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Abstract

Single camera-based multiple-person tracking is often

hindered by difficulties such as occlusion and changes in

appearance. In this paper, we address such problems by

proposing a robust part-based tracking-by-detection frame-

work. Human detection using part models has become quite

popular, yet its extension in tracking has not been fully ex-

plored. Our approach learns part-based person-specific

SVM classifiers which capture the articulations of the hu-

man bodies in dynamically changing appearance and back-

ground. With the part-based model, our approach is able

to handle partial occlusions in both the detection and the

tracking stages. In the detection stage, we select the sub-

set of parts which maximizes the probability of detection,

which significantly improves the detection performance in

crowded scenes. In the tracking stage, we dynamically han-

dle occlusions by distributing the score of the learned per-

son classifier among its corresponding parts, which allows

us to detect and predict partial occlusions, and prevent the

performance of the classifiers from being degraded. Ex-

tensive experiments using the proposed method on several

challenging sequences demonstrate state-of-the-art perfor-

mance in multiple-people tracking.

1. Introduction

The goal of our work is to automatically detect and track

each individual target in a crowded sequence. Several chal-

lenges render this problem very difficult: First, the ap-

pearance of the target is often constantly changing in the

field of view of the camera. Second, targets often exit the

field of view and enter back later on; thus, a successful

tracker needs to associate the two observations. Third, tar-

gets often become occluded by other targets or by objects

in the scene. Therefore, traditional trackers [19, 7] suffer in

such scenarios. On the other hand, discriminative tracking

approaches with online learning have flourished recently

[1, 2, 11, 6, 10, 8]. In such methods, an specific detec-

tor is trained in a semi-supervised fashion and then used

Figure 1. Multi-person tracking using our part-based tracker.

to locate the target in consecutive frames. However, the

online learned detector will often drift in long-term track-

ing. Additionally, such algorithms do not handle multiple

targets. Therefore, several techniques [23, 13, 3, 5] were

proposed to tackle multi-target tracking by optimizing de-

tection assignments over a temporal window, given certain

global constraints. Such methods employ offline trained de-

tectors to find the targets and associate them with the tracks.

Although they can handle several difficulties such as the un-

certainty in the number of targets, occasional occlusions,

and template drift in long term; they still suffer when faced

with appearance changes and occlusion. In particular, when

tracking a crowd of pedestrians, the data association often

fail in the aforementioned approaches due to pose varia-

tions, partial occlusions and background changes.

In this work, we address such difficulties by propos-

ing a part-based representation in a tracking-by-detection

framework. While the deformable part-based model [9] has

shown excellent performance in static images, yet it has

not been fully explored in tracking problems. Moreover,

the availability of inexpensive high-definition sensors for

surveillance yet provides the advantage to exploit such de-

tailed appearance representations.

Current tracking-by-detection methods use the final de-

tection window as an observation model. In contrast, in

our approach, we leverage the knowledge that all targets of
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Figure 2. The part-based representation allows detailed correspon-

dence between the articulated human bodies. The figure demon-

strates how the parts of two instances of a human can be well-

corresponded even with significant pose changes. Additionally,

the background components in the detection boxes are automati-

cally excluded from the correspondence.

one class (humans in this context) have similar part struc-

ture; thus, we employ the sets of detected parts as observa-

tion models. Therefore, our method provides several ad-

vantages: First, the combination of parts provides a rich

description of the articulated body; thus, it represents the

human better than a single detection window. In partic-

ular, since the spatial relations of the parts in an articu-

lated body are often flexible, corresponding targets using

a holistic model (one detection box) is error-prone and may

compare dissimilar parts of the body. In contrast, a part-

based representation allows parts to be strictly compared to

their corresponding parts. An example is shown in figure

2, where the parts of two instances of a person are well-

corresponded even with different poses and backgrounds.

Second, the part-based model excludes most of the back-

ground within the detection window and thus avoids the

confusion from background changes. Finally, since the part-

based detector is offline trained by latent SVM using a large

amount of training samples, it captures significant amount

of discriminative information, which is essential for track-

ing.

Our tracking framework consists of the steps illustrated

in figure 3. First, we use an extended part-based human

detector on every frame and extract the part features from

all detections. Person-specific SVM classifiers are trained

using the detections, and consequently used to classify the

new detections. We use a greedy bipartite algorithm to as-

sociate the detections with the trajectories where the associ-

ation is evaluated using three affinity terms: position, size,

and the score of the person-specific classifier. Additionally,

during tracking, we reason about the partial occlusion of

a person using a dynamic occlusion model. In particular,

partial occlusions are learned by examining the contribu-

tion of each individual part through a linear SVM. This in-

ferred occlusion information is used in two ways: First, the

classifier is adaptively updated with only the non-occluded
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Figure 3. The various steps of our approach.

parts, which prevents from being degraded along the occlu-

sion period. Second, the discovered occlusion information

is passed to the next frame in order to penalize the contribu-

tion of the occluded parts when applying the person classi-

fier.

In summary, this paper makes the following contribu-

tions: First, we adopt the part-based model in multi-target

tracking to tackle occlusion and appearance change prob-

lems. Second, we extend the human detection approach in

[9] which allows us to improve the detection in crowded

scenes. Third, we propose a dynamic occlusion handling

method to learn and predict partial occlusions, and thus im-

prove the tracking performance.

2. Related Work

A significant amount of work has been reported for

multi-target tracking-by-detection algorithms. In [23],

Zhang et al. resolve the association between the detection

and the tracking by optimizing a cost-flow network with a

non-overlap constraint on trajectories. Brendel et al. [5] ap-

ply a maximum-weight independent set algorithm to merge

small tracklets into long tracks. In that, information from

future frames are employed to locate the targets in the cur-

rent frame with a temporal delay. In contrast, we employ a

greedy scheme in data association, which is more suitable

for online tracking applications. On the other hand, several

methods such as [15, 22, 14] employ social force models

which consider the interactions between the individuals in

order to improve the motion model. Such methods require

prior knowledge of the 3D scene layout, which, however, is

often unavailable in practical scenarios. Moreover, Benfold

et al. [3] use MCMCDA to correspond the detections ob-

tained by a HOG-based head detector in crowded scenes.

Although they demonstrate promising results, using only

the head is often not discriminative in various tasks.

The method proposed by Breitenstein et al. [4] is ev-

idently the most similar to ours. In that, they propose a

particle-based framework in which detections and interme-



diate detections’ confidences are used to propagate the par-

ticles. Additionally, they employ a target-specific classifier

to associate the detections with the trackers. Our method

is different than [4] in that we employ a part-based model

which is more robust and can handle partial occlusions. On

the other hand, Wu et al. [21] train an edgelet-based part de-

tector to track multiple persons by matching the parts using

color features. Such method is, however, not as discrimi-

native as our proposed online-learned classifiers which em-

ploy multiple features for reliable data association.

3. Human Detection with Occlusion Handling

We employ a deformable part-based model for human

detection similar to [9]. However, such detector suffers

when the human is occluded. In particular, the final score in

[9] is computed from all the parts, without considering that

some parts can often be occluded. Let H be the HOG fea-

ture of the image, and p = (x, y) denotes a part specified

by its position. The detection score at location (xo, yo) is

computed in [9] as

score(xo, yo) = b+
i=n∑

i=1

s(pi), (1)

where b is a bias term, n is the number of parts, and s(pi) is

the score of part i which is computed as

s(pi) = Fpi
· φ(H, pi)− dpi

· φd(dx, dy), (2)

where Fpi
is the part filter, and φ(H, pi) denotes the vec-

tor obtained by concatenating the feature vectors from H at

the subwindow of the part pi. (dx, dy) is the displacement

of the part with respect to its anchor position, φd(dx, dy) =
(dx, dy, d

2

x, d
2

y) represents the deformation features, and dpi

specifies the coefficients of the deformation features. Un-

der this formulation, it is clear that even if the part was

occluded, its corresponding score still contributes in the fi-

nal detection score. This is a significant drawback espe-

cially when dealing with crowded sequences as shown in

figure 4. In the figure, some humans appear fully in the im-

age; however, several humans appear as only upper parts,

or even only heads. Such impediment in [9] led previous

works such as [3] and [18] to rely on only head detection

and ignore the rest of the body. To address this problem, we

propose to infer occlusion information from the scores of

the parts and consequently utilize only the parts with high

confidence in their emergence. Instead of aggregating the

scores from the set of all the parts P = {p0 . . . pn}, we

select the subset of parts S = {pk . . . pl} ⊆ P , which max-

  

  

  

    

  

  

        

  

Figure 4. Left: Human detection results using [9]. Right: Hu-

man detection results using our approach where red boxes show

the humans detected as full bodies, green boxes show the humans

detected as upper bodies, and yellow boxes show the humans de-

tected as heads only. It is clear that [9] failed to detect occluded

humans since it does not have an explicit occlusion model, while

our approach detects the occluded parts and excludes them from

the total detection scores, thus achieving significant improvements

especially in crowded scenes.

imizes the detection score

score(xo, yo) = b+ argmax
Sm

1

|Sm|
× (3)

∑

i∈Sm

1

1 + exp(A(pi) · s(pi) +B(pi))
,

where |Sm| is the set cardinality, and the sigmoid function is

introduced to normalize the scores of the parts. The param-

eters A and B are learned by the sigmoid fitting approach

in [16]. Note that equation 3 corresponds to the average

score of the parts in the subset. Since the average is sensi-

tive to outliers, it is useful in capturing miss-detected parts.

In other words, a subset Sm which contains occluded parts

is likely to have less average score than a subset without

occluded parts. Therefore, by maximizing equation 3 we

obtain the most reliable set of parts and its corresponding

probability of detection, which we use as the final detec-

tion score. We consider only three possible subsets of parts,

namely, head only, upper body parts, and all body parts. We

found such subsets representative enough for most realis-

tic scenarios. Therefore, we do not need to search over all

possible 2n part combinations; instead, solving equation 3



involves only three evaluations which is a negligible over-

head to the standard approach. Figure 4 demonstrates the

advantage of our human detector over [9] in detecting oc-

cluded humans.

4. Tracking with Occlusion Handling

4.1. Person Classification

We train an online person-specific classifier for each in-

dividual target. In each frame, the human detections are

classified by the person classifiers. Relevant previous work

mostly used Adaboost classifier with Haar-like features; in

contrast, our approach leverages the detected human parts

and train a SVM classifier. We extract features from each

individual part, and then concatenate them in a fixed order

as a feature vector. We choose color histogram and Local

Binary Pattern as features because they are highly discrim-

inative for individuals and are complementary to the HOG

feature which is used in the human detector.

The classifier is trained using the detections included

in each trajectory. In particular, the positive examples are

taken from all detections in the trajectory and the negative

examples are taken from the detections of the other trajec-

tories augmented with random patches collected from the

surrounding background in order to improve the classifier’s

discrimination to the background.

4.2. Data Association

Many tracking applications require online forward track-

ing, i.e. the current trajectories should depend only on pre-

vious frames, not on future observations. To meet such re-

quirements, we use a first-order Markov model in data as-

sociation, in which trajectories are continuously growing as

the tracking proceeds. In every frame, the detections are as-

sociated with existing trajectories by a greedy bipartite as-

signment algorithm [17] which has also been used in [4, 21].

In particular, for each frame, we construct an affinity matrix

M for the trajectories and the detections. Consequently, the

pair with the maximum affinity Mi,j is selected as a match,

and the i-th row and the j-th column are deleted from M .

This procedure is repeated until no more pairs are available.

To evaluate the affinity of a trajectory i and a detection

j, we use

M(i, j) = C(i, j) · E(i, j) · Z(i, j) (4)

where three terms C is the output of the person-specific

classifier, E and Z are affinities of position and size respec-

tively. We calculate E and Z using similar methods to [21].

The detections which are not associated with any exist-

ing trajectories are used to initialize a new potential tra-

jectory. Once the length of a potential trajectory becomes

larger than a threshold, it gets formally initialized. On the

other hand, when a new detection is associated to a trajec-

tory, we update all its state variables, namely, the position,

the size, the velocity, based on the new detection. How-

ever, when there is no detection associated due to occlusion

or miss-detection, we use a correlation-based Kalman fil-

ter to track the head part of the target in the local area. This

heuristic is particularly useful in crowded scenes where only

humans’ heads are observed.

4.3. Dynamic Occlusion Handling

If a partially occluded person is detected and associated

to a trajectory, the classifier will be updated with noise and

its performance will gradually degrade. Therefore, we em-

ploy an occlusion reasoning method to handle this prob-

lem. It was shown in [20] that in a detection window, oc-

cluded blocks respond to the linear SVM classifier with neg-

ative inner products. We adopt this approach to infer which

parts are occluded for those detections with low classifier

score. Assume that the detection’s feature vector x con-

sists of n sub-vectors corresponding to n parts, written as

x = (s1, . . . , sn). The decision function for linear SVM

classifier is

f(x) = β +

l∑

k=1

αk〈x,xk〉 = β + x
T
w, (5)

where xk is a support vector and w is the weighted sum of

all support vectors. We can divide w to n sub-vectors w =
(w1, . . . ,wn), and find a set of {βi} such that β =

∑
βi,

then the separate contribution of each part is represented by

f(si) = βi + si
T
wi. (6)

Each time we re-train a person-classifier, we calculate βi

similar to [20] using the previously observed training sam-

ples. Consequently, we obtain the score for each individual

part of x. The part with a negative score is mostly likely to

be occluded. Therefore, we adaptively update the classifier

by only extracting features from the parts with high confi-

dence which are likely to correspond to the non-occluded

parts, while the features for the occluded parts are obtained

from the feature vectors of the previous frames. Using this

technique, the occluded parts will not be included in updat-

ing the classifier. Figure 5 demonstrates how occluded parts

have negative responses to the SVM.

On the other hand, the occlusions are highly correlated

in the adjacent frames of videos. Hence, when a partially

occluded part is detected in one frame, it will have a high

probability of being occluded in the consecutive frames. We

harness such smoothness in occlusion to improve the classi-

fication performance by introducing an occlusion prediction

method into the data association in order to improve the ac-

curacy. First, we map the part SVM scores into positive

values by

G(si) = exp(
f(si)

δ
), (7)
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Figure 5. Left: a certain target human is detected, non of his

parts are occluded (shown in blue); thus, all parts have positive

responses. Right: the same target is observed again in another

frame; however, three of his parts are occluded by another per-

son (occluded parts are shown in red). The occluded parts have

negative responses as shown in the figure. In our framework, the

occluded parts are excluded when updating the person’s model.

Additionally, when performing person classification, the occluded

parts have lower contribution since they are assigned weights rel-

ative to their score (refer to equation 8).

where δ is a constant. The occluded parts will likely

have lower values as demonstrated in the example in fig-

ure 5. Therefore, when performing person classification,

we weight each part by the non-occlusion confidence G(si)
and normalize the total score

C =

n
n∑

i=1

G(si)(βi + sTi wi)

n∑
i=1

G(si)
. (8)

In the following frames, we examine the occlusion again

and update the occlusion confidence until the classifier

score is larger than a threshold. This allows the occlu-

sion information to be passed across continuous frames, and

the person classifier to have higher weight corresponding to

non-occluded parts.

5. Experimental Results

We extensively experimented on the proposed method

using Oxford Town Center dataset [3], and two new datasets

that we collected; the Parking Lot dataset, and the Airport

dataset. The experimental datasets provide a wide range of

significant challenges including occlusion, crowded scenes,

and cluttered background. In all the sequences, we only

use the visual information and do not use any scene knowl-

edge such as the camera calibration or the static obstacles. It

is important to notice that we selected the aforementioned

datasets since they include high quality imagery which is

more suitable to our approach since the part-based model

requires detailed body information.

In our implementation, we use the pre-trained pedestrian

model with 8 parts from [9]. The feature vector for each

Table 1. Tracking results on The Town Center Dataset.

TP TA DP DA

Benfold et al. [3] 80.4 64.8 80.5 64.9

Zhang et al. [23] 71.5 65.7 71.5 66.1

Pellegrini et al. [15] 70.7 63.4 70.8 64.1

Yamaguchi et al. [22] 70.9 63.3 71.1 64.0

Leal-Taixe et al. [14] 71.5 67.3 71.6 67.6

Ours/detection from [9] 71.1 72.2 71.2 72.7

Ours/our detection 71.3 72.9 71.4 73.5

part consists of 125-bin RGB color histogram using 5 bins

for each channel and 59-bin LBP histogram. We apply nor-

malization for each part and concatenate all 8 parts into one

feature vector of 1472 dimensions. The training data for

each person-specific classifier consists of up to 100 posi-

tive samples and 100 negative samples. When the number

of collected samples exceeds this limit, we delete the old-

est ones to ensure the model is up to date. Aside from the

human detection, our tracker runs at 1 to 5 fps on a conven-

tional desktop, depending on the number of humans in the

sequence. Figure 6 shows example frames from the exper-

iments’ sequences with the tracking results overlaid. Ad-

ditionally, figure 7 shows example results of our dynamic

occlusion handling.

We evaluate our tracking results using the standard

CLEAR MOT metrics [12], TP (tracking precision), TA

(tracking accuracy), DP (detection precision) and DA (de-

tection accuracy). Note that TP only measures the precision

of tracked object positions, but TA measures false negatives,

false positives, and ID-switches. Therefore TA has been

widely accepted as the main gauge of performance of the

tracking methods.

Town Center Dataset: The frame resolution in this

dataset is 1920 × 1080, and the frame rate of 25 fps. This

is a semi-crowded sequence with rare long-term occlusions.

The motion of pedestrians is often linear and predictable.

In table 1, we compare results with [3, 23, 15, 22, 14] us-

ing the results reported in [14]. With the same experimental

settings, our method significantly outperforms all previous

methods in TA. The improvement in our method is a re-

sult of two main factors: First, the part-based model could

better represent the articulated body and thus improves the

accuracy in data association. Second, our dynamic occlu-

sion handling module allows us to robustly track partially

occluded humans.

Parking Lot Dataset: The frame resolution in this

dataset is 1920 × 1080, and the frame rate of 29 fps. This

is a modestly crowded scene including groups of pedes-

trians walking in queues. The challenges in this dataset

include long-term inter-objects occlusions, camera jitter-

ing, and similarity of appearance among the humans in the

scene. The tracking results for the Parking Lot dataset are

summarized in table 2.



Figure 6. Example tracking results using our method. Top row shows the Town Center sequence, middle row shows the Parking Lot

sequence, and the bottom row shows the Airport sequence.

Figure 7. Examples results of our dynamic occlusion handling approach. Top row shows the original image, and bottom row shows the

detected humans are their corresponding parts, where the occluded parts shown in red.

Table 2. Tracking results on the Parking Lot dataset.

TP TA DP DA

Ours/detection from [9] 73.7 77.1 73.8 77.5

Ours/our detection 74.1 79.3 74.2 79.8

Airport Dataset: The frame resolution in this dataset is

4000 × 2672, and the frame rate of 5 fps. This is a very

challenging real world scene with severe occlusions result-

ing from both static obstacles in the scene and inter-person

occlusions. Additionally, the humans’ appearance and pose

significantly change along the sequence because of the wide

field of view of the camera and the low frame rate. However,

our approach still achieved promising results on this dataset.

The tracking results for the airport dataset are shown in table

3. Note that TA is significantly higher using our detection

than using [9] on this dataset since it is more crowded, and

thus occlusions occur very frequently.

Finally, we analyzed the performance of our approach



Table 3. Tracking results on the Airport Sequence.

TP TA DP DA

Ours/detection from [9] 66.1 27.2 66.3 28.4

Ours/our detection 67.2 52.2 67.4 53.6
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Figure 8. The performance of our tracking approach using differ-

ent feature combinations.

using different feature combinations. Figure 8 demonstrates

the obtained results. Color and LBP are evidently the most

distinguishing features for all datasets.

6. Conclusion

We proposed an effective multiple-person tracking

method using part-based model and occlusion handling.

Our method captures rich information about individuals;

thus, it is highly discriminative and robust against appear-

ance changes and occlusions. We employ an extended

part-based human detector to obtain human part detections.

Consequently, distinguishing person-specific classifiers are

trained using the parts’ features and then employed to as-

sociate the detections with the tracking. We handle partial

occlusions through dynamic occlusion reasoning and pre-

diction across frames. We demonstrated by experiments

that our tracking method outperforms state-of-the art ap-

proaches in crowded scenes.
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