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Part-circular surface cracks in round bars under tension, 

bending and twisting 

A. LEVAN and J. ROYER 
Laboratoire de Mecanique des Structures, Ecole Centrale de Nantes. 1 rue de Ia Noe, Nantes 44072 Cedex 03, France 

Abstract. Circular-fronted cracks in round bars subject to tension, bending and twisting are considered. Numerical 

expressions are given allowing the calculation of stress intensity factors K., K1., Km at every point on the crack front 

for a wide range of crack geometries. Comparisons are made with analytical, experimental and numerical results 

available in the literature. Crack shapes satisfying the iso-K1 criterion are also determined, making it possible to 

investigate the problem of crack growth behaviour under tensile or bending fatigue loads. 

1. Introduction 

As cylindrical specimens are easily machined, components with a round cross section are 

commonly used in engineering structures. Bars, shafts, wires, reinforcements, bolts, screws or 

pins are examples of cylindrically-shaped structural elements. In many applications the loading 

conditions are quite complex. Under cyclic or repeated loads, fatigue cracks can occur in such 

components. Experimental works [1- 5] showed that surface cracks created by fatigue have 

approximately circular fronts. In order to predict the growth of such a crack and the strength 

of the cracked component, an accurate stress analysis is required. Under linear elastic 

conditions, this leads us to precisely calculate the stress intensity factors which govern the 

mechanical state in the structure. In the general case of a combined load, a mixed mode 

I + II + III situation exists along the crack front. As in any arbitrary three-dimensional 

configuration, the variation of stress intensity factors Kt. K11 , Km on the crack front must be 

taken into account. 

Several works have been devoted to the problem of a surface crack in a round bar. Table 1 

summarizes the main features of some studies relating to this problem. In Table 1, K1A denotes 

the stress intensity factor at the deepest point of the crack, K18 the stress intensity factor at the 

surface terminal point (intersection between the lateral surface and the crack front), K.1 the 

average stress intensity factor calculated on the crack front. Additionally, straight-fronted cracks 

are considered as particular cases of circular or semi-elliptical cracks. The bibliography, 

although representative, makes no claim to completeness - rather, it is a selection of the many 

references found in this field. 

In this paper, use is made of a boundary integral equation specifically developed for fracture 

problems [22] to determine the stress intensity factors K 1, K 11 , K 111 for circular-fronted cracks 

in a round bar subjected to tension, bending and torsion. Polynomial expressions are provided 

allowing the calculation of these stress intensity factors at every point on the crack front for a 

wide range of crack geometries. Crack shapes satisfying the iso-K1 criterion are computed, and 

the problem of crack growth behaviour under tensile or bending fatigue loads is discussed. The 

results are compared with other experimental and numerical results available in the literature 
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for mode I crack problems. Comparisons are also made with analytical results for some limit 

configurations. 

2. Formulation 

2.1. Geometry 

Figure 1 represents a round bar of radius R and height h ~ R containing in its median cross 

section a surface crack. The crack front is part of a circle of radius R'. When R' equals the crack 

depth a, the crack is a so-called semi-circular crack. On the other hand, when R' tends to 

infinity, the crack is referred to as 'straight-fronted'. Any intermediate crack geometry between 

the two above limiting cases can be defined by the crack shape parameter 11.- B0 B/B0 B 1 , 

ex E [0, 1] (Fig. 2). The computation is carried out on 4 crack shapes: 11. = 0 (semi-circular), !, 1 
and 1 (straight-fronted). The two intermediate cracks have been determined in such a way that 

they divide arc B0 N 1 into three equal sub-arcs. Six relative crack depths are considered: 

a/ R = 0.04, 0.12, 0.24, 0.40, 0.60, 0.85. Since there are 4 crack shapes for each crack depth, 24 

crack geometries are analyzed (Fig. 3). 

Fig. 1. Geometry. 

Fig. 2. Crack shapes defined by parameter :x. Fig. 3. Computed crack geometries. 
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2.2. Loads 

The bar is successively subjected at its ends to three loads (Fig. 4): 

• a uniform tensile stress a. 

• a linear tensile stress with outer fiber maximal value am . 

• a linearly distributed shear with outer fiber maximal value rm, resulting from torques twisting 

the bar. 

As far as stress intensity factor solutions are concerned, these loads are respectively equivalent to a 

uniform pressure, a linear pressure and an axisymmetricallinear shear applied on the crack faces. 

2.3. Equations of the problem 

The bar is assumed to be made up of a homogeneous, isotropic, linear elastic material 

characterized by Young's modulus E and Poisson's ratio v. For solving the problem use ts 

made of the integral equation given in [22]. Let us introduce the following notations: 

• x: field point with co-ordinates (x1 , x 2 , x 3 ) in a rectilinear rectangular system of axes 

Oe1 e2 e3 (Fig. 1) 

• x 0 : source point, r = II x - x 0 II, er = (x - x 0 )/r (Fig. 5) 

attftttf 
crm I 

~ 

alllllll ~ 
<Jm I 

c 

a b 

Fig. 4. Loads. (a) Tension. (b) Bending. (c) Torison. 

F.z~ 
~F,, 

, I X 

n Slat 

Fig. 5. Variables of the integral equation set. 
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• t(x0 , nx0 ): the stress vector at x 0 , related to normal Dxo· 

• s . 
cr· the surface of the crack, which is represented by a Cartesian parametrization 

the cylindrical lateral surface of the bar, which admits the parameterization 

Flat: Lllat = [0, 2rr[ X [- h, h] 3 (8, XJ)- X E slat· 

In fact, the lateral surface S1at also includes the upper and lower flat bases of the bar, and 

another surface must be added at the junction of the bases and the cylindrical surface (Fig. 6) 

in order to avoid any discontinuity of the normal vector on S1at· The outer surface of the bar is 

then sufficiently smooth as required by the theory. 

• <pcr:Scr3X-(/Jcr(X)EIR\ <plat:S 1 a 1 3X~<p 1 at(x)EIR
3

: the unknown densities defined respec

tively on Scr and S 1a1 , which are shown to be equal to the displacement jumps through the 

surfaces Scr and S1a1 respectively [23], [24]. 

• <l>cr = (/Jcr o Fen <l>lat = <plat o Flat (compounds of functions F and ({J). 

The set of equations of the problem can then be written in the following form, which ex

presses the stress vector at any point x0 and related to normal nxo, in terms of the densities <per 

and (J)Jat: 

( I ) 

Fiq. 6. Typical mesh modelling the cracked bar. 
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where Ker cr and Ker1a1 are the kernels defined by 

In relation (2), c:iik is the Levi-Civita symbol. The function F is defined by F: .L\ 3 (u1, u2 )-+ x, a, 

/JE{1,2} 

For Kercr : (u1, u2) = (xt. Xz), F = Fer• <I>= <l>cr> Dxo = e3 

For Ker1at: (u 1 , u2 ) = (8, x3 ), F = F 1at• <I>= <1>1at• nxo is the outward normal at the point x 0 to the 

lateral surface. 

The symbol pv before J indicates that the integral is understood in the sense of the principal 

value. 

Partial derivatives of any function f with respect to variables ui is denoted f .i· Implicit 

summation is made over any repeated index. 

The stress vector at the point x 0 is written in (1) as the sum of the surface intergals over the 

crack and the lateral surface of the bar. Eventually one has to solve the coupled set of equations 

(1) with unknowns q>cr and ({>tat· 

3. Numerical results 

For all numerical purposes, the Poisson's ratio vis taken as equal to 0.3. Both the crack and the 

lateral surface are discretized into finite elements and Eqns. (1) are solved by the collection 

method. Figure 6 shows a typical mesh modelling the cracked bar. Eight-node or six-node 

isoparametric 20 elements are used throughout the structure. Quarter-point elements [25] are 

specifically used along the crack front. Depending on the surface to which the element belongs, 

the geometry transformation and the interpolation of the density are performed with different 

variables [26]: 

- for elements belonging to the crack surface, the mapped variables through geometric 

transformation are Cartesian co-ordinates (x 1 , x 2)E ~cr and the interpolated functions are 

Cartesian components of ((>cr. q>~> q> 2 and q> 3 

- for elements belonging to the lateral surface of the bar, the mapped variables are cylindrical 

coordinates (8, x3 ) E ~Jat and the interpolated functions are here again Cartesian components 

of q>131 for simplicity. Cylindrical variables (8, x 3 ) allow us to shape the finite elements into 

curved elements fitting the cylindrical surface. However, this cannot be seen in Fig. 6 since the 

sides of the elements are represented by segments. 

The mesh covers the crack surface together with the lateral free surface. Of course, if the different 

loads were treated separately, then symmetries or skew-symmetries could be exploited in order 

to reduce the problem to the study of one quarter or one half of the bar, provided adequate 

boundary conditions are added. This approach is not chosen here for two reasons: first, the 

whole structure is preserved so that several loads can be applied simultaneously, thus requiring 

7



only one solution of the algebraic system. Secondly, the matrix of the system being fully 

populated and moreover non-symmetrical (as is the case with any boundary integral equation 

method), obtaining symmetrical or skew-symmetrical final results ensures the accuracy of input 

data. 

Eventually, the solution of the discretized equation of (1) provides the densities cpcr and cp 1a1, 

which in turn yield the complete elastic solution for the problem of the cracked bar, in particular 

the stress intensity factors can be evaluated along the crack front. Figure 7 shows the 

deformation of the lateral surface under a tensile load and of the crack under torsion. The latter 

is strongly emphasized in order to make it visible, explaining why some points on the crack seem 

to overlap the crack surface. 

The normalized stress intensity factors at any point located on the crack front are determined 

as follows, using the notations of Fig. 8: 

(a) Case of a uniform pressure on the crack (tensile load): 

~-K_,_ - I E 2 lim {(P3 {br} = 2rr,/Jjj lim { E ,2 cp/:_}' 
afo afo8(1 -v )p~o VP a,_jrra p-->O 16rr(l-\ )...;p 

( 3.1) 

a 

b 

Fiy. 7. (al Deformation of the lateral surface under tensile loading. (b) Deformation of the crack under torsion. 
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Fig. 8. Determination of stress intensity factors. p = Distance to the crack front. e,: in-plane normal to the crack front, 

outward with respect to the crack. er: in-plane tangent, er = e3 1\ e,.. 

(b) case of a linear pressure on the crack (bending load): 

1 E 1. { )¥n} _ 2nfo 1. { E .!1!.2_} 
2 Im <p 3 - Im 2 ' (Jmfo 8(1 - V ) p .... O p (Jmfo p .... o 16n(l - V ) JP (3.2) 

(c) case of a linear shear on the crack (torsion): 

1 E 1. { )¥n} _ 2nfo 1. { E ~} C -----,2=-- tm <fJv - C tm 2 r:, , 
Tmy na 8(1- v )p .... o p Tmy nap .... O 16n(l- v ) V p 

(3.3) 

_K-=m= _ 1 E lim {<p {hr_2n} = 2nfo (t _ v) lim { E _<fJ_t} 
rmfo rmfo 8(1 + v)p .... O t~P rmfo p-o 16n(1- v

2
) JP ' (3.4) 

where <fJv, <p0 <p 3 are components of <fJcr in the local basis (ev, e" e3 ) generally varying along the 

crack front (Fig. 8). 

It should be mentioned that relations (3) are taken just as definitions for series intensity factors 

without any assumption on the elastic state at the point of interest. Neither plane stress nor 

plane strain states, which are certainly predominant at the neighbourhood of the free surface or 

the deepest point of the crack, are assumed. The transition from one state to another will not be 

discussed in this paper. 

As shown by (2), solving (1) gives directly E/(16n(l - v2 ))<fJcr- the term bracketed together in 

(3) - explaining why it is unnecessary to specify the value of Young's modulus E when 

computing stress intensity factors. Figure 9 shows the stress intensity factors obtained for the 

geometry corresponding to aj R = 0.4 and a = l, versus the relative abcissa sfsm (Folio wing the 

notations in Fig. 1, s is the curvilinear abcissa of a point on the crack front, sm is arc length AB, 

sfsm = -1 at B', = + 1 at B). 

Thus, for each geometry, 4 discrete curves are obtained corresponding respectively to K1 in 

tension, K, in bending, K 11 and K 111 in twisting. As predicted, the K 1 value in the bending case is 

always smaller than that in tensile loading at homologous points on the crack front. As for K 111 

values, they are found to be negative for all geometries. The negative sign of K 111 is merely due to 

the fact that <p 3 equals the normal displacement at the upper crack face minus that at the lower 

face, and to the choice of the local basis orientation as shown in Fig. 8. 
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Fig. 9. Normalized stress intensity factors along the crack front. s = curvilinear abcissa, sm = arc length AB (see Fig. I). 

Now using the least square method, the set of discrete values of stress intensity factors 

obtained for the 24 computed geometries are fitted in the following polynomial form: 

K 3 3 (a)i ( s )k 
(a) in the tension case: fo = I I I C~W - ryJ - , 

(J rra i=Oj=O k=0.2.4. 6 R Sm 

K 3 3 (a)i (s)k 
(b) in the bending case: fo = I I I Cl~~l - ry) - , 

(Jm rra i=Oj=O k=0,2,4,6 R Sm 

(4) 

K 3 3 (a); ·( s )k 
(c) in the tension case: ):;;_ = I I I C~W - lf.

1 
- , 

r m rra i = 0 j = 0 k = 1' 3 R Sm 

I I I c~W) ~ ry_i .!... , 3 3 ( )i ( )k 
i=Oj=O k=0, 2.4. 6 R Sm 

where the Ciik coefficients are given in Table 2. All mean quadratic errors resulting from the 

fitting expressions (4) are about 1 percent, which is quite acceptable when compared to the 

accuracy of the finite element method. Expressions (4) should be used with crack depths of less 

than one-half diameter (0 ~ ajR ~ 0.9) and with lf.E [0, 1]. Figure 10 depicts the variation of 

normalized stress intensity factors K1 in tension and Kn in torsion as a function of the crack 

shape If. and the relative abcissa s/sm when the relative crack depth is 0.4. It is clearly shown that 

for nearly straight-fronted cracks (If. ~ 1) K1 is maximum at the deepest point of the crack 

(s/sm = 0), and for semi-circular cracks (If. ~ 0) the maximum value for K1 is reached in the 

neighbourhood of the free surface (ls/sml ~ 1). As for K 11 , it varies almost linearly with either If. or 

sf sm. 
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Table 2. Ciik coefficients 

j k C!'.p IJ C!' . ~' IJ C!}~' j k C!W 
for tension for bending for torsion for torsion 

0 0 0 0.66837E + 00 0.67003£+00 -0.48863 E + 00 0 0 - 0.12653E+01 

0 0 2 -0.12819£+00 -0.11851£+00 0.53272£ + 00 0 0 3 0.54361E+00 

0 0 4 0.65362£ + 00 0.62139£+00 -0.66724£ -01 0 1 1 0.28415£ +01 

0 0 6 -0.63476£ +00 -0.60142E+00 -0.12661E +00 0 1 3 -0.89110£+00 

0 0 0.14917£+01 0.14660£+01 -0.12523£ +01 0 2 -0.29326£+01 

0 2 -0.15181£+01 -0.14844£ +01 -0.60349£ +00 0 2 3 0.10159£+01 

0 4 0.17418£+01 0.17943£+01 -0.49469£ +01 0 3 1 0.11584£+01 

0 1 6 -0.36700£ + 01 -0.36828£ +01 0.70620£+01 0 3 3 -0.66930£ +00 

0 2 0 - 0.17108£ + 01 -0.16117£+01 0.15275£ + 01 1 0 1 0.81442£+00 

0 2 2 0.34585£ + 01 0.34011 E+01 - 0.16732£ +00 0 3 -0.14275£+01 

0 2 4 -0.11730£ +02 -0.11906£+02 0.17182£ + 02 1 1 -0.13862£+02 

0 2 6 0.14317£+02 0.14447£+02 -0.22195£+02 1 3 0.55863£+01 

0 3 0 0.67685£+00 0.61063£+00 -0.66148£ +00 1 2 l 0.12860£ + 02 
0 3 2 -0.22663£ + 01 - 0.22579E + 01 0.53588£ + 00 1 2 3 -0.21359£+01 

0 3 4 0.85036£ + 01 0.86794E + 01 -0.11410£+02 l 3 I -0.25711£+01 

0 3 6 -0.93203£+01 -0.94854£+01 0.14460£+02 1 3 3 -0.10148£ +00 

1 0 0 0.27839£-01 -0.47133£ +00 0.36699£ + 00 2 0 -0.15475£+01 

0 2 0.17235£+01 0.20042£ + 01 -0.43199£+00 2 0 3 0.22907£+01 

0 4 - 0.62703£+01 -0.57214£+01 0.18574£ + 00 2 1 t 0.23260£ + 02 

0 6 0.64590£ +01 0.57645£ + 01 -0.19042£+00 2 1 3 -0.87984£+01 

1 0 -0.81658£ +01 -0.80954£+01 0.55393£ +01 2 2 I -0.15307£+02 

1 2 0.17088E + 02 0.16657E + 02 -0.67371£ +01 2 2 3 -0.76504£+01 
1 4 -0.47996£ +02 -0.46863E+02 0.48886£ + 02 2 3 1 -0.23390£+01 

1 6 0.57275£ + 02 0.55311£ +02 -0.56251 E +02 2 3 3 0.10195£ + 02 
2 0 0.18184£+02 0.16158£+02 -0.10060£ + 02 3 0 1 0.98730E + 00 

2 2 -0.51812£ +02 -0.50220£+02 0.14305£+02 3 0 3 -0.16671£ + 01 
2 4 0.18923£+03 0.18476£ +03 -0.13617E +03 3 1 1 -0.13498£ + 02 
2 6 -0.20458£+03 -0.19806£+03 0.16139£+03 3 1 3 0.35067£ + 01 

3 0 -0.10094£+02 -0.85514£ +01 0.49413£+01 3 2 1 0.53723£ + 01 

3 2 0.34890£ + 02 0.33390£ + 02 -0.77503£+01 3 2 3 0.12547£ + 02 
3 4 - 0.13413£ +03 -0.13068£+03 0.82669£ + 02 3 3 0.44763£+01 
3 6 0.13902£ + 03 0.13465£ + 03 -0.99616£ +02 3 3 3 -0.12247£ +02 

2 0 0 0.37008£ + 00 0.43077£ + 00 -0.16124£ +00 
2 0 2 -0.48335£ +01 -0.43163£+01 0. 73697E-01 

2 0 4 0.18126£+02 0.15820£ + 02 0.44922£ + 00 

2 0 6 -0.18218£+02 -0.15788£+02 -0.11729£ +00 
2 0 0.15716£+02 0.15715£+02 -0.98606£ +01 
2 1 2 - 0.33545E + 02 -0.35751£ + 02 0.20672£ + 02 
2 1 4 0.94702£+02 0.10330£+03 -0.11358£+03 
2 6 -0.11449£+03 -0.11960£ +03 0.11944£+03 
2 2 0 -0.40103£+02 - 0.35295E + 02 0.19091£ +02 
2 2 2 0.11148£+03 0.11409£+03 -0.37027£ +02 
2 2 4 -0.40124£+03 -0.41823£ +03 0.27773£+03 
2 2 6 0.43253£ + 03 0.44272£ + 03 -0.30932£ +03 
2 3 0 0.23819£+02 0.19974£+02 -0.98142£+01 
2 3 2 -0.77165£+02 -0.77778£ +02 0.16355£+02 

2 3 4 0.29188£+03 0.30048E + 03 -0.15546£ +03 
2 3 6 -0.30135£+03 - 0.30666£ + 03 0.17910£ +03 
3 0 0 0.18566£ + 00 - 0.80054£-01 0.55516£-01 
3 0 2 0.40254£ + 01 0.31925£ + 01 0.56762£-01 
3 0 4 -0.13204£+02 -0.11411£+02 -0.34231 E+OO 
3 0 6 0.13326£+02 O.ll431E+02 0.97845E-01 
3 0 - 0.76417£+01 -0.84732£+01 0.55027£+01 
3 1 2 0.16116£+02 0.19953E +02 -0.14710£ +02 
3 4 -0.37988£ +02 -0.53843£ + 02 0.74788£+02 
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Tahlt! 2. con/d. 

j k '(Ill C\lt>l C\}~~ j k C\W ( ijk l jh 

for te nsion for bending fo r torsion for torsion 

3 6 0.50833E + 02 0.63937E + 02 -0.74985E + 02 

3 2 0 0.23886E + 02 0.2 1101 E+02 - 0.10877E+02 

3 2 2 - 0.59707E + 02 - 0.67447E + 02 0.24614E+02 

3 2 4 0.20396 E + 03 0.24084E + 03 -0.16937E +03 

3 
., 

6 - 0.22429E+03 - 0.25569E +03 O.l8007E+03 

3 3 () - 0. 13916E+02 -- 0.1 1863E+02 0.55202E +0 1 

3 3 2 0.42030E + 02 0.46641 E + 02 - 0.96793E + 01 

3 3 4 - 0.156l6E+03 - -0.17774E + 03 0.88809E + 02 

3 3 6 0.1621 1 E+ 03 0.18102E +03 --0.98112E + 02 

I a/R=0.4l 

a 
a 

a 
I a/R=0.41 

b 

Fiy. 10. Stress intensity factors as a functio n of the c rack shape Y. and the rela ti ve abcissa s;'s.,,. (a ) Normalized K1 in 

tension. (b) Norma lized K 11 in torsion. 

12



3.1. Stress intensity factors versus crack depth 

Here, consideration will be limited to the deepest point where the stress intensity factors are 

given from (4) by putting s/sm = 0 

KA "" (a)i . C = L, L, Cijo R ex/, 
(Jv nu i j 

(5) 

where K stands forK,, K 11 or K 111 and CJ also stands for CJm or Tm · Figure 11 shows normalized K" 

K 111 at the deepest point of the crack resulting from the basic loads - tension, bending and 

torsion- versus the relative crack depth a/R. Factor K 11 is not plotted since it is identically zero 

at s = 0. For each load there are four K, or K 111 curves which relate individually to one crack 

shape, ::x = 0, ·!, 1 or 1. It can be seen that the stress intensity factors vary continuously with the 

crack shape but they are not necessarily monotone functions of the crack depth. For instance in 

Fig. lla, the lower and upper curves related respectively to the semi-circular (a = 0) and the 

straight-fronted crack (::x = 1) show that normalized K,A increases with crack depth a, whereas 

the intermediate curves (::x =! and a = 1) indicate that K,A, which certainly increases with a, 

2.5 ls=ol I s=O I 
KIA 

1.25 

crma 
2.0 

KIA 
1.0 

1.5 
crrn fffii 

0.75 

1.0 
0.5 

C.!t 

~ 
0.25 

0.0 
0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.8 
0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 o.a 0.8 

aiR a/R 

0.0..,.------------------, 

0.0 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.8 

a/R 

Fig. 11. Normalized stress intensity factors versus the relative crack depth. (a) Tension. (b) Bending. (c) Torsion. 
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decreases for small crack depths when normalized by a~. It appears from Figs. 11a and b 

that when a/ R takes the limit value zero, K1 at the deepest point takes almost the same value for 

the crack shapes a = 1 and !. This would mean that, despite the notable change in radius of 

curvature - R' falling off from infinity when r:t. = 1 (straight-fronted crack) to a finite value when 

a = t - the stress intensity factors remain almost unchanged. In this respect, one can readily 

establish the limit value for radius R' when aj R tends to zero, the radius R of the bar and crack 

shape IJ'. being kept constant 

(}.2 

lim R' = 2 R. 
a/R--+0 J - 'Y. 

(6) 

Relation (6) gives both trivial results - for a = 1, R' tends to infinity and for r:t. = 0, R' tends to 

zero- and rather non-obvious results: for r:t. = iR' tends to R/8 = 0.125R and for 'Y. = fR' tends 

to 4R/5 = 0.8R, as shown in Fig. 12. 

3.2. Stress intensity factors along the crack front - Application to the crack 

growth behaviour problem 

Figure 13 plots the normalized stress intensity factors versus relative abcissa s/sm along the crack 

front, for the relative crack depth aj R = 0.4. Figure 13a shows more visibly than Fig. 10 that in 

the case of a tensile loading, the curvature of the K1 curve changes in sign when passing from the 

semi-circular crack ('Y. = 0) to the straight-fronted one (a = 1). Meanwhile, in this instance when 

'Y. is approximately -1, a crack shape can be observed such that K1 remains virtually constant 

along the crack front. This means that if the iso-K1 criterion is chosen to predict the propagation 

of cracks created under mode I fatigue, the actual shape is that corresponding to 'Y. = -t. 
Likewise, Fig. 13b shows that under a bending load the iso-K1 propagation criterion in this 

instance leads to the shape corresponding to 'Y. = j. 

More precisely, for a given crack depth, the crack shape satisfying the iso-K 1 criterion can be 

computed in the following manner. Bearing in mind that R, a and a are constant, deriving 

a=l. 
- - - - - - - - -;::_~_=:J~,_....f-.r-,JC#C::..::=-_·- - - - - - - - - R I --) 00 ,__...,.,. ~ , ' '~ ....... 

~ I '" ' 

/ .,. . R'= R/8, ~ ;' 'q.~ 
/ '~ / ,. 

/ R~ 

~~~ 

Fiy. 12. Limit values of crack radius R' fo r very shallow surface cracks. 

14



I •. Oy---------------~ 

1.25 

0.1 

0.1 

1.0 

0.7 l/3. 

0.7S 0. 

_!S_ 
crma 0.4 

0.5 

0.3 

0.25 \ a/R=0.4j 0.2 I a/R=0.4! 
0.1 

o.o-h-r-rrTT"I.......-...,..,.'T"T"I.......-...,..,......,..,:-r-r,....,...,.""I""T"'rT"T"1'"T"T...........-i 
·1.0 -4.7S -4.5 -o.25 0.0 0.25 0.5 0.7S 1.0 ~ - ~ .().25 ~ ~ ~ ~ u 

s/s,. s/Sm 

0.7$ \ a/R=0.4j .0.1 I a/R=0.41 
0.5 

.0.2 

0.25 
.0.3 

__!StL_ 
-c ma-o .• 

m 

.0.25 
.0.5 

.0.6 

I. 
-o.JS 

.0.7 

·t.o -o.7S -o.s -o.25 o.o a.25 o.5 o.JS 1.0 ·1.0 .O.JS .0.5 .0.25 0.0 0.25 0.5 0.7$ 1.0 

S/Sm S/Sm 

Fig. 13. Normalized stress intensity factors versus the relative abcissa on the crack front. (a) K1 in tension. (b) K1 in 

bending. (c) K11 in torsion. (d) Km in torsion. 

expression for K1 given in (4) with respect to the relative abcissa s/sm yields 

a K ( a )i ( s )k- 1 

( 

1

) = afo~ ~ I kCiik R a/ -a .!__ I 1 k :;;. 1 Sm 

Sm 

(7) 

As it is clear that the derivative of K, cannot be identically equated to zero for all values of 

s/sm E [ -1, 1], the solution crack shape rx is such that it minimizes max II aKtfa(sfsm)ll, i.e. rx is the 

solution of the min-max condition 

(a)i ·( s )k-t 
min max II I kCiik - rt.

1 
-

ae[O, l] s/sme[ - 1 . 1] i j k ;;. l R Sm 

(8) 

In order to outline the crack propagation during mode I fatigue, (8) is approximately solved and 

the results obtained are within 5 percent accuracy. Table 3 lists the solution crack shapes rx for 

the relative crack depths aj R considered in this paper. 

Figure 14 compares the crack shapes predicted by the iso-K, criterion with those of the cracks 

intersecting the free lateral surface at 90° angles. The latter cracks will be referred to, for brevity, 
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Tahle 3. Crack shapes verifying the iso-K 1 criterion. Comparison with right angle cracks 

a/R 0.04 0.12 0.24 0.40 0.60 0.1<5 

lso-K1 Y. 0.0~ 0.06 0.14 0.30 0.42 0.70 
criterion in 

TENSION R',·R 0.048 0.147 0.331 0.694 1.1 72 2.940 

Iso-K, :X 
I 

0.04 0.10 0.29 0.47 (}59 0.70 
criterion in 

BENDING R':R 0.05 1 0.161< 0.481 1.028 1.756 J.o97 

Right 

intersecting 'l. 0.003 0.02 ().()7 0.17 0.36 0.73 
angle 

criterion R'/ R 0.04! 0.1 28 0.278 0.533 1.050 J25X 

a - tensile fatigue b - bending fatigue 

iso-K1 criterion 

- - - -- right intersecting angle criterion ('V=90°) 

Fiq. 14. Predict ion of crack growth under mode I fatigue. 

as 90c (intersecting) angle cracks. For such cracks, 1/J = 90(; (Fig. I) and one can readily prove 

that the crack radius R' is related to the radius R of the bar and the crack depth a by the relation 

, a(2R - a) 
R = -----. 

2(R - a) 
(9) 

It can be observed that the difference between iso-K, cracks and 90: angle ones is fairly small in 

the case of tension (Fig. 14a) whereas this difference becomes notable for medium-sized cracks 

under bending (Fig. 14b). This would mean that in tensile load fatigue tests, cracks verifying the 

iso-K, criterion are almost 90" angle cracks, while in bending fatigue tests this is true only for 

cracks with very small or very la rge depths. It should be remembered that this assessment has 

been made with v equal to 0.3, and that the study of the influence of Poisson's ratio on the shape 

of cracks created by fatigue, which would not be negligible. is beyond the scope of this work . 
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Figures 15, 16 show the change in shape as the crack depth increases during the propagation. At 

the crack initiation, the crack is almost semi-circular. The further it grows up, i.e. the more the 

crack depth increases, the more it resembles a straight-fronted crack. Also represented in Figs. 15, 

16 are the following stress intensity factors for a 90° angle crack: K 1 at the deepest point 1 (in this 

case it is the minimum K, on the crack front) and the average K1 denoted by K1 

(10) 

It is clearly shown in Fig. 15 that for 90° angle cracks under tension, K1A is approximately K, 
(the curves e and fare quite the same) and again one can recognize that 90° angle cracks verify 

the iso-K 1 criterion. On the other hand, Fig. 16 shows that in the bending case, 90° angle cracks 

verify the iso-K1 criterion only for ajR ~ 0 and ajR ~ 0.9. 

Figures 13c and 13d show the stress intensity factors K 11 and K 111 arising from a twisting 

moment applied at the ends of the bar. As already mentioned, K 11 varies almost as a linear 

function of the curvilinear abcissa s. On the other hand, for all crack shapes the absolute value 

of K m is maximal at the deepest point. In any case, the aspect of K 11 and K 111 curves are little 

influenced by the crack shape, contrary to what happens to K 1• Regarding the crack propaga

tion behaviour with the presence of anti-plane shear, experimental investigations in pure mode 

III by [27] clearly show that the crack no longer grows by extending in its own plane but by 

Fig. 15. Normalized K1 in tension at the deepest point and average normalized K1 for different crack shapes. 

Comparison with K1 computed from the iso-K1 criterion. (a) K1 at the deepest point for semi-circular cracks. (b) Average 

K1 for semi-circular cracks. (c) K1 at the deepest point for straight-fronted cracks. (d) Average K1 for straight-fronted 

cracks. (e) K1 at the deepest point for right angle cracks. (f) Average K1 for right angle cracks. (g) K1 for cracks verifying 

the iso-K1 criterion. 
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Fig. 16. Analogous to Fig. 15, the loading is now a bending. 

generating multiple penny-shaped cracks which straddle the original crack front. The study of 

the crack deviation in a bar under torsion must be even more difficult at the points on 

the front, where Kn and K 111 take comparable values. Similarly, under combined tensile and 

anti-plane shear loading (mode I + III), the crack grows by developing multiple lance

like fracture facets surrounding the crack front, as shown in [28]. These observations 

should be taken into account when the crack instability is studied under general loading 

conditions. 

Lastly, it is noteworthy that the provided stress intensity factors values are valid only over 

about 80 percent of the crack front length. The K values for sfsm approaching + 1 are affected by 

phenomena extraneous to the present work, such as the vicinity of the surface terminal points B 

or B' (Fig. 1) that modifies the crack tip singularity. Also, the poor refinement of the finite 

element mesh around these zones must lower the accuracy of the numerical results. In any event, 

the results obtained in [29] prove that the crack tip singularity at the surface point depends on 

the Poisson ratio v and the terminal point incident angle 1/J (see Fig. 1) between the crack front 

and the surface line BB'. For a given value of v, there exists a limiting value of 1/J for which the 

stress intensity factor K1 tends to a non zero finite value. If 1/J is less than this limit value, K 1 falls 

off to zero and if 1/J is greater, K1 becomes infinite. In both cases K, classically defined loses its 

physical meaning. 

4. Comparison with theoretical results 

No theoretical results are available for surface cracks in round bars. However, stress intensity 

factors at the deepest point (point A in F ig. 1) of very shallow straight-fronted cracks can be 
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effectively compared with analytical solutions for the single-edge crack in the half-space. This is 

due to the likeness between the latter geometry and the crack configuration viewed from point A 

when aj R tends to zero. 

4.1. Bar under tension 

The theoretical value for an edge crack of length a under a uniform pressure (J is given by Koiter 

[30] 

K 1 = 1.1215(J~. 

On the other hand, making a/R tend to zero in (5) gives 

I. KIA - '\' c<It> j 
Im c_- ~ OjOCX, 

ajR-+0 (JV 1ta j 

which yields the limit value of normalized K1 at deepest point A of straight-fronted cracks 

lim fo ~ L cgyo ~ uz6. 
aj R-+O,rz= 1 (J na j 

(11) 

(12) 

(13) 

This value agrees well with the theoretical value (11) within an error of +0.4 percent. As regards 

the limit value of K1A for semi-circular cracks when ajR tends to zero, one expects it to be 

greater than the theoretical value 2/n = 0.6366 for the penny-shaped crack embedded in the 

infinite body, as is easily explained by the presence of the free lateral surface of the bar which 

must allow a wider crack opening, thus a greater K1A· Indeed, here the limit value for 

semi-circular cracks is found to be 0.668, which is about 5 percent higher than the foregoing 

analytical value 2/n. 

Further, deriving expression (5) gives 

lA _ . (It a i a 
( 

K 

) ( )

i-1 

a(a/R) (Jfo - i ~1 ~ rC,i~ R a . 
(14) 

Hence the slopes at ajR = 0 of the normalized K1A curves are 

I. a ( KIA ) c<H> o 028 - 1 20 
1m a( /R) C. = 1 oo = . = tan 

afR -+O ,rz = 0 a (J V na 
(15) 

(16) 

respectively for semi-circular and straight-fronted cracks. These are quite small values that 

compare well with the zero slope drawn from relation (11), lim a(Kd(J fo)/a(a/R) = 0. 
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4.2. Bar under bending 

From Table 2 one obtains the limit value of normalized K 1 at deepest point A of straight-fronted 

cracks in the case of bending load 

( 17) 

This agrees well with Koiter's theoretical value [30] which is also valid in the bending case, 

within an error of + l percent. Note that the slopes at a/R = 0 for semi-circular and 

straight-fronted cracks can also be computed in a similar way as in tensile loading 

lim a ( K, ~) = C\'gb = - 0.471 = tan- 1
( -25"), 

a! R -+ 0.2 = 0 o(aj R) amJna 
( 18) 

lim 
2 

( K'';-) = "LC\'J6 =- 0.961 = tan - 1(- 44"), 
a/R-+0,7 = l o(a/ R) ()myna J 

( 19) 

although no easy comparison with theoretical values is possible to our knowledge. 

4.3. Bar under torsion 

Lastly, consider an edge crack of length a in the semi-infinite space, subjected to a uniform shear 

r parallel to the crack front. The a nalytical result for the problem is given in [31] 

r;--: 
K, 11 = - Ty'(rra). (20) 

Applying the same reasoning to (5) as in proving (13), one obtains 

lim KIIIA = L cg~~ = - 0.875. 
a/R -+ 0 .. 7= 1! f;;z 

1
· mv 

(21) 

This value is 13 percent higher than the theoretical value - I. The difference can be accounted 

for by the fact that the shear is in-plane stress. In Fig. 17, the hatched area represents the 

a b 

Fiq. I 7. Difference between the problem of a crack in a round bar and that of an edge crack in the semi-infinite body. 
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difference between the problem of a shallow crack in a round bar and that of an edge crack in 

the semi-infinite medium. In mode I problems, the applied stresses are normal to this area and 

their effect can be neglected around the deepest point A of interest. On the contrary, in mode III 

problems the stresses are parallel to the crack front, hence they may have some influence on K 111 

at point A though applied on an area geographically remote. 

5. Comparison with experimental results 

Available results in the literature are mainly concerned with mode I and points A, B on the 

crack fr~ .. ~ (Fig. 1). Sometimes, K1 is even assumed to be constant on the crack front so that 

only the average value is considered. Therefore, the somparison with either experimental or 

numericai results can be made only in the tension and bending cases. Also, as discussed above, 

stress intensity factor values at the surface terminal point B will be discarded and only the values 

at the deepest point A- or the average values whenever they are given - are compared. We shall 

denote the diameter of the bar by D, D = 2R. 

5.1. Bar under tension 

Figure 18 compares K, value of the present work with other authors' experimental values which 

are summarized below. 

• Straight-fronted cracks 

By the compliance method Daoud et al. [7] give the average normalized K, for straight-fronted 

crack 

(22) 

Table 4 gives the normalized K1 at the deepest point A by photoelasticity determined by Astiz 

et al. [8]. In fact, the value 1.85 corresponding to aj D = 0.45 in this table will not be retained 

here as it is unreliable according to [8]. 

Bush [9] gives the compliance expression c in terms of the relative crack depth a/D 

c = 0.0598723 + 0.2680344(;r· + 0.2508381 (;r + 39.43071 (;f. (23) 

which provides the average normalized K, via the following relation 

K, fi ( E D l de )o.s 
a fo = A l - v

2 
4 [a/D - (a/ D)

2
]

0
·
5 d(a/D) 

4 -
D 

(24) 
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Fig. 18. Comparison with experimental results for K1 in tension: -8-- : Daoud ct al. [7]. e : Astiz et al. [8]. - + - + 
Bush [9]. - -G--G- - : Wilhem et al. [4]. ~- : Forman et al. [5] , [32]. -- : Present results (a) Average K1 for 

semi-circular cracks. (b) Average K 1 for right angle cracks. (c) Average K1 for straight-fronted cracks. (d) K1 at the deepest 

point for straight-fronted cracks. 

The unity for compliance c in (23) is 10- 6 injlbf, Young's modulus in (24) is 10.6 x 106 psi, and 

D = 3 in. Attention should be drawn to the fact that in [9] the Poisson ratio is 0.32 and not 0.3 

as assumed throughout this paper. However, the results are expected to be close enough to be 

comparable. 

• Cracks intersecting the lateral surface at right angles (t/1 = 90°, Fig. I} 

A special fatigue marking technique to outline the crack propagating allowed Wilhem et a l. [ 4] 

to express the normalized K, for right angle cracks, constant along the crack front, as 

K, a (a) 2 (a)3 C.= 0.690-0.197 - + 2.394 - + 1.965 - , 0.15 < ajD < 0.45. 
(Jv na D D D 

(25) 

Experiments conducted on fatigue cracks led Forman et al. [5], [32] to approximate the same 

quantity as 

K, 2 
c: = 0.92 -

(Jy ILU 1t 

na 
tan-

2D 

na 

2D 

1 [ a ( . na) 3

] 0.752 + 2.02- + 0.37 1 - sm - . 
na D 2D 

cos -
2D 

(26) is reported as having good accuracy for a/D ~ I, reasonable accuracy for a/D < t. 

(26) 
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Table 4. Normalized K1 at the deepest point of straight-fronted cracks [8] 

a/D 0.45 0.21 0.30 

1.85 1.10 1.45 

0.39 0.41 

1.63 1.77 

0.46 

1.91 l st series 

2nd series 

0.06 

1.15 

0.95 

0.12 

1.02 
1.23 

0.31 

!.58 

1.41 

0.42 

1.89 

1.69 

Fig. 19. Comparison with experimental results for K 1 in bending: --8- : Bush [6]. - + - + - : Forman et al. 

[5]. :Present results (a) Average K 1 for semi-circular cracks. (b) Average K1 for right angle cracks. (c) Average K1 

for straight-fronted cracks. 

Figure 18 shows a good agreement between different results for small crack depths. Regarding 

large crack depths, other workers' results relating to 90° angle cracks are rather closer to present 

K1 for semi-circular cracks. As for straight-fronted cracks, the discrepancy becomes notable for 

large crack depths too. 

5.2. Bar under bending 

• Straightjronted cracks 

By means of compliance measurements Bush [6] provides the following equation for calculating 

the average stress intensity factor in the case of bending load 

(27) 
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where the compliance c is determined by either expression 

c = 4.338749 + 23.66921 (~) 
2

' + 131.0767 (~ r oo-• injlbf). (28) 

c = 0.2910587 + 2.54535 (~ )'' oo-• in/lbf). (29) 

Here again, E = I 0.6 x 106 psi. and v = 0.32. Relation (28) is used with diameter D = 3 in, 

relation (29) with D = 6 in. In both relations, length I is about 10 in. 

• Cracks intersecting the lateral swface at right angles 

Experiments conducted on fatigue cracks led Forman et al. [5] to the following approximate 

expression for the normalized K1 constant along the crack front 

K, 2 
- - ,....-- = 0.92 -
(}m)na n 

na 
tan -

2D 

na 

2D 

1
na[0.923 + 0.199(1- sin;~)] 

cos - · 
2D 

with the same accuracy reported above for the bar under tension. 

(30) 

• The comparison with all the available results for the bar under bending are shown in Fig. 19. 

For 90c angle cracks, a good agreement is observed at small crack depths only. As the crack 

depth increases, the experimental curve is rather closer to ours computed for semi-circular 

cracks. This remark agrees with Caspers et al.'s [19] following which 'the theory of perpendicu

lar angles between crack front and shaft circumference seems to be approximately correct for 

pure bending up to an aj R-ratio of 1.0, but does not seem to be so applicable for tension, 

especially for increasing a/ R-ratios'. 

Concerning the straight-fronted cracks, the computed curve is within the range of Bush's 

experimental ones. Lastly, it should be mentioned that straight-fronted cracks do not exist 

naturally and they are actually very difficult to obtain in experimental works. In most cases, a 

sharp notch was machined to simulate the crack [6- 9]. As the machined notch must be wider 

for a larger notch depth, it is unlikely to be comparable with a real crack. This should explain 

why the results agree less for large crack depths. 

6. Comparison with numerical results 

Here again, the comparisons are made in tension and bending cases. Moreover, only the K 1 at 

the deepest point or its mean value is reported. 

6.1. Bar under tension 

Figure 20 shows all the numerical results for the case of a tensile load. Astiz [ 18] considered 

semi-elliptic cracks with axes a, h. The normalized K1 factor at the deepest point A is given as a 
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Fig. 20. Comparison with other numerical results for K 1 in tension: ---8-···· : Daoud et al. [7]. e : Raju et al. [16]. 

- + - + : Astiz [18]. - B-: Caspers eta!. [19]. --:Present results (a) K 1 at the deepest point for semi-circular 

cracks. (b) Average K 1 for straight-fronted cracks. (c) K1 at the deepest point for straight-fronted cracks. 

polynomial function of the crack depth ajD and the aspect ratio ajb 

KIA _ I ± cij (.9:_)i(~)j· 
(]Fa i=O,i#l j=O D b 

(31) 

The configurations which are comparable with those considered in this paper correspond to 

ajb = 1 (semi-circular cracks) and ajb = 0 (straight-fronted cracks). 

Investigating part-circular cracks, Caspers et al. [ 19] also gives normalized K1 at the deepest 

point in the polynomial form 

K lA = L I, CV) az ' ~ J 4 5 ( )"( )" (]Fa i = 0 j = 1 IJ R 1t , 
(32) 

where az =a- R(l -cos 8), (J is the angle at the centre sustended by the arc BB' (Fig. 1). 

Raju et al. [16] considered nearly semi-elliptical cracks such that the crack front intersected 

the lateral surface of the bar at 90° angles. It should be noticed that the so-called crack length in 

Tah/e 5. Normalized stress intensity factor at the deepest point [16] 

ajD 0.050 0.125 0.200 0.275 0.350 

'2 K I c 7T.j X IA / <Jy 7T.a tensile load 1.012 1.015 1.038 1.087 1.175 

bending load 0.938 0.836 0.749 0.683 0.629 
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this reference is defined as the arc length measured along the cylindrical surface and not as 

the major axis of the (nearly) elliptic crack. Thus the results of this reference for ajc = l 

must be compared to others keeping in mind the difference between the analyzed geo

metries. The normalized stress intensity factor at point A for ajc = I are listed in 

Table 5. 

• Straight-fronted cracks 

Daoud et al. [7] computed K 1 assumed to be constant along the crack front 

K1 a (a) 2 (a) 3 (a)4 

-----=~= = 1.11- 3.59- + 24.87 - - 53.39 - + 57.23 - , 0.06 ~ ajD ~ 0.7. aJna D D D D 
(33) 

6.2. Bar under bending 

Figure 21 shows all the numerical results for the case of a bending load. The normalized K 1 at 

point A for ajc = I from Raju et al.'s work [16] is given in Table 5. 

Considering a lateral bending load, Caspers et al. [19] express K1 at the deepest point in the 

same polynomial form as for tension load 

(34) 

1.5 
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1.25 G G KaA ..__ 

~ 
1.0 

"'0 
Q.) 

N 
0.75 ·--~ 

E --o--o--0 
8 ":··:&--~-&--0~ a-

0 • z 0.5 • • KIA • 

0.25 Q 

a/R 

Fig. 21. Comparison with other numerical results for K1 in bending: 0 :Daoud et al. [14]. e: Raju et al. [16]. 

0 :Caspers eta!. [19]. ---- : Present results (a) K1 at the deepest point for semi-circular cracks. (b) Average K1 

for straight-fronted cracks. (c) K, at the deepest point for straight-fronted cracks. 
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Table 6. Normalized K1 at the deepest point for a semi-circular crack in the half-space under tensile load. In parentheses: 

value given in the bending case. 

Percent difference =(present result/ referenced result - I) x 100 

Reference Smith et al. Newman Nisitani et al. Newman et al. lsida et al. Present 

(1967) [33] (1973) [34] (1974) [35] (1981 ) [36] (1984) [37] result 

KIA!(JJ(rra) 0.656 0.656 0.636 0.662 0.659 0.668 

(0.662) (0.659) (0.670) 

Difference 2 2 5 1.4 

(percent) 

It should be mentioned that in [19] the linearly distributed stress is zero at the deepest point 

level (x 1 = - R +a, Fig. 1) and not at the diameter level (x 1 = 0). An adequate combination of 

(32) and (34) must be carried out to obtain the results for the bending case. 

• Straight-fronted cracks 

Daoud et al. [14] computed the average K, over the crack front 

"m}a = 1.04-3.64 ~ + 16.86(~)' _ 32.59(~)' + 28.41 (~r 

0.0625 ~ a/D ~ 0.625. (35) 

• Figures 20 and 21 show a good agreement between different numerical results concerning 

semi-circular cracks, both in tension and bending cases. As regards straight-fronted cracks, the 

results agree well only for small crack depths. It should be mentioned that KrA values for 

straight-fronted cracks given in [19] are rather low and thus are closer to K1• 

• Limiting configuration of very small semi-circular cracks 

Let us now consider the limiting case when the radius of the semi-circular crack R' = a tends 

to zero. The limit value of K1 at the deepest point A is found to be 0.668 and 0.670, 

respectively, for the tensile and bending load. On the other hand, since this value must be the 

same as for a semi-circular crack in the half-space, it can be compared to the limit values 

obtained by earlier investigators treating the half-space problem. Table 6 shows that the 

differences are really small, except for Nisitani et al.'s value which amounts to 5 percent above 

the present result. 

7. Conclusion 

The obtained results have brought additional information to the problem of the elastic cracked 

bar, especially in mode I. A methodical use of integral equations has proved efficient in that it 

allows the following possibilities: 

- the computation of stress intensity factors at any point of the crack front (except for the 

surface terminating points), 

- the simultaneous study of modes I, II and III, 
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- the polynomial fitting of numerical values providing the stress intensity factors as functions of 

three geometrical parameters: the crack depth a, the crack radius R' and the abscissa s 

measured on the crack front, 

- the results applicable to three basic loads: tension, bending and torsion. 

Limiting values of stress intensity factors when the crack depth tends to zero have been found to 

be in full agreement with the theoretical values for the half-space problem. Furthermore, the 

numerical values have been compared with both experimental and numerical results available in 

the literature, which are mainly concerned with the opening mode. A good agreement between 

the different results has been observed for small crack depths. Nevertheless, for large crack 

depths for factor K, increases more rapidly than others. The discrepancy is the more important 

for straight-fronted cracks. 

Since no comparison is possible in modes II and III, it is assumed that the computation which 

is validated in mode I, also gives acceptable results for other modes. In fact, tests conducted on 

problems having known analytical solutions have shown that the numerical accuracy is higher 

in mode I problems than in others. 

The polynomial fitting of the results has allowed a rapid and accurate calculation of the stress 

intensity factors as a function of the crack configuration and the applied loads. Also, the 

knowledge of these factors all along the crack front has made it possible to investigate either 

elastic fracture criteria or the fatigue crack growth behaviour. As an application of the results, 

the crack shapes verifying the iso-K1 criterion have been computed in mode I fatigue problems. 

Of course, the obtained results are not influenced by the Young modulus value but they do 

depend on Poisson's ratio v as shown by the governing equations (I) and (2). The computation 

has been carried out with v equal to 0.3. 

The effect of Poisson's ratio upon the crack shape can be investigated as an extension of the 

present work. Besides, the proposed integral equation formulation can be applied without major 

modifications to the problem of thick-walled cylinders containing through- or part-through 

cracks. 
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