❍ contains:❥ ✚✜✛✼✵③♠✡✭①✶t♥ ❏✛ ❥ ✚✜✛✼✵③♠✡✭①✶t♥✉❥♦✭r✛✼♠✟✢❦♥
and❥ ✚✜✛✼✵③♠✡✭①✶t♥④❥♦✭r✛✣✢⑤♠⑥♥ ❏✛❑❥ ✚✜✛✼✵✉✭r♠✡✶t♥ .♠ For each rule ✚ ✛ ✵⑦✲⑧✶ , ❍ contains:❥ ✚✜✛✼✵③♠✟✲⑨✶t♥ P❏✛✇❥ ✚✜✛✼✵⑦✲⑩♠✡✶t♥ .

Observe that for all PDAs constructed as above,

no push transition can be immediately followed by

a pop transition, i.e., there are no stack symbols
❃

,▲
and ❖ such that

❃❶❏✛ ❃▼▲
and

❃▼▲✣❏✛ ❖ . As

a consequence of this, a computation ☞ ❃❷❄❆❅✰❄■❇ ✎❳✹ ✘ ❪ �☞ ❃⑤❉ ❅✴❋✺● ✎ ❢ ✘ of the PDA can always and uniquely

be decomposed into consecutive subcomputations,

which we call segments, each starting with zero or

more push transitions, followed by a single scan

transition and by zero or more pop transitions. In

what follows, we will formalize this basic idea and

exploit it within our parsing algorithm.

We write ❙ P❞④❸ ❚ to indicate that there is a com-

putation ☞❨❙✬✎✺✲ ✘ ❪ � ☞❛❚✬✎ ❢ ✘ of the PDA such that all of

the following three conditions hold:

(i) either ❹ ❙✝❹ ❞✷❺ or ❹ ❚✆❹ ❞r❺ ;
(ii) the computation starts with zero or more push

transitions, followed by one scan transition

reading ✲ and by zero or more pop transitions;

(iii) if ❹ ❙✝❹✒❻ ❺ then the top-most symbol of ❙ must

be in the right-hand side of a pop or scan tran-

sition (i.e., top-most in the stack at the end of a

previous segment) and if ❹ ❚✝❹t❻ ❺ , then the top-

most symbol of ❚ must be the left-hand side of

a push or scan transition (i.e., top-most in the

stack at the beginning of a following segment).

Let ❼✟❽✩❾➀❿❫➁ ❞r➂ ❃✏❄❆❅✰❄❈❇❯➃ ✪ ➂ ❖➄❹➆➅ ❃ ✎ ▲ ❥ ❃▼▲②❏✛➇❖✠♥ ➃ ✪➂ ▲ ❹➈➅ ❃ ✎✺✲⑦❥ ❃ P❏✛ ▲ ♥ ➃ , and ➉✬➁➋➊ ❞✽➂ ❃❊❉ ❅✴❋✺● ➃ ✪➂ ❃ ❹➌➅ ▲ ❥ ❃◆❏✛ ❃▼▲ ♥ ➃ ✪ ➂ ❃ ❹➍➅ ▲ ✎❳✲④❥ ❃ P❏✛ ▲ ♥ ➃ . A

formal definition of relation ❸ above is provided in

Figure 1 by means of a deduction system. We assign

a procedural interpretation to such a system follow-

ing Shieber et al. (1995), resulting in an algorithm

for the computation of the relation.

We now turn to an important property of seg-

ments. Any computation ☞ ❃ ❄✐❅✰❄❈❇ ✎✺✲❜➎④➏✰➏✱➏❳✲➍➐ ✘ ❪ �☞ ❃⑤❉ ❅✴❋✺● ✎ ❢ ✘ , ➑✓➒ ❺ , can be computed by combining

114

❃ P❞④❸ ▲➔➓ ❃ P❏✛ ▲
(1)

❃ P❞④❸ ▲
◗ P❞⑦❸ ❖

→ ◗ ❏✛➣◗ ❃◗ ▲r❏✛↔❖ (2)

❙ ❃ P❞⑦❸ ▲
◗✡❙ ❃ P❞④❸ ❖

→ ◗ ▲↕❏✛➣❖❃ ✤▼❼✟❽✩❾❁❿❛➁ (3)

❃ P❞⑦❸ ❙ ▲◗ P❞⑦❸ ◗✡❙ ▲
→ ◗ ❏✛➣◗ ❃▲ ✤➙➉✬➁➋➊ (4)

Figure 1: Inference rules for the computation of re-

lation ❸ .

❙ ❃ P❞④❸✿➛ ❚ ▲
→ ❙ ❃ P❞⑦❸ ❚ ▲❃ ✤➙❼✟❽✩❾➀❿❫➁➝➜ ▲ ✤✫➉❱➁➞➊ (5)

❙ ➟❞④❸✿➛ ❲✒❚❚➡➠❞④❸✿➛➙➢❙↕➟➤➠❞⑦❸ ➛ ❲ ➢ (6)

❙❝➟❞⑦❸ ➛ ❚❲✒❚➡➠❞⑦❸❩➛③➢❲❴❙↕➟q➠❞④❸✿➛▼➢ (7)

Figure 2: Inference rules for combining segments❙ ✞ Pq➥❞⑦❸ ❚ ✞ .
➑ segments represented by ❙✖✞ Pq➥❞④❸ ❚❴✞ , ❺✙➦➄➧⑤➦ ➑ ,

with ❙ ➎ ❞ ❃✏❄❆❅✰❄❈❇
, ❚ ➐ ❞ ❃❊❉ ❅✴❋✺●

, and for ❺✮➦r➧✟➨ ➑ ,❚❴✞ is a suffix of ❙✖✞ ➛ ➎ or ❙✕✞ ➛ ➎ is a suffix of ❚❴✞ . This

is done by the deduction system given in Figure 2,

which defines the relation ❞④❸ ➛ . The second side-

condition of inference rule (5) checks whether a seg-

ment ❙ ❃ P❞④❸ ❚ ▲ may border on other segments, or

may be the first or last segment in a computation.

Figure 3 illustrates a computation of a PDA rec-

ognizing a string ✲ ➎ ✲⑨➩q✲⑧➫❘✲t➭ . A horizontal line seg-

ment in the curve represents a scan transition, an up-

ward line segment represents a push transition, and a

downward line segment a pop transition. The shaded

areas represent segments ❙ ✞ Pq➥❞⑦❸ ❚ ✞ . As an example,

the area labelled I represents
❃❷❄❆❅✰❄■❇ P✰➯❞⑦❸ ❃✏❄❆❅✰❄■❇➲❃ ➎ ❃ ➩ ,

for certain stack symbols
❃ ➎ and

❃ ➩ , where the left

edge of the shaded area represents
❃❷❄❆❅✰❄■❇

and the

right edge represents
❃ ❄✐❅✰❄❈❇ ❃ ➎ ❃ ➩ . Note that seg-

ments ❙✕✞ Pq➥❞④❸ ❚❜✞ abstract away from the stack sym-

bols that are pushed and then popped again. Fur-

thermore, in the context of the whole computation,

segments abstract away from stack symbols that are

not accessed during a subcomputation. As an exam-

ple, the shaded area labelled III represents segment▲ ➎ ▲ ➩ P❘➳❞④❸ ❖ , for certain stack symbols
▲ ➎ , ▲ ➩ and❖ , and this abstracts away from the stack symbols

that may occur below
▲ ➎ and ❖ .

Figure 4 illustrates how two adjacent segments are

combined. The dashed box in the left-hand side of

the picture represents stack symbols from the right

edge of segment II that need not be explicitly repre-

sented by segment III, as discussed above. We may

assume that these symbols exist, so that II and III

can be combined into the larger computation in the

right-hand side of the picture. Note that if a com-

putation ❙ ➠❞④❸✿➛ ❚ is obtained as the combination

of two segments as in Figure 4, then some internal

details of these segments are abstracted away, i.e.,

stack elements that were pushed and again popped in

the combined computation are no longer recorded.

This abstraction is a key feature of the parsing al-

gorithm to be presented next, in that it considerably

reduces the time complexity as compared with that

of an algorithm that investigates all computations of

the PDA in isolation.

We are now ready to present our parsing algo-

rithm, which is the main result of this section. The

algorithm combines the deduction system in Fig-

ure 2, as applied to the PDA encoding the input

grammar ✄ ✞ , with the CKY algorithm as applied to

the parsing grammar ✄✆☎ . (We assume that ✄✠☎ is

in CNF.) The parsing algorithm may rule out many

combinations of segments from Figure 2 that are in-

consistent with the language generated by ✄✝☎ . Also

ruled out are structural compositions of segments

that are inconsistent with the structure that ✄ ☎ as-

signs to the corresponding substrings.

The parsing algorithm is again specified as a de-

duction system, presented in Figure 5. The algo-

rithm manipulates items of the form ❥ ✚❊✎❳❙➵✎➸❚✕♥ , where✚ is a nonterminal of ✄ ☎ and ❙ , ❚ are stacks of the

PDA encoding ✄☛✞ . Such an item indicates that there

115

stack

hight

time

I

II
III

IV

Figure 3: A computation of a PDA divided into segments.

II
III

combined into:

II + III

Figure 4: Combining two segments using rule (6) from Figure 2.

❥ ✚❊✎❳❙ ❃ ✎➸❚ ▲ ♥➻➺➼➽ ➼➾
❙ ❃ P❞④❸ ❚ ▲❃ ✤➙❼✟❽✩❾➀❿❫➁➝➜ ▲ ✤➙➉❱➁➞➊✚✜✛✼✲ (8)

❥♦✭✦✎✺❙✬✎❳❲✒❚✕♥❥❧✾☛✎➸❚✬✎ ➢ ♥❥ ✚⑤✎✺❙✬✎❳❲ ➢ ♥ ➓ ✚❤✛✽✭✿✾ (9)

❥ ✭✦✎✺❙✬✎❯❚✕♥❥♦✾☛✎❳❲✒❚✬✎ ➢ ♥❥ ✚⑤✎❳❲❴❙➵✎ ➢ ♥ ➓ ✚❵✛➣✭➚✾ (10)

Figure 5: Inference rules that simultaneously derive

strings generated by ✄✆☎ and accepted by the PDA

encoding ✄ ✞ .
is some terminal string ✹ that is derivable from ✚
in ✄ ☎ , and such that ☞❨❙✬✎❳✹ ✘ ❪ � ☞➪❚✬✎ ❢ ✘ . If the item❥❧✔✖✎ ❃✏❄❆❅✰❄■❇ ✎ ❃⑤❉ ❅✴❋✺● ♥ can be derived by the algorithm,

then the intersection of the language generated by✄✠☎ and the language accepted by the PDA (gener-

ated by ✄✟✞) is non-empty.

4 Earley’s algorithm

The CKY algorithm from Figure 5 can be seen to

filter out a selection of the computations that may be

derived by the deduction system from Figure 2. One

may however be even more selective in determining

which computations of the PDA to consider. The ba-

sis for the algorithm in this section is Earley’s algo-

rithm (Earley, 1970). This algorithm differs from the

CKY algorithm in that it satisfies the correct-prefix

property (Harrison, 1978).

The new algorithm is presented by Figure 6.

There are now two types of item involved. The first

item has the form ❥ ✚✣✛ ✵➶♠✿✶❩❹⑧❲➶➹❭❙✬✎❯❲➶➹➙❚✕♥ ,
where ✚↔✛ ✵➘♠➴✶ has the same role as the dot-

ted rules in Earley’s original algorithm. The sec-

ond and third components are stacks of the PDA

as before, but these stacks now contain a distin-

guished position, indicated by ➹ . The existence of

an item ❥ ✚➷✛ ✵✥♠➙✶★❹➌❲✓➹➬❙✬✎❳❲✓➹❷❚✕♥ implies that☞❫❲❴❙✬✎ ✸ ✘ ❪ � ☞❫❲✒❚✬✎ ❢ ✘ , where ✸ is now a string deriv-

able from ✵ . This is quite similar to the meaning we

assigned to the items of the CKY algorithm, but here

not all stack symbols in ❲➋❙ and ❲✒❚ are involved in

this computation: only the symbols in ❙ and ❚ are

now accessed, while all symbols in ❲ remain unaf-

fected. The portion of the stack represented by ❲ is

needed to ensure the correct-prefix property in sub-

sequent computations following from this item, in

case all of the symbols in ❚ are popped.

The correct-prefix property is ensured in the fol-

lowing sense. The existence of an item ❥ ✚➮✛❝✵✜♠✶➬❹✰❲▼➹✟❙➵✎❯❲➙➹✝❚✕♥ implies that (i) there is a string ✹ ✸
that is both a prefix of a string accepted by the PDA

and of a string generated by the CFG such that after

116

❥❧✔✻✛✼♠✟✢➝❹☛➹ ❃✮❄✐❅✰❄❈❇ ✎✰➹ ❃✮❄✐❅✰❄❈❇ ♥ ➓ ✔❭✛✼✢ (11)

❥ ✚✜✛✼✵③♠✟✲⑧✶✙❹✡➹✆❙✬✎✰➹✆❲✒❚✕♥❥ ✚✜✛✼✵⑦✲⑩♠✡✶✙❹☛➹✝❙✬✎✰➹✠❲ ➢ ♥ ➓ ❚ P❞⑦❸ ➛ ➢ (12)

❥ ✚✜✛✼✵③♠✟✲⑨✶✙❹➱❲③➹✆❙✬✎❳❲➻➹✆❚✉♥❥ ✚✜✛✼✵⑦✲⑩♠✡✶✙❹☛➹✠❲➋❙✬✎➱➹ ➢ ♥ ➓ ❲✒❚ P❞⑦❸ ➛ ➢ (13)

❥ ✚✜✛✼✵③♠✟✲⑨✶✙❹☛➹✆❙✬✎✰➹✠❚✕♥❥ ✚❵✛✣✵③♠✟✲⑧✶✙❹✡➹✆❙✬✎✰➹✠❚❡❹✴◗⑤✃✰♥ ➓ ❲④◗❂❚ P❞④❸✿➛ ➢ (14)

❥ ✚❵✛✣✵③♠✡✭①✶✙❹☛➹✝❙✬✎✰➹➵❚ ❃ ♥❥ ✭r✛✣♠✟✢➝❹☛➹ ❃ ✎✰➹ ❃ ♥ ➓ ✭↕✛✼✢ (15)

❥ ✚✜✛✼✵③♠✡✭①✶✙❹✡➹✆❙✬✎✰➹✆❲✒❚✕♥❥♦✭r✛✣✢⑤♠r❹☛➹✠❚✬✎➱➹ ➢ ♥❥ ✚❵✛✣✵✉✭r♠✡✶✙❹☛➹✝❙✬✎✰➹✠❲ ➢ ♥ (16)

❥ ✚❵✛✣✵③♠✡✭①✶✙❹➱❲③➹✆❙➵✎❯❲③➹✠❚✕♥❥♦✭r✛✼✢❊♠r❹✟➹✆❲✒❚✬✎✰➹ ➢ ♥❥ ✚❵✛✣✵✉✭r♠✡✶✙❹☛➹✆❲❴❙➵✎➱➹ ➢ ♥ (17)

❥ ✚✜✛✼✵③♠✡✶✙❹✰❙ ❃ ✎❯❚❡❹⑥◗❊✃➱♥❥ ✚❵✛✼♠☛✵✉✶❷❹✰❙❡➹ ❃ ✎✺❙★➹ ❃ ❹✴◗⑤✃✰♥ (18)

❥ ✚✜✛✼✵③♠✡✭①✶➬❹➱❙✬✎❯❚ ❃ ♥❥ ✭r✛✣♠❂✢⑩❹q❚★➹ ❃ ✎➸❚★➹ ❃ ❹⑥◗❊✃➱♥❥ ✚✜✛✼✵③♠✡✭①✶✙❹✰❙✬✎➸❚ ❃ ❹✴◗⑤✃✰♥ (19)

❥ ✚✜✛✼✵③♠✡✭①✶➬❹➱❙✬✎❳❲⑦◗✟❚ ❃ ♥❥ ✭r✛✣♠❂✢⑩❹q❚★➹ ❃ ✎➸❚★➹ ❃ ❹⑥◗❊✃➱♥❥♦✭r✛✣♠❂✢➝❹✴◗❂❚★➹ ❃ ✎q◗✟❚❭➹ ❃ ♥ (20)

❥ ✚❤✛✼♠❂✵✉✶➬❹⑥◗✡❙ ➎ ❙❐➩❂➹ ❃ ✎q◗✡❙ ➎ ❙❒➩❂➹ ❃ ♥❥ ✚❤✛✼✵③♠☛✶➬❹➱❙❱➎✠➹✆❙ ➩ ❃ ✎✺❙❱➎✠➹➵❚➚❹✴◗⑤✃✰♥❥ ✚✜✛✼✵③♠✡✶✙❹✴◗☛❙ ➎ ➹✆❙❒➩ ❃ ✎❘◗☛❙ ➎ ➹✆❚✉♥ (21)

Figure 6: Inference rules based on Earley’s algo-

rithm.

processing ✹ , ✚ is expanded in a left-most deriva-

tion and some stack can be obtained of which ❲➋❙
represent the top-most elements, and (ii) ✵ is rewrit-

ten to ✸ and while processing ✸ the PDA replaces the

stack elements ❙ by ❚ .3

The second type of item has the form ❥ ✚✈✛✇✵❩♠✶❵❹❴❲❮➹❰❙✬✎❳❲②➹➴❚➶❹✉◗⑤✃✰♥ . The first three compo-

nents are the same as before, and ◗ indicates that we

wish to know whether a stack with top-most symbols◗✟❲➋❙ may arise after reading a prefix of a string that

may also lead to expansion of nonterminal ✚ in a

left-most derivation. Such an item results if it is de-

tected that the existence of ◗ below ❲❴❙ needs to be

ensured in order to continue the computation under

the constraint of the correct-prefix property.

Our algorithm also makes use of segments, as

computed by the algorithm from Figure 1. Con-

sistently with rule (5) from Figure 2, we write❙ ❃ P❞⑦❸❩➛ ❚ ▲ to represent a segment ❙ ❃ P❞④❸ ❚ ▲
such that

❃ ✤✿❼✟❽✩❾❁❿❛➁✮➜ ▲ ✤❩➉✬➁➋➊ . The use of seg-

ments that were computed bottom-up is a departure

from pure left-to-right processing in the spirit of Ear-

ley’s original algorithm. The motivation is that we

have found empirically that the use of rule (2) was

essential for avoiding a large part of the exponen-

tial behaviour; note that that rule considers at most a

number of stacks that is quadratic in the size of the

PDA.

The first inference rule (11) can be easily justified:

we want to investigate strings that are both generated

by the grammar and recognized by the PDA, so we

begin by combining the start symbol and a match-

ing right-hand side from the grammar with the initial

stack for the PDA.

Segments are incorporated into the left-to-right

computation by rules (12) and (13). These two rules

are the equivalents of (9) and (10) from Figure 5.

Note that in the case of (13) we require the presence

of ❲ below the marker in the antecedent. This indi-

cates that a stack with top-most symbols ❲❴❙ and a

dotted rule ✚✜✛✼✵③♠✟✲⑨✶ can be obtained by simulta-

neously processing a string from left to right by the

grammar and the PDA. Thereby, we may continue

the derivation with the item in the consequent with-

out violating the correct-prefix property.

Rule (14) states that if a segment presupposes the

existence of stack elements that are not yet available,

we produce an item that starts a backward computa-

tion. We do this one symbol at a time, starting with

3We naturally assume that the PDA itself satisfies the
correct-prefix property, which is guaranteed by the construction
from Section 3 and the fact that Ï ➥ is reduced.

117

the symbol ◗ just beneath the part of the stack that is

already available. This will be discussed more care-

fully below.

The predictor step of Earley’s algorithm is repre-

sented by (15), and the completer step by rules (16)

and (17). These latter two are very similar to (12)

and (13) in that they incorporate a smaller derivation

in a larger derivation.

Rules (18) and (19) repeat computations that have

been done before, but in a backward manner, in or-

der to propagate the information that deeper stack

symbols are needed than those currently available,

in particular that we want to know whether a certain

stack symbol ◗ may occur below the currently avail-

able parts of the stack. In (18) this query is passed on

to the beginning of the context-free rule, and in (19)

this query is passed on backwards through a predic-

tor step. In the antecedent of rule (18) the position of

the marker is irrelevant, and is not indicated explic-

itly. Similarly, for rule (19) we assume the position

of the marker is copied unaltered from the first an-

tecedent to the consequent.

If we find the required stack symbol ◗ , we prop-

agate the information forward that this symbol may

indeed occur at the specified position in the stack.

This is implemented by rules (20) and (21). Rule

(20) corresponds to the predictor step (15), but (20)

passes on a larger portion of the stack than (20).

Rule (15) only transfers the top-most symbol
❃

to

the consequent, in order to keep the stacks as shal-

low as possible and to achieve a high degree of shar-

ing of computation.

5 Empirical results

We have implemented the two algorithms and tested

them on non-recursive input CFGs and a parsing

CFG. We have had access to six input CFGs of the

form described by Langkilde (2000). As parsing

CFG we have taken a small hand-written grammar

of about 100 rules. While this small size is not at all

typical of practical grammars, it suffices to demon-

strate the applicability of our algorithms.

The results of the experiments are reported in Fig-

ure 1. We have ordered the input grammars by

size, according to the number of nonterminals (or

the number of nodes in the forest, following the ter-

minology by Langkilde (2000)).

The second column presents the number of strings

generated by the input CFG, or more accurately,

the number of derivations, as the grammars contain

some ambiguity. The high numbers show that with-

out a doubt the naive solution of processing the input

grammars by enumerating individual strings (deriva-

tions) is not a viable option.

The third column shows the size, expressed as

number of states, of a lattice (acyclic finite au-

tomaton) that would result by unfolding the gram-

mar (Knight and Langkilde, 2000). Although this

approach could be of more practical interest than

the naive approach of enumerating all strings, it still

leads to large intermediate results. In fact, practical

context-free parsing algorithms for finite automata

have cubic time complexity in the number of states,

and derive a number of items that is quadratic in the

number of states.

The next column presents the number of segments❙ P❞④❸ ❚ . These apply to both algorithm. We only

compute segments ❙ P❞④❸ ❚ for terminals ✲ that also

occur in the parsing grammar. (Further obvious op-

timizations in the case of Earley’s algorithm were

found to lead to no more than a slight reduction of

produced segments.) The last two columns present

the number of items specific to the two algorithms

in Figures 5 and 6, respectively. Although our two

algorithms are exponential in the number of stack

symbols in the worst case, just as approaches that

enumerate all strings or that unfold ✄☛✞ into a lattice,

we see that the numbers of items are relatively mod-

erate if we compare them to the number of strings

generated by the input grammars.

Earley’s algorithm generally produces more items

than the CKY algorithm. An exception is the last in-

put CFG; it seems that the number of items that Ear-

ley’s algorithm needs to consider in order to main-

tain the correct-prefix property is very sensitive to

qualities of the particular input CFG.

The present implementations use a trie to store

stacks; the arcs in the trie closest to the root rep-

resent stack symbols closest to the top of the stacks.

For example, for storing ❙ P❞⑦❸ ❚ , the algorithm rep-

resents ❙ and ❚ by their corresponding nodes in the

trie, and it indexes ❙ P❞⑦❸ ❚ twice, once through

each associated node. Since the trie is doubly linked

(i.e. we may traverse the trie upwards as well as

downwards), we can always reconstruct the stacks

118

Table 1: Empirical results.

nonts # strings # states # segments # items CKY # items Earley

168 Ð⑧✯❆Ñ✟➹ ❺✱Ò➆Ó 2643 1437 1252 6969

248 Ñ⑧✯❆Ñ✟➹ ❺✱Ò❁Ô 21984 3542 4430 40568

259 Ð⑧✯ Ò ➹ ❺✱Ò❁Õ 6528 957 1314 29925

361 ❺ ✯✐Ö✝➹ ❺✱Ò ➎✺➎ 77198 7824 14627 14907

586 Ð⑧✯❆Ñ❂➹ ❺✱Ò ➎ ➩ 45713 8832 5608 8611

869 Öt✯✐Ö✝➹ ❺✱Ò ➎ ➩ 63851 15679 5709 3781

from the corresponding nodes. This structure is also

convenient for finding pairs of matching stacks, one

of which may be deeper than the other, as required

by the inference rules from e.g. Figure 5, since given

the first stack in such a pair, the second can be found

by traversing the trie either upwards or downwards.

6 Discussion

It is straightforward to give an algorithm for parsing

a finite language: we may trivially parse each string

in the language in isolation. However, this is not a

practical solution when the number of strings in the

language exceeds all reasonable bounds.

Some algorithms have been described in the exist-

ing literature that parse sets of strings of exponential

size in the length of the input description. These so-

lutions have not considered context-free parsing of

finite languages encoded by non-recursive CFGs, in

a way that takes full advantage of the compactness

of the representation. Our algorithms make this pos-

sible, relying on the compactness of the input gram-

mars for efficiency in practical cases, and on the ab-

sence of recursion for guaranteeing termination. Our

experiments also show that these algorithms are of

practical interest.

Acknowledgements

We are indebted to Irene Langkilde for putting to our

disposal the non-recursive CFGs on which we have

based our empirical evaluation.

References

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal
properties of simple phrase structure grammars. In
Y. Bar-Hillel, editor, Language and Information: Se-

lected Essays on their Theory and Application, chap-
ter 9, pages 116–150. Addison-Wesley.

A. Corazza and A. Lavelli. 1994. An × -best represen-
tation for bidirectional parsing strategies. In Working
Notes of the AAAI’94 Workshop on Integration of Nat-
ural Language and Speech Processing, pages 7–14,
Seattle, WA.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102,
February.

M.A. Harrison. 1978. Introduction to Formal Language
Theory. Addison-Wesley.

K. Knight and I. Langkilde. 2000. Preserving ambigu-
ities in generation via automata intersection. In Pro-
ceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on In-
novative Applications of Artificial Intelligence, pages
697–702, Austin, Texas, USA, July–August.

I. Langkilde. 2000. Forest-based statistical sentence gen-
eration. In 6th Applied Natural Language Processing
Conference and 1st Meeting of the North American
Chapter of the Association for Computational Linguis-
tics, pages Section 2, 170–177, Seattle, Washington,
USA, April–May.

M.-J. Nederhof and G. Satta. 2002. The emptiness prob-
lem for intersection of a CFG and a nonrecursive CFG
is PSPACE-complete. In preparation.

S.M. Shieber, Y. Schabes, and F.C.N. Pereira. 1995.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24:3–36.

119

