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1. INTRODUCTION 

After the introduction of context-free grammars and the use of BNF rules, comp- 

ilers have been built in which we can distinguish methods of syntax-analysis. While 

initially sometimes many different ideas were used to do syntax-analysis for a given 

programming language and grammar, later formalizations of these ideas have led to 

many different parsing methods. Each of these methods can be shown to be suitable 

for a certain subclass of the context-free grammars. 

If w is a sentence generated by a context-free grammar G, then a parsing strat- 

egy tells us in which way the productions of G, which are used in the generation of 

w, will be recognized by the parsing method. Two global strategies can be distinguish- 

ed, the top-down and the bottom-up strategy. The class of deterministically bottom- 

up parsable grammars was introduced by Knuth/28/ in 1965. A few years later defini- 

tions for the class of deterministically top-down parsable grammars were introduced. 

Before that, parsing techniques such as precedence analysis and bounded context 

methods were used and formalized. 

in the beginning of the seventies the use of precedence techniques was still ad- 

vocated. The top-down or LL(k) method was not considered to be powerful enough, al- 

though it could be used for parts of programming languages. The bottom-up or LR(k) 

method seemed too difficult to use in practice. Efficient implementations were not 

yet known. However, especially after the work of DeRemer and LaLonde LR-methods (and 

in particular the SLR(1) and LALR(1) method) became well-known. Moreover, the use of 

parser generators made it worthwile to invest time and efforts in the further devel- 

opment of LR-methods, their error-correcting capabilities and their optimization. 

Further, both for LL- and LR-methods theory is being developed which makes it possi- 

ble, by using semantic information, to parse non-LL- and non-LR-grammars with these 
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methods. To illustrate the importance of these two methods we cite from Fisher and 

Weber/10/: "Also the parser generator is now such an important tool in language im- 

plementation that languages are now designed to be LALR(1) or LL(1) parsable." Two 

examples of such parser generators are described in /27,37/. Recently an LALR(1) 

grammar has been given for the (Revised) Ada language (cf. /48/). 

Now that in parsing these two main techniques have become so popular, it is use- 

ful to survey the area of parsing strategies in order to see how other strategies can 

be defined as more restricted or more general cases of these LL- and LR-strategies. 

Then we can say more about the classes of languages which can be handled by certain 

strategies or combinations of these strategies and it becomes possible to give rela ~ 

tions between parsing strategies and the possibility of certain parser optimizations 

and ways of code generation. Apart from this, the purpose of this paper is three- 

fold. Firstly, we want to show that it is possible to discuss the many different 

strategies in such a way that they can be distinguished by certain basic character- 

istics. Secondly, we want to show that in the literature many useful concepts and 

ideas can be found which have not yet obtained sufficient attention in practice. 

Within the framework of this presentation these ideas can be discussed in a natural 

way. As a third point we want to mention that there exist several problems, e.g. 

equivalence problems and problems which deal with the possibility to obtain normal 

forms, which can be introduced and discussed within the present framework. 

In this paper we discuss parsing strategies. This preliminary presentation is 

informal and apart from a few definitions we will not be concerned with definitions 

of the associated subclasses of the context-free gran~nars. Many of these definitions 

can be found in /41/, others will appear in forthcoming papers. 

PRELIMINARIES 

A context-free grammar (CFG) G is denoted by the quadruple (N,~,P,S), denoting 

nonterminals, terminals, productions and the start symbol, respectively. Roman capit- 

als A, B, C, ... will usually stand for elements of N; a, b, c, ... will usually de- 

note elements of E; w, x, y, z will denote strings over ~ and ~, ~, y, 6, ... will 

denote strings over V = N u ~. The empty string is denoted by c. We have the usual 

notation =>, ~> and ~> for derivations, leftmost derivations and rightmost deriva- 

tions, respectively. The language of a CFG G is the set L(G) = {w [ S ~> w and w in 

E~}. If ~ in V ~ and k is a non-negative integer, then k : ~ denotes ~ if i~I (the 

length of ~) is less than or equal to k; otherwise it denotes the prefix of ~ with 

length k. Similarly, ~ : k is used for the suffix of ~, and FIRSTk(~) = {k : w [ 

~> w, w in E~}. A production A * g is called an g-production. 

It is useful to distinguish positions in the productions. If A + XIX2...Xn is a 

non-g-production in P, then XliS the first symbol of the righthand side of this prod- 
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uction; A is called the lefthand side, X! will be referred to as the left corner of 

the production. The ith position of this production is the position after the ith sym- 

bol in the righthand side. The position before X 1 is called the zero position. In the 

formal definitions of the parsing strategies it is sometimes necessary to distinguish 

productions A + w with w in E~ from the other productions. Here we will not go into 

these details. 

Let G = (N,Z,P,S) be a CFG. Grammar G is said to be left-recursive if there exists 

a derivation A ~> As for some A in N and~in V ~. G is said to be g-free if P does not 

have g-productions; G is in Greibach normal form (GNF) if P is a subset of N x ZN ~, G 

is in Chomsky normal form (CNF) if P is a subset of N x (N 2u Z). Grammar G is in 

canonical two form if P is a subset of N x (N 2 u V); G is said to be uniquely invert- 

ible (u.i.) if A ÷ ~ and B + ~ in P implies that A = B; G is said to be left factored 

if for any ~ # s, A ÷ ~ and A ÷ o.~ in P implies that ~ = y. Finally, G is said to be 

in operator form if P is a subset of N x (V ~ - V~N2V~). 

2. PARSING STRATEGIES~ PART I 

2.1. BASIC IDEAS 

It is usual to distinguish between top-down and bottom-up strategies. Both notions 

say something about the order in which the productions are recognized. It is possible 

to use other strategies which can be considered as restricted bottom-up strategies. 

That is, although these strategies can be implemented as a shift/reduce parsing al- 

gorithm, the productions or parts of the productions have already been recognized in 

steps of the parsing algorithm which precede the reduce step. A systematic approach 

of these restrictions is not only useful from the point of view of the theory of pars- 

ing but, since productions will be provided with semantic information, also from the 

point of view of translation and code generation. Moreover, since semantic information 

can be used in the parsing process it is useful to formalize strategies in which it is 

known where and when parts of productions have been recognized. 

There are several ways to discuss parsing strategies and the associated sub- 

classes of the context-free grammars for which these strategies are suitable. E.g., 

it is possible to have conditions on: 

a. productions or derivations of a grammar; consider e.g. the definitions 

of simple deterministic, LL(k), LR(k) and simple precedence grammars. 

b. (LR-) state sets; see e.g. DeRemer/8/, Hammer/19/, Beatty/3/ and Kral 

and Demner/30/. 

c. transition diagrams; see e.g. Aho and Ullman/2/ (recursive descent), 

Conway/6/ and Friede/|I/. 

d. parsers, pushdown transducers and syntax directed translation schemes; 
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see e.g. Aho and Ullman/I/, Soisalon-Soininen/54/, Brosgol/4/ and Moli/38/. 

In Raiha and Ukkonen/50/ a distinction is made between recursive descent and re- 

cursive ascent parsing. In this informal approach we will mainly be concerned with 

ideas which will deal with approach a, However, any strategy and each class of gram- 

mars can be defined in any of these ways, 

In Figure I we have displayed the situation that we have read and processed w 

and that we are going to read the yield of production A ÷ X]X2...X n. 

S 

w x 1 x 2 x n z 

Figure I. 

The most obvious distinction we can make between parsing methods is that we can 

choose between the following two possibilities: 

I. Each production will be recognized in the same way. 

II. Each production has its own way in which it will be recognized. 

Examples. LL(k) grammars are defined in such a way that for each production 

A ÷ XIX2...X n, as displayed in Figure |, the production is recognized after having 

seen k : xlx2...XnZ. On the other hand, Demers/7/ defines generalized left corner 

parsing, where each production can have a different position, say i, such that after 

having seen k : x.+~ !...XnZ the production has to be recognized. 

For all the strategies to be mentioned we can always distinguish between I and 

II. Further on we will not mention this aistinction. 

We now consider one production, A ÷ X|X2...X n, and we define a strategy by saying 

when this production and its component parts have to be recognized in the parsing 

process. 
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2.2. PRODUCTION ORIENTED STRATEGIES 

In the production oriented strategies each production has a fixed position in its 

righthand side. Once the part of the righthand side which is to the left of this posi- 

tion has been recognized, the complete production has to be recognized. 

2.2.;. BASIC STRATEGIES 

In the basic strategies we do not make a distinction between the terminal and 

the nonterminal symbols in the righthand sides of the productions. That is, the posi- 

tion i is chosen independent of the occurrences of terminal and nonterminal symbols 

to the left of this position. Well-known examples are: 

LL(k): i = 0 for each production 

LC(k): i = | for each production 

LR(k): i = n for each production 

2.2.2. NONTERMINAL BASED STRATEGIES 

In these strategies we do not demand that the production is recognized after the 

ith position has been reached (hence, after the ith symbol), but after the ith non- 

terminal in the righthand side has been recognized. An example is the extended left 

corner strategy (cf. Brosgol/3,4/), where i = I and which is suitable for extended 

left corner (ELC(k)) grammars. 

2.2.3. TERMINAL BASED STRATEGIES 

There exist a few strategies where the recognition of the productions is based 

on the recognition of the terminal symbols in the righthand sides. We mention the 

simple deterministic grammars and the real-time strict deterministic grammars of de- 

gree l (cf. Harrison and Havel/24/). 

Since in generalized left corner parsing (Demers/7/) it is allowed that for each 

production we have a different position in its righthand side, the above mentioned 

strategies can be considered as special cases of generalized left corner parsing. 

2.3. LEFTHAND SIDE PREDICTIVE STRATEGIES 

In the lefthand side predictive strategies we distinguish between the recognition 

of the lefthand s i d e  A of  a p r o d u c t i o n  A ÷ X I X 2 . . . X  and r e c o g n i t i o n  of  t h e  c o m p l e t e  
n 
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production. 

2.3.1. COMBINATIONS WITH THE BASIC STRATEGIES 

In this case we demand that A is recgnized at the ith position of the production 

and A ÷ XIX2"''Xn is recognized at the jth position (i ! j). 

Examples of classes of grammars for which this type of strategy can be used are 

the PLR(k) grammars (cf. Soisalon-Soininen and Uk~onen/55/), with i = 1 and j = n, 

and the LP(k) grammars (cf. /40,42/), with i = 0 and j = n. See Nijholt/40/ for other 

examples. In section 2.4 we will return to these strategies. 

2.3.2. COMBINATIONS WITH THE NONTERMINAL BASED STRATEGIES 

In this case we demand that A is recognized after the ith nonterminal symbol of 

the righthand side has been recognized, while A + XIX2...X n is recognized after the 

jth nonterminal symbol has been recognized (i J j). 

2.3.3. OTHER COMBINATIONS 

Consider e.g. the strategy in which we demand that A is recognized after the ith 

nonterminal symbol has been recognized, while A + XIX2...X n is recognized at position 

n. This is, for i = I, the straightforward generalization from ELC(k) grammars (see 

section 2.2.2) to extended PLR(k) grammars, similar to the generalization from LC(k) 

grammars to PLR(k) grammars. 

2.4. PARTITION PREDICTIVE STRATEGIES 

Let us first consider the situation where ~ denotes a partition of V = N u E, 

such that I g ~. If A g N, then [A] denotes the block of ~ to which A belongs. We now 

can distinguish between recognition of: 

[A] : at position i or after the ith nontermina! symbol 

A : at position j (i ! j) or after the jth nonterminal symbol 

: at position k (j ! k) or after the kth nonterminal symbol A ÷ XIX2...Xn 

An example of such a strategy is the parsing method for strict deterministic 

grammars (with look-ahead), Here, i = 0 and j = k = n for each production A + XI...X n. 

Another interesting example is the method which can be used for weak PLR(k) grammars 

(cf. Ukkonen/58/), which can be defined in this way. Since this class of grammars has 

some properties which are essential for the parsing strategies which will be dealt 

with in the forthcoming sections, we will consider it in more detail. Therefore we 
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need the following definitions. 

A production A ÷ ~ is said to satisfy the LR(k) condition if for any pair of 

derivations 

S 4> sAw ~> ~w = yw, and 

S ~> ~'A'x ~> ~'B'x = yw', with 

k : w=k : w', 

we may conclude that ~ = ~', A = A' and ~ =~'. 

Now consider the following conditions for a CFG G and a production A ÷ XB, with 

X c V, 

(i) S 4> aAw ~> aXBw 

(ii] S ~> ~'A'w' ~> ~'~"XB'w' 

(iii) ~'~" = ~ and FIRSTk(BW ) n FIRSTk(B'w' ) # 

The production A ÷ X~ is said to satisfy: 

a. the LC(k) condition if c~ = ~'A', ~" = g and X~ = XB' 

b. the PLR(k) condition if it satisfies the LR(k) condition and, moreover, 

~" = g and A = A' 

c. the weak PLR(k) condition if it satisfies the LR(k) condition and, more- 

over, ~" = 

d. the left corner condition if ~" = c 

Suppose that instead of b. we demand 

b'. the partitioned PLR(k) condition if it satisfies the LR(k) condition 

and, moreover, ~" = c and [A] = [A'] 

However, notice that condition b' is satisfied by any production which satisfies the 

weak PLR(k) condition if we consider the partition ~ = {~, N}. It follows that, from 

a purely theoretical poin t of view, the weak PLR(k) and the partitioned PLR(k) strate- 

gies coincide. 

The following example will be illustrative for the properties of a weak PLR(k) 

grammar. Let G O be a CFG with productions 

S ÷ aAc [ abBd 

A÷bC 

B÷C 

C÷bC I b 
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CFG G O is LR(1) (and ELC(1)). However, when we consider the right sentential form 

abCc then we can not determine where the righthand side of the production to be re- 

duced starts, until we have seen terminal symbol c. That is, the left corner condition 

is not satisfied. 

Let A ÷ X$ be a production in P, then X is the left corner of this production. It 

follows that it is useful to distinguish the recognition of the left corner of a 

production from the recognition of the other component parts of the production, since 

not every production of an arbitrary LR-grammar has the left corner condition. In the 

following sections we will consider other parsing strategies where this distinction 

is made. 

Instead of using a partition of V it is also possible to use a weak partition of 

V. In that case the blocks of the "partition" are not necessarily disjoint. Neverthe- 

less the recognition of a block (e.g. in condition b') gives information about the 

lefthand side of the production being recognized. In Pittl/49/ a generalization of 

strict deterministic grammars is given. One of the characterizations of this generali- 

zation uses weak partitions. 

3. PARSING STRATEGIES, PART II 

Let us consider the bottom-up parsing problem from the point of view of rightmost 

derivations. Notice that the formal definitions of the classes of grammars mentioned 

in the previous section are not always given in terms of rightmost derivations. Con- 

sider a rightmost derivation 

COn ~> ~n-I 7 > "'" 7 > 032 031 ~> ~0 

= ~. where 03n S (the start symbol) and 030 g The goal is to find the string PIP2...Pn 

of productions. If we write 03j = c~Aw and 03j-I = ~Bw, then the problem reduces to the 

determination of B, I~I and by which symbol the substring ~ at position I~I in wj_ 1 

should be replaced in order to obtain 03.. The pair (A ÷ B, laBl) or, equivalently, 
J 

the pair (A ÷ B, I~l) is called the handle of 03j-I and ~ is called the phrase of this 

handle. If for each 03i' 0 < i < n, we can determine the handle, then we can go back 

from 030 to 03n" 

3.1. LR(k) AND BOUNDED RIGHT CONTEXT METHODS 

For LR(k) gran~nars we are able to recognize the handle of 03j-I = ~Bw once we have 

seen k : w. From the examples and the definitions in section 2.4 we know that we can 

distinguish strategies in which the lefthand of the phrase is located before seeing 

k : w. E.g., the LC-, PLR- and weak PLR conditions are such that this lefthand is 
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located once we have recognized X, that is, the left corner of the production. For 

LR(k) and ELC(k) grammars this is not necessarily the case, as is shown by grammar 

G O . Hence, it is possible to introduce strategies in which we distinguish between re- 

cognition of 

(i) I~I 
(ii) [A] 

(iii) A 

(iv) A ÷ XIX2...X n 

LR(k) grammars can be considered as grammars where the handle is determined by 

using k symbols to the right of the phrase and all the context'to the left of the 

phrasle. For (~,k] bounded right context grammars (or, (~,k) BRC grammars) the handle 

is uniquely determined by looking ahead k symbols and looking behind i symbols. A 

production of a (i,k] BRC grammar does not necessarily satisfy the left corner condi- 

tion. Consider again example grammar G O which is (1,1) BRC and not weak PLR(k) for 

any k h 0. Clearly, many of the strategies which have been defined in section 2 as 

restrictions of the LR- or deterministic bottom-up strategy, can now be used to define 

restrictions of the (%,k) BRC strategy. In section 4 we will return to LR(k) and 

(%,k] BRC techniques in combination with precedence techniques. 

3.2. PRECEDENCE METHODS 

Instead of looking at the left and right context of the phrase of a handle, we 

can consider relations between (strings of) symbols in order to determine the handle 

of a right sentential form. In analogy with the LR(k) strategy where the complete con- 

text to the left of the phrase, together with k symbols of look-ahead, is used, we 

now can introduce a precedence based strategy where the elements of the relation are 

pairs consisting of a regular set and a string of length k. In this case we ought to 

talk about regular precedence relations. An adapted and more restricted version of 

this idea has been used in Shyamasundar/53/. Moreover, it is possible to introduce 

the analogue of the (i,k) BRC strategy. Then we have the u.i. (%,k) precedence or the 

u.i. extended precedence technique. Here we have extended precedence relations be- 

tween strings of length ~ and k, respectively. The (I,I) precedence relations are 

usually referred to as simple precedence or Wirth'Weber precedence relations. For 

these three cases, i.e. regular, extended and simple precedence it is possible to in- 

troduce strategies which use the restrictions mentioned in section 2. 

A bibliography on precedence relations can be found in Nijholt/47/. 

3.2.1. SIMPLE PRECEDENCE RELATIONS 

We spend a few notes on the left corner condition (see section 2) in connection 
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with precedence relations. Here we will only give the simple precedence relations 4, 

and +. These relations on N u E are defined as follows: 

(i) X ~ Y, if there exists A* ~XB~, such that B ~> Yy, for some y g V* 

(ii) X ~ Y, if there exists A÷ ~XY~ in P 

(iii) X + a, with a g E, if there exists A÷ ~BYB such that B--~> yX and 

Y&> aS, for some y, ~ ~ V ~. 

A CFG without E-productions is now called a precedence grarmmar if at most one 

simple precedence relation exists between any pair of symbols in N u E. Hence, if G 

is a precedence grammar then we can uniquely determine the phrase which has to be 

reduced (cf. Aho and Ullman/I/). However, unless the grammar is u.i., we do not know 

to which symbol this phrase has to be reduced. In Shyamasundar/53/ another method is 

given to determine the reduction which has to be made. 

Notice that if a CFG G has unique precedence relations, then the left corner 

condition is satisfied. In fact, we only have to demand that * is disjoint from the 

union of ~ and + to make sure that this condition is satisfied. Obviously, the same 

remark holds for regular and extended precedence relations. 

3.2.2. WEAK PRECEDENCE 

In the case of weak precedence the relation+ is disjoint from the union of 

and A. The relations ~ and ~ are not necessarily disjoint. However, it is always pos- 

sible to determine the left corner of the handle since there is an extra condition. 

This condition says that if A÷ ~XB and B÷ B are productions, X g V, then neither 

of the relations X* B and X ~ B are valid. However, this condition is not strong 

enough to guarantee that the grau~nar satisfies the left corner condition. We give a 

counter-example. Grammar G 1 with productions 

S ~ aA I D 

A ÷ cB 

D ÷ acC 

B * bB [ b 

C ÷ bC [ c 

is an example of a u.i. weak precedence grammar for which the left corner condition 

is not satisfied. Notice, that therefore grammar G I is also a counter-example to the 

result suggested in excercise 5.3.22 of Aho and Ullman/]/. 

3.2.3. OPERATOR PRECEDENCE RELATIONS 

Operator precedence relations (cf. Aho and Ullman/I/) are defined between the 

terminal symbols of an operator grammar. That is, a gralmnar in which no production 

has a righthand side with two adjacent nonterminals. Whenever an operator grarmnar has 
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unique precedence relations then the left corner condition is satisfied. Operator 

precedence parsing is "skeletal" parsing. The productions are determined up to their 

nonterminal symbols. 

Analogous to the case of simple precedence relations it is possible to define 

weak operator precedence relations (cf. Sudborough/57/). Notice that grammar G 1 is 

an example of a grammar which is a weak operator precedence grammar which does not 

satisfy the left corner condition, 

3.2.4. CANONICAL PRECEDENCE RELATIONS 

In this preliminary report we confine ourselves to the remark that in Gray and 

Harrison/;7/ a general theory of precedence relations is presented which includes the 

simple precedence and the operator precedence techniques. 

Note. It should be mentioned that the restrictions of the LR-strategies (cf. section 

2) do not necessarily lead to grammars which satisfy the condition that <- is disjoint 

from the union of =" and '>. The following simple deterministic grammar G 2 with produc- 

tions 

S ÷ aAb ] bAB 

A-~a 

B*b 

is an example of a grammar with <. not disjoint from '-. Hence, the strategies which 

are mentioned in section 2 can further be refined by introducing conditions for the 

precedence relations of the grammar. 

3.3. OTHER STRATEGIES WITH PRECEDENCE RELATIONS 

As discussed before, also with precedence relations we can demand that certain 

characteristics of the productions will be recognized before the recognition of the 

complete production. Therefore, some of the ideas of section 2 can be used for prece- 

dence based strategies. Moreover, it is possible to introduce strategies in which 

both the idea of relations between strings as the idea of looking at the context of 

a phrase are used. Here we confine ourselves to the following notes (cf. also section 

4.3.2). 

Precedence relations can be used to determine the handle. In the case of weak 

precedence relations we had + disjoint from the union of ~ and ~. Therefore we needed 

another condition to determine the left corner of the handle. Now, instead, we can 

demand that ~ is disjoint from m and have a special condition which makes it possible 

to locate the righthand of the phrase and to determine the reduction which has to be 

made. This condition can be such that it is not necessary to demand that the grammar 

is u.i. We mention a few examples. It should be noted that in the formal definitions 
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of these classes of grammars the precedence relations are not always mentioned. 

An example is the class of production prefix grammars (cf. Geller, Graham and 

Harrison/13/) where ~ is disjoint from m and the handle is determined with a SLR(1) 

condition. The production prefix grammars satisfy the left corner condition. 

For left local precedence grammars (cf. Lomet/32/ and Pittl/49/) the complete 

string to the left of the phrase is used to distinguish the precedence relations. 

Also in this case the left corner condition is always satisfied (cf. /41/ for a 

proof). 

For precedence regular grammars (cf. Shyamasundar/53/) we have unique preceden- 

ce relations. The complete context to the left of the phrase is used to determine the 

reduction. 

Mixed strategy precedence grammars (cf. Aho and Ullman/l/) have (extended) 

precedence relations such that + is disjoint from the union of ~ and 4. The complete 

handle is recognized by considering the context of a phrase in a bounded right con- 

text way. 

As a last example we mention the left context precedence grammars (cf. Moli/38/). 

They constitute a subclass of the (not necessarily u.i.) precedence grammars. 

4. PARSING STRATEGIES AND GRAMMATICAL TRANSFO~IATIONS 

Whenever we speak of transformations in combination with parsing, then it is 

useful to have transformations which preserve some of the structure of the original 

grammar. In this way it is possible to use the newly obtained grammar for parsing 

while the semantic actions of the original grammar can be evoked. This notion of 

preserving the structure has been formalized in various ways (cf. Soisalon-Soininen 

and Wood/56/, Nijholt/40/ and Hunt and Rosenkrantz/26/). Most of the transformations 

which we mention below are such that this preservation of structure can be described 

by a grammatical cover. 

4.1. TRANSFOR~iATIONS TO LL(k) GRAMMARS 

We distinguish two types of transformations: 

(i) Transformations that are guaranteed to yield LL(k) grammars when they 

are applied to a specific subclass of the context-free grammars. Cf. 

e.g. Hammer/19/ and Soisalon-Soininen and Ukkonen/55/. 

(ii) Other transformations. That is, there exist several transformations 

(e.g. the transformation to non-left-recursive grammars) which are 

useful when a top-down parsing method is desired. However, not for all 

these transformations the domain which is converted into the LL(k) 

grammars has been characterized. 
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Once we have obtained an LL(k) grammar there are still several useful transfor- 

mations which can be applied in order to obtain better parsing properties. The most 

well-known is the transformation to strong LL(k) grammars. If an LL(k) grammar G 

generates an LL(1) language L, then there exists an equivalent LL(]) grammar G'. 

However, transformations from G to G' are not known. There are also transformations 

for LL(k) grammars which deal with desirable error-recovery properties of the gram- 

mar (cf. e.g. Ghezzi/14/). 

4.2. TRANSFORMATIONS TO PRECEDENCE GRAMMARS 

There exist transformations which convert g-free grammars into precedence gram- 

mars. See McAfee and Presser/35/ and the references which are given there. However, 

it is not necessarily the case that the newly obtained grammar is u.i. or that one 

of the other desirable parsing properties (cf° sections 3.2 and 3.3) is satisfied. 

It is known (cf. Aho and Ullman/I/) that each u.i. weak precedence grammar can be 

converted into an equivalent u.i. precedence grammar. A similar result can not be 

given for weak operator precedence grammars since their class of languages properly 

contains the operator precedence languages (cf. Sudborough/57/). In Graham/15/ it is 

shown that each LR(k) grammar (and therefore also each u.i. extended precedence gram- 

mar) can be transformed to a u.i. (2,1) precedence grammar. 

4.3. TRANSFORMATIONS TO LR(k) AND (~,k) BRC GRAMMARS 

There exist transformations which convert non-LR-grammars into LR-grammars. 

However, hardly any research has been done on the characterization of classes of 

grammars which can be converted into LR-grammars. Once we have an LR(k) grammar then 

there exist many transformations which can be applied to obtain a grammar with 

desirable parsing properties. Each LR(k) grammar can be transformed to an LR(1) gram- 

mar and to a (I,|) BRC grammar (cf., e.g., Mickunas/36/, Graham/15/ and Aho and Ull- 

man/I/). Some other transformations will be mentioned below. 

4.3.1. LR(k) AND (~,k) BRC GRAMMARS WITH THE LEFT CORNER CONDITION 

LR(k) grammars in canonical two form or i~ Greibach normal form (GNF) satisfy 

the left corner condition (cf. Ukkonen/56/). Therefore, every LR(k) granm~ar can be 

transformed into an LR(k) grammar which satisfies this condition. In fact, every 

LR~k) grammar in GNF is a left local precedence grammar (see section 3.3, Theorem 5.3 

in Moura/39/, Nijholt/45/ and Pittl/49/). Moreover, every left local precedence gram- 

mar can be transformed to a strict deterministic granmnar (with look-ahead). See again 

Moura/39/. 

In Harrison/20/ various transformations can be found which can be applied to 
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strict deterministic grammars (e.g. a transformation from strict deterministic gram- 

mars to grammars which are both strict deterministic and (%,0) BRC, £ ~ 0). 

4.3.2. LR(k) AND (%,k) BRC GRAMMARS WITH DISJOINT PRECEDENCE RELATIONS 

Instead of transformations from LR(k) grammars to LR(k) grammars with the left 

corner condition, it is also possible to consider transformations which convert LR(k) 

grammars into LR(k) grammars with precedence relations which are such that the left 

corner condition is satisfied. Such transformations have been studied in Graham/]5/ 

and in Gray and Harrison/18/. An important result in these papers is that every LR(k) 

grammar can be transformed to an LR(k) grammar which has the property that, except for 

the lefthand side of the production, the handle can be recognized with simple prece- 

dence relations. For the determination of the reduction which has to be made it is 

sufficient to consider k symbols of look-ahead. A similar result is obtained for 

(~,k) BRC grammars. 

4.4. TRANSFORMATIONS TO NORMAL FORM S 

Especially in section 4.3.1 we already mentioned parsing properties of LR(k) 

gran~nars in certain normal forms. Some other properties can be found in section 5.1. 

It should be noted that any transformation to GNF yields a grammar which has the 

property that ~ is disjoint from ~. Cf. Geller, Harrison and Havel/12/ and Nijholt 

/43/ for such transformations for strict deterministic grammars. It will be clear 

from the previous sections that grammars which are u.i., in GNF, in operator form, 

left factored etc. all have special parsing properties. 

5. PARSING STRATEGIES AND LANGUAGES 

Also from the point of view of languages it is interesting to compare parsing 

strategies. In this extended abstract we can only point out some of the interesting 

problems. They deal with language classes, equivalence problems and language hierar- 

chies. 

5.1. LANGUAGE CLASSES 

The class of LL(k) languages is a proper subclass of the class of LR(;) or deter- 

ministic languages. Since each LL(k) grammar is an LR(k) grammar it is interesting to 

consider ela~ses of grammars between the LL(k) and LR(k) grammars and to try to under- 

stand the realations between the associated parsing strategies and the classes of 

languages which are generated. For example, the class of extended LC(k) languages 
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lies properly between the LL(k) and deterministic languages. On the other hand, the 

class of PLR(k) languages coincides with the class of LL(k) languages. It is an open 

problem whether the class of extended PLR(k) languages (cf. section 2.3.3) coincides 

with the extended LC(k) languages. Other classes of languages which constitute proper 

subclasses of the deterministic languages are the simple and operator precedence 

languages and the real-time strict deterministic languages. 

There exist interesting relations between certain normal forms and the languages 

which can be generated. E.g., every extended LC(k) grammar in Chomsky normal form or 

in canonical two form is an LC(k) grammar. Therefore it can only generate an LL(k) 

language. Similarly, each strict deterministic grammar in Chomsky normal form can only 

generate a real-time strict determonistie language. 

5.2. LANGUAGE HIERARCHIES 

For LL(k) languages there exists the well-known Kurki-Suonio hierarchy. That is, 

for each k > 0 there exists an LL(k) language which can not be generated by an LL(k-I) 

grammar. For strict deterministic grammars and languages such a hierarchy can be 

given in terms of the sizes of the blocks of the partition (cf. Harrison and Havel 

/22/). Hierarchies for (real-time) deterministic languages can also be found in Har- 

rison and Yehudai/25/ and Yehudai/59/. An obvious open problem is the existence of a 

hierarchy for extended LC(k) languages. 

5.3. EQUIVALENCE PROBLEMS 

The equivalence problems are closely related to the problems mentioned in sec- 

tion 5.1. Once we are able to characterize the properties of grammars between the 

LL(k) and LR(k) grammars which lead to different classes of languages in a sufficient- 

ly detailed way, then we are able to say more about the equivalence problems for these 

classes of languages. 

The equivalence problems for LL(k) and real-time strict deterministic grammars 

with look-ahead are decidable (cf. Nijholt/44/). The problems for ELC(k), simple 

precedence and operator precedence grammars have not yet been considered in the 

literature. 

6. MISCELLANEOUS 

We want to mention a few parsing strategies which are not yet included in the 

foregoing sections. Schlichtiger/51,52/ has introduced the partitioned chain grammars. 

Kral and Demner/29/ and Kretinsky/31/ have introduced "semi-top-down" strategies. 

Hammer/;9/ obtains a new class of grammars by introducing restrictions on the state 

sets of the LR(k) parsing algorithm. Finally we mention that each parsing method can 
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be generalized by using semantic information or by using "regular" instead of finite 

look-ahead. 
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