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Abstract. This paper presents a model-based technique for lesion detection in
colon CT scans that uses analytical shape models to map the local shape curva-
ture at individual voxels to anatomical labels. Local intensity profiles and cur-
vature information have been previously used for discriminating between simple
geometric shapes such as spherical and cylindrical structures. This paper intro-
duces novel analytical shape models for colon-specific anatomy, viz. folds and
polyps, built by combining parts with simpler geometric shapes. The models bet-
ter approximate the actual shapes of relevant anatomical structures while allowing
the application of model-based analysis on the simpler model parts. All parame-
ters are derived from the analytical models, resulting in a simple voxel labeling
scheme for classifying individual voxels in a CT volume. The algorithm’s perfor-
mance is evaluated against expert-determined ground truth on a database of 42
scans and performance is quantified by free-response receiver-operator curves.

1 Introduction

According to the GLOBOCAN 2002 survey [1], colorectal cancer was the second lead-
ing cause of cancer deaths in 2002 with more than half a million deaths worldwide.
The American Cancer Society estimates that 56000 people will die of the disease in the
United States alone in 2005 [2]. Screening for the early detection and removal of polyps
before they become cancerous is widely believed to help reduce mortality rates. How-
ever, less than half of the recommended population in the US has undergone screening,
in part because of the invasive nature and risks of optical colonoscopy procedures. Vir-
tual colonoscopy or CT colonography is emerging as an alternative, non-invasive option
and may help reduce patient discomfort and thus increase compliance. Thin-slice CT
scanners with their high spatial resolutions, while enabling the radiologist to see smaller
structures in greater detail, pose an enormous data burden for radiologists. This data ex-
plosion motivates the need for automated systems that assist radiologists in reviewing
CT colon scans with greater efficiency and improved detection sensitivity.

Several computer-aided diagnosis (CAD) systems have been developed in the last
decade to find polyps [3,4,5,6] in CT volumes. In general, these methods extract fea-
tures such as surface curvature and intensity contrast on the colon surface to identify
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polyp-like candidates, and use a trained classifier to classify candidates. In [6], princi-
pal curvatures were used to compute a shape index at each voxel, followed by fuzzy
clustering to generate candidates and classification using discriminant analysis. A sup-
port vector machine classifier trained on 3 orthogonal cross-sectional planes sampled
for each candidate was used in [3]. In [7], polyp shapes were modeled using spheri-
cal harmonics and thresholds for the shape descriptors were learned from training data.
In all of these methods, training and test datasets are very similar and although high
performance is reported, testing is on a small number of cases, making the results in-
conclusive. A recent large study on 1186 scans from 3 institutions [8] evaluated the
algorithm described in [5]. The method consists of extracting the surface colon wall, re-
moving fluid if present, and segmenting candidates using surface features followed by
classification. It achieved sensitivities of 89.3% at 2 false positives (FP)/case for polyps
larger than 10 mm and 61% at 8 FP/case for polyps above 6 mm. Approximately one-
third of the cases were used for training and the rest for testing. While the study size
is impressive, results on the clinically significant medium-sized polyps (6-9 mm) [9]
show the limitations of the learning-based CAD system.

This paper introduces a technique for highlighting polyps in CT colon scans. The
algorithm is based on 3D analytical models of the local shape of colon-specific anatom-
ical structures such as haustral folds and sessile and pedunculated polyps. Each of these
structures is modeled by combining simpler shapes such as ellipsoids and tori. Princi-
pal curvatures of the implicit isosurface at each voxel are computed directly from the
image function without explicitly extracting the isosurfaces. Analytical models are then
used to derive constraints and decision boundaries in curvature space to label individual
voxels as belonging to polyps, folds, or neither. No model fitting or training steps are
required since thresholds are obtained directly from the models. Since all operations are
performed locally at each voxel, the proposed method can be interpreted as a filter for
highlighting relevant anatomical structures and can be easily incorporated into different
viewing formats used by radiologists to read CT colon scans, such as traditional 2D
slices, 3D virtual fly-throughs, or virtual dissection views.

2 Computation of Principal Curvatures

The curvature of the intensity isosurface passing through a voxel x can be computed
directly from the implicit image function [10,11]. The principal curvatures κ1 and κ2

are independent of any transformation I′(x) = aI(x)+ b applied to the image volume
I(x). In fact, κ1 and κ2 at a voxel x depend only on the shape of the associated isosurface
and not the specific isovalue. Therefore only the local shapes of the relevant anatomical
structures has to be considered, not the exact intensity profiles.

3 Shape Models for Colon Structures

Given the principal curvatures at a voxel, analytical models for the shapes of relevant
anatomical structures can be used to set thresholds and classify the local shape at a voxel
as ellipsoidal or toroidal [11]. Two major contributions of this work are in building
such analytical models for colon-specific anatomy and addressing more complicated
structures by combining simpler model parts.
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Fig. 1. Colon structures of interest From left to right: 2D and 3D rendered views of a typical
pedunculated polyp, and 2D and 3D views of a typical sessile polyp. The 3D views also show
haustral folds running across the colon cross-section.

After bowel cleansing and insufflation of the colon, the colon wall will typically
display a circular cross-section and for all purposes can be considered locally flat com-
pared to the attached structures. The normal colon also has haustral folds produced by
the shortening of colon segments which form ridge-like structures running circumfer-
entially, as seen in Fig. 1. Colonic polyps, on the other hand, are protrusions from the
wall of the colon into the lumen and generally fall into three categories based on shape:
pedunculated, sessile, and flat. This work introduces analytical models haustral folds
and for pedunculated and sessile polyp lesions.

3.1 Pedunculated Polyps

Pedunculated polyps are mushroom-like capped structures attached by a thin stalk to
the colon wall, as shown in Fig. 1. The shape of the polyp cap is locally ellipsoidal
and therefore well-approximated by the ellipsoidal patches used for the nodule model
in [11], without having to explicitly model the stalk.

3.2 Sessile Polyp Model

Sessile polyps are relatively flat polyps with a broad base and no stalk. This configura-
tion can be geometrically modeled by combining a half ellipsoid with a base radius c
and height a, and a semi-toroidal rim with radius r, as depicted in Fig. 2(a). The analysis
of the local shape of sessile polyps can be carried out independently on the individual
ellipsoidal and toroidal parts and then combined as shown below.

The ellipsoidal part of the sessile polyp, MSP,E, can be parameterized as

MSP,E : Π ×Θ × Φ →R
3

(ρ ,θ ,φ) �→ x =
[ρccosθ cosφ

ρcsinθ cosφ
ρ(r+a sinφ)

]
(1)

where Π = [0,1], Θ = [0,2π), Φ = [0,π/2], with each choice of ρ ∈ Π defining a
different isosurface within the volume of the sessile polyp model. The model parameters
mSP = (a,c,r) determine the shape of the isosurfaces. A cross-sectional side-view of
the outermost isosurface of the sessile polyp model is shown in Fig. 2(b). The model
parameters mSP lie in the domain MSP = {(a,c,r) ∈ R

3|0 < a ≤ c,0 < r}.
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Fig. 2. Sessile Polyp Model (a) Three-dimensional representation of the sessile polyp. (b) Para-
meters of the sessile polyp model: the ellipsoidal cap of the sessile polyp has semi-axis a ≤ b = c,
and the toroidal contact has an inner radius of r. The full surface can be obtained by rotating the
dark curve around the aaa direction. (c) Shaded region shows support of the sessile polyp model in
κκκ space.

Let E(x) = x2

c2 + y2

c2 + z2

a2 . The equation E(x) = ρ defines an isosurface. Solving for
κκκ = (κ1,κ2) and transforming into polar coordinates yields

κ1 =
a

ρc(a2 − (a2 − c2)sin2 φ)1/2
and κ2 =

ac

ρ(a2 − (a2 − c2)sin2 φ)3/2
. (2)

Enforcing simple constraints such as 0 ≤ κ1 ≤ κ2, 0 ≤ sin φ ≤ 1 with φ ∈ [0,π/2],
and 0 ≤ ρ ≤ 1, one can determine the region of support K SP,E

a,c for MSP,E in κκκ space
where (2) holds, as shown in Fig. 2(c). The pedunculated polyp model has a very similar
region of support (not shown).

The toroidal rim (or “neck”) of the sessile polyp, MSP,T, can similarly be parameter-
ized as

MSP,T : Π ×Θ × Φ →R
3

(ρ ,θ ,φ) �→ x =
[ρ(c+r−r cosφ)cosθ

ρ(c+r−r cosφ)sinθ
ρ(r+r sinφ)

]
(3)

where Π = [0,1],Θ = [0,2π), Φ = [−π/2,0). It can be shown that the principal curva-
tures at an isosurface level ρ ∈ Π for MSP,T are given by

κ1 = − 1
ρr

and κ2 =
cosφ

ρ(c + r(1 − cosφ))
. (4)

The bounds for the region of support K SP,T
a,c,r in κκκ space where (4) holds can also be

derived as before. The combined support region for the sessile polyp model is given by
the domain K SP

a,c,r = K SP,E
a,c ∪K SP,T

a,c,r and is shown in Fig. 2(c).
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Fig. 3. Haustral Fold model (a) Three-dimensional representation of the haustral fold with
toroidal ridge and neck parts (b) Parameters of the fold model: the torus representing the fold
ridge has radius r1, and the toroidal contacts forming the neck each of radius r2. All three tori
have large radius R. The full surface is obtained by rotating the black curve along a direction
parallel to the colon centerline. (c) Shaded region shows support of the fold model in κκκ space.

3.3 Haustral Fold Model

Following a procedure similar to that for sessile polyps, haustral folds can be modeled
by combining three different tori, one with radius r1 for the ridge and one each on either
side of the ridge with radius r2, to model the neck connecting the fold ridge and the
colon wall, as depicted in Fig. 3(a). The fold curves around the colon wall, rotating with
a radius R about the colon centerline. The model parameters mF = (R,r1,r2) determine
the shape of the isosurfaces of the fold and lie in the domain MF = {(R,r1,r2) ∈ R

3|0 <
r1 ≤ r2,0 < R}. A cross-sectional side-view of the outermost isosurface of the haustral
fold model is shown in Fig. 3(b). The torus representing the neck of the fold can be
parameterized as

MF,R : Π ×Θ × Φ →R
3

(ρ ,θ ,φ) �→ x =
[

(R−ρr2−ρr1 sinφ)cosθ
(R−ρr2−ρr1 sinφ)sinθ

ρr1 cosφ

]
(5)

where Π = [0,1], Θ = [0,θ0], Φ = (0,π/2], with ρ representing the different levels of
the model isosurfaces and θ and φ representing the location on a particular isosurface.
Solving at a particular isosurface level ρ for κκκ = (κ1,κ2) and transforming into polar
coordinates using the parameterization in (5) yields

κ1 =
−sinφ

R − ρr2 − ρr1 sinφ
and κ2 =

1
ρr1

. (6)

Similarly the neck tori each follow the parameterization give by

MF,N : Π ×Θ × Φ →R
3

(ρ ,θ ,φ) �→ x =
[

(R−ρr2(1+sinφ))cosθ
(R−ρr2(1+sinφ))sinθ

ρ(r1+r2(1−cosφ))

]
(7)
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with Π = [0,1], Θ = [0,θ0], Φ = [−π/2,0]. The torus on the other side of the fold is
exactly the same except Φ = [π ,3π/2].

The principal curvatures for the fold neck are given by

κ1 =
−1
ρr2

and κ2 =
sinφ

R − ρr2(1 + sinφ)
. (8)

The bounds for the regions of support K F,R
R,r1,r2

and K F,N
R,r1,r2

in κκκ space where (6) and
(8) are respectively valid for the fold ridge and neck can also be extracted using model
constraints as was done for the sessile polyp. The combined support region for the fold
model is given by the domain K F

R,r1,r2
= K F,R

R,r1,r2
∪K F,N

R,r1,r2
, and is shown in Fig. 3(c).

4 Implementation and Experimental Results

Implementation The algorithm was implemented using the open source Insight Toolkit
(ITK) [12]. The volume image was smoothed by convolution with a Gaussian kernel to
reduce the effect of noise. The colon volume was automatically extracted as follows. All
voxels in the CT volume were labeled as non-body or body using an adaptive threshold
between air and body tissue. Running connected components on the non-body voxels
yielded a set of air regions. Frequently, colon CT scans also contain the lower part of
the lungs close to the diaphragm. Regions outside the body or in the lung were dis-
carded automatically, leaving only air-filled regions of the colon. The air-filled regions
were dilated and then subtracted from the dilated regions, giving a thin layer of vox-
els consisting of just the colon wall and attached structures. All subsequent processing
was restricted to this region-of-interest (ROI). The colon segmentation assumes that the
colon was prepared through cleansing and insufflation.

The principal curvatures at every voxel in the ROI were computed as described in
[10,11]. The pedunculated and sessile polyp models and the haustral fold model provide
regions of support in κκκ space. Given principal curvatures computed at a voxel x, it was
labeled as belonging to a polyp or a fold or neither, depending on where the κ1(x) and
κ2(x) values lied in κκκ space. The decision boundaries depend on the model parameters
K SP

a,c,r and K F
R,r1,r2

and were chosen either based on representative values for clinically
relevant target lesions or knowledge of anatomical structures. For example, the radius
R in the fold model was approximated by the radius of the colon cross-section. The fact
that all model parameters can be specified in physical units and the ITK-based imple-
mentation can maintain and process data in physical space allowed all model constraints
to be easily propagated throughout the algorithm.

Since the curvature computations are susceptible to noise and the analytical models
are idealized, morphological operations were applied on the polyp and fold responses to
remove spurious small polyp responses occurring in isolation or in small pockets within
large fold response regions. These final polyp and fold responses can be presented to
radiologists as overlays on top of the the original CT volume, either on the 2D axial
slices or on a 3D rendering as shown in Fig. 4(left). The algorithm takes about 30
seconds to run on a 3 GHz Xeon processor with 2GB RAM.

Ground Truth and Validation. To quantify the algorithm’s performance, neighboring
voxel responses were grouped and counted as a single detection. The validation dataset
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Fig. 4. Algorithm results The two images on the left show polyp responses generated by the
algorithm overlaid on a 2D CT slice and a 3D rendering, respectively. On the right are FROC
curves showing the algorithm’s performance with ground truths containing polyps > 6 mm (light,
solid curve) and polyps > 4 mm (dark, dashed curve).

Table 1. Comparison of proposed method with CAD evaluation from [8]: The voxel-labeling
scheme proposed in this paper does not require any training and compares favorably in running
time and performance, though it has been validated on a much smaller dataset

Algorithm Training Testing Sensitivity @ FP Sensitivity @ FP Running
cases cases polyps > 6 mm polyps > 4 mm time/case

Proposed method 0 42 31/38 = 81.6% @ 10.4 43/57 = 75.4% @ 10.4 30 sec
Summers et al [8] 394 792 73/119 = 61.3% @ 8.0 - 20 min

consisted of 42 CT scans. A low-dose screening protocol with 120 mAs, 120 kVp,
and 0.6 mm slice spacing was used. Ground truth annotations including polyp location
and diameter were provided by an expert radiologist. Current screening protocols con-
sider all polyps above 6mm in diameter as clinically relevant. The algorithm achieved
a sensitivity of 81.6% at 10.4 FP or 76.3% at 6.2 FP/case for the 38 polyps in the
ground truth with diameter above 6 mm. The complete free-response receiver operator
curve (FROC) is shown in Fig. 4 (right). Radiologists currently do not report findings
of “diminutive” polyps (between 4-6 mm in diameter) [9]. However, a follow-up repeat
screening in 5 years is generally recommended in such cases. Therefore, the algorithm
was also evaluated against all polyps above 4 mm in the ground truth (57 polyps) and
achieved a sensitivity of 77.2% at 12.9 FP/case or 75.4% at 10.4 FP/case, as shown in
Fig. 4 (right).

It is difficult to perform a fair comparison of CAD methods because of differences
in test databases and validation techniques. Also, very few CAD evaluations on large
databases are available. Recently, a study evaluating a classifier-based CAD algorithm
on an 1186 cases from 3 institutions (1 mm slice spacing 100 mAs, 120 kVp) has
been published [8]. Table 1 attempts to compares the method proposed here to the test-
ing infrastructure and the results in this study. The relatively lower performance of
the learning-based CAD algorithm used in [8] shows that the model-based approach
presented in this paper has promise although it has been tested on a much smaller
database.
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5 Conclusion

This paper introduces a novel voxel labeling scheme for highlighting lesions in CT
colon scans. Geometric models of colon-specific anatomical structures, namely pedun-
culated or sessile polyps and haustral folds were developed by combining ellipsoids and
tori. Constraints derived from the models are used to classify each voxel based on the
principal curvatures computed at that voxel. The method requires neither segmentation
of the relevant anatomical structures nor sophisticated classifiers trained over a set of
image features. It can be viewed as a simple, fast filter that highlights voxels belonging
to specific anatomical shapes and can aid the radiologist in reviewing CT colon ex-
ams with greater efficiency and sensitivity. Validation results show the promise of the
model-based approach taken in this paper. Future work includes modeling flat polyps
and extending the models to screening protocols with different patient preparations.
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