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PART II: ON THE USE, THE MISUSE, AND THE VERY LIMITED USEFULNESS OF
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Prior to discussing and challenging two criticisms on coefficient α, the well-known lower bound to
test-score reliability, we discuss classical test theory and the theory of coefficient α. The first criticism
expressed in the psychometrics literature is that coefficient α is only useful when the model of essential
τ -equivalence is consistent with the item-score data. Because this model is highly restrictive, coefficient
α is smaller than test-score reliability and one should not use it. We argue that lower bounds are useful
when they assess product quality features, such as a test-score’s reliability. The second criticism expressed
is that coefficient α incorrectly ignores correlated errors. If correlated errors would enter the computation
of coefficient α, theoretical values of coefficient α could be greater than the test-score reliability. Because
quality measures that are systematically too high are undesirable, critics dismiss coefficient α. We argue
that introducing correlated errors is inconsistent with the derivation of the lower bound theorem and that
the properties of coefficient α remain intact when data contain correlated errors.

Key words: classical test theory, coefficient α, correlated errors, Cronbach’s α, discrepancy of parameters,
estimation bias of coefficient α, factor-analysis approach to reliability, reliability lower bounds.

In a much-cited discussion paper in Psychometrika, Sijtsma (2009; 2,415 citations in Google
Scholar on 17 May 2021) argued that two misunderstandings exist with respect to coefficient α

(e.g., Cronbach, 1951; 51,327 citations, from the same source). First, contrary to common belief,
coefficient α is not an index of the internal consistency in the sense of a substantively coherent
measure of the same ability or trait. Rather, coefficient α approximates reliability of a score
irrespective of the score’s composition. Second, it is little known that coefficient α is a lower
bound to the reliability, and that greater lower bounds exist that may be preferable. Based on these
observations, Sijtsma (2009) diverted the overwhelming attention for coefficient α to alternative
approaches approximating test-score reliability. His take-away message was:

Use α as a lower bound for test-score reliability or use greater lower bounds, but do not use
α for anything else.

This message leaves a role for coefficient α, but it has not stopped other authors from pouring
criticism over coefficient α up to a degree that does not do justice to its usefulness, even if that
usefulness is limited (e.g., McNeish, 2018, and Revelle &Condon, 2019, provide overviews; also,
Sheng & Sheng, 2012). Given what we consider an unjustified flow of criticism, we think there
is room for an article that separates further misunderstandings about coefficient α from what it
really is.
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In this article, we dissect and reject two frequently presented criticisms on coefficient α that
Sijtsma (2009) did not discuss and argue that the criticisms are incorrect. First, we reject the
claim that coefficient α is only useful if the items in the test satisfy the mathematical model
of essential τ -equivalence (Lord & Novick, 1968, discussed later; e.g., Cho, 2016; Cho & Kim,
2015; Dunn, Baguley, & Brunsden, 2014; Graham, 2006; Teo& Fan, 2013).We argue that models
are idealizations of the truth and by definition never fit the data perfectly. Hence, the claim that a
misfitting model of essential τ -equivalence invalidates the use of coefficient α is reasonable only
when one is prepared to reject all results that models imply, a conclusion we expect researchers
will rarely entertain. Instead, we will argue that under certain reasonable conditions, coefficient
α is a useful lower bound to the reliability irrespective of the fit of the model of essential τ -
equivalence. Second, we discuss the claim that theoretically, coefficient α can be greater than
the reliability (e.g., Cho & Kim, 2015; Dunn et al., 2014; Green & Hershberger, 2000; Green &
Yang, 2009; Lucke, 2005; Teo & Fan, 2013) and argue that this claim is incorrect. To freshen up
memory, before we discuss these criticisms and draw conclusions, we start with some theory for
coefficient α.

The outline of this article is as follows. First we discuss the basics of classical test theory
(CTT), including relevant definitions and assumptions, reliability, coefficient α, and the theorem
that states that alpha is a lower bound to the reliability. Next, we discuss the discrepancy of
coefficient α relative to CTT test-score reliability including a discussion of discrepancy from
the factor-analysis (FA) perspective, and an examination of the bias in sample estimate α̂ with
respect to both parameter α and the test-score reliability. Second, we critically discuss the claims
regularly found in the literature that coefficient α is only useful if the items in the test satisfy
essential τ -equivalence and that theoretically, coefficient α can be greater than the reliability. We
argue that both claims are incorrect. Finally, we summarize the valid knowledge about coefficient
α.

1. Theory of Coefficient α

Until the 1950s, the dominant method for determining test-score reliability was the split-
half method. This method entailed splitting the test into two halves, computing the correlation
between the total scores on the test halves as an approximation for the reliability of a test half, and
then choosing a correction method for estimating the reliability of the whole test. This method
was problematic for two reasons. First, one could split a test in two halves in numerous ways,
and even though some rules of thumb existed for how to do this, an undisputed optimal solution
was unavailable. Second, given two test halves, several correction methods were available for
determining the whole test’s reliability, but agreement about which method was optimal was
absent. Amidst this insecurity, Cronbach (1951) argued persuasively that an already existing
method (e.g., Guttman, 1945; Hoyt, 1941; Kuder & Richardson, 1937) he renamed coefficient α
could replace the split-half method and solve both problems of the split-half method in one stroke.
Without reiterating his arguments, Cronbach’s suggestion that coefficient α solves all problems
is a perfect example of a message that arrives at the right time when people are most perceptive
(but see Cortina 1993; Green, Lissitz, &Mulaik, 1977; Schmitt, 1996, for early critical accounts).
Coefficient α became one of the centerpieces of psychological reporting, and until the present day
tens of thousands of articles in psychological science and other research areas report coefficient
α for the scales they use.

1.1. Coefficient α is a Lower Bound to Reliability ρXX ′

Because the lower bound result for coefficient α is old and mathematically correct (Novick
& Lewis, 1967; Ten Berge & Sočan, 2004), we will not repeat the details here. The CTT model as
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Lord and Novick (1968; also, see Novick, 1966) discussed it underlies the lower bound theorem;
if one does not accept this theory, one may not accept the lower bound theorem. CTT assumes
that any observable measurement value Xi for subject i can be split in two additive parts, a true
score Ti defined as the expectation of Xi across hypothetical independent repetitions, indexed r
of the measurement procedure, so that

Ti = Er (Xir ), (1)

and a random measurement error defined as (e.g., Traub, 1997)

Ei = Xi − Ti , (2)

so that the CTT model is

Xi = Ti + Ei . (3)

Equation (1) provides an operational or syntactic definition of Ti (Lord & Novick, 1968, pp.
30–31), liberating it from definitional problems that existed previously in CTT, for example,
considering the true score as a Platonic entity typical of the individual that the test did or did
not estimate well (ibid., pp. 27–29, 39–44). The operational definition in Eq. (1) is typical of the
individual, the specific test, and the administration conditions (ibid., pp. 39). From Eqs. (1), (2),
and (3), it follows that, based on one test administration, in a group of subjects, the expected
measurement E error is 0 [E(E) = 0] and measurement error E covaries 0 with the true score T
on the same test [σ(E,T )], andwith the true score on a different with test score Y [σ(EX ,TY ) = 0]
[ibid., p. 36, Theorem 2.7.1 (i), (ii), (iii), respectively]. In addition, assuming that the scores on
two different tests with test scores X and Y are independently distributed for each person, it
can be shown that across persons, the covariance between the measurement errors is 0; that is,
σ(EX ,EY ) = 0 [ibid., Theorem 2.7.1 (iv), proof on p. 37]. We summarize these results by saying
that measurement error covaries 0 with any other variable Y , not necessarily a test score, in which
E is not included so that

σ(E,Y ) = 0. (4)

One may notice that for the same test, σ(E, X) = σ 2
E ≥ 0, because E is part of X : X = T + E .

Because measurements can be anything, in the context of a test consisting of J items, an item j
( j = 1, . . . , J ) also qualifies as ameasure,with randomvariable X j representing themeasurement
value of the item, and Tj and E j representing item true score and item randommeasurement error,
respectively, so that X j = Tj + E j . Similarly, at the group level, E(E j ) = 0, σ(E j ,Tj ) = 0,
σ(E j ,Tk) = 0, and σ(E j ,Ek) = 0.

Let the test score be the sum of the item scores,

X =
∑J

j=1
X j . (5)

The reliability of a measurement value, denoted ρXX ′ , is a group characteristic, which is defined

as follows. Two tests with test scores X and X
′
are parallel when they have the next two properties:

(1) Ti = T
′
i , for all individuals i , and (2) for variances, σ 2

X = σ 2
X ′ , at the group level. From this

definition, save for two cases, one can derive that parallel tests have exactly the same formal
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properties. This follows from the definition that measurement error is random. The exceptions
are that at the level of the tested individual, in general, Ei �= E

′
i , so that Xi �= X

′
i , and that

the distributions of E and E
′
can be different with the restrictions that their means are 0 [i.e.,

E(E) = E
(
E

′) = 0] and their variances equal (i.e., σ 2
E = σ 2

E ′ ); see Lord & Novick (1968, p.

46). Lord and Novick (1968, p. 47) define replications using the concept of linear experimental
independence (ibid., p. 45), which says that the first measurement does not affect the first moment
of the test scores from the secondmeasurement, andhence, the twomeasurements are uncorrelated.
Linearly experimentally independent measurements that have properties (1) and (2) of parallel
measurements qualify as replications (ibid., p. 47).

The reliability definition is based on this idea of replicability—what would happen if I would
repeat the measurement procedure under the same circumstances?—and is defined as the product-
moment correlation between two parallel tests administered in a population of respondents. Reli-
ability ρXX ′ can be shown to be equal to the proportion of the test-score variance, σ 2

X (or, equiv-
alently, σ 2

X ′ ), that is true-score variance, σ 2
T (or, equivalently, σ 2

T ′ ), so that

ρXX ′ = σ 2
T

σ 2
X

=
σ 2
T ′

σ 2
X ′

. (6)

Noting that from Eqs. (2) and (4), one can derive that

σ 2
X = σ 2

T + σ 2
E + 2σT E = σ 2

T + σ 2
E , (7)

reliability can also be written as

ρXX ′ = 1 − σ 2
E

σ 2
X

= 1 −
σ 2
E ′

σ 2
X ′

. (8)

In this article, we will use the definition of parallel measures at the item level. Let σ 2
j be the

item-score variance for item j .

Definition 1. Two items j and k with scores X j and Xk are parallel if:

(1) Ti j = Tik, for all individuals i; and (9)

(2) σ 2
j = σ 2

k , at the group level. (10)

Let σ(X j ,Xk) = σ jk denote the covariance. First, notice that, in general, because σ(E j ,Ek) = 0,
it follows that for groups, σ(Tj ,Tk) = σ jk . Using this result, property (1) in the definition of
parallel items implies for three items j , k, and l, that σ jk = σ jl = σkl . Hence, parallel items have
equal inter-item covariances. Combining this result with property (2) in the definition of parallel
items implies that the inter-item correlations are also equal: ρ jk = ρ jl = ρkl .

The discussion so far suffices to present (without proof) the inequality

α = J

J − 1
×

∑∑
j �=k σ jk

σ 2
X

≤ σ 2
T

σ 2
X

= ρXX ′ , (11)
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with

σ 2
X =

∑J

j=1
σ 2
j +

∑ ∑
j �=k

σ jk . (12)

Before we present this important result as a theorem, we define a weaker form of equivalence
than parallelism, which is essential τ -equivalence (Lord &Novick, 1968, p. 50, Definition 2.13.8;
note: τ stands for the true score).

Definition 2. Two items with scores X j and Xk are essentially τ -equivalent if, for scalar b jk ,

Ti j = Tik + b jk . (13)

Definition 2 implies that, unlike parallel items, essential τ -equivalent items do not necessarily
have the same item-score variances, so that in general albeit not necessarily, σ 2

j �= σ 2
k . Because

true scores of essentially τ -equivalent items differ only by an item-pair-dependent additive con-
stant, and additive constants do not influence variances and covariances, for three essentially
τ -equivalent items j , k, and l we have that σ 2

Tj
= σ 2

Tk
= σ 2

Tl
and σ jk = σ jl = σkl . Combining

equal inter-item covariances with item-score variances that can be unequal, essential τ -equivalent
items do not necessarily have equal inter-item correlations. Obviously, parallelism is a special
case of essential τ -equivalence when b jk = 0 and item-score variances are equal, σ 2

j = σ 2
k .

Next, we present the inequality relation of coefficient α and test-score reliability ρXX ′ as a
theorem.

Theorem. Coefficient α is a lower bound to the reliability of the test score; that is,

α ≤ ρXX ′ , (14)

with equality α = ρXX ′ if and only if items or test parts on which coefficient α is based are
essentially τ -equivalent.

Proof. See, for example, Novick and Lewis (1967) and Ten Berge and Sočan (2004), and Lord
and Novick (1968, p. 90, Corollary 4.4.3b); also, see Guttman (1945).

Thus, based on essential τ -equivalence, equal inter-item covariances are a necessary condition
for equality α = ρXX ′ , meaning that varying covariances indicate that strict inequality α < ρXX ′
holds. It has been suggested (e.g., Dunn et al., 2014) that greater variation of covariances produces
a greater difference between α and ρXX ′ , implying that α is less informative about ρXX ′ . Greater
variation of inter-item covariances may suggest a multi-factor structure of the data, meaning that
one may consider splitting the item set into subsets that each assesses an attribute unique to that
subset. Because each item subset is a separate test, all we say in this article applies to each item
subset as well.

A third definition of item equivalence is that of congeneric items (e.g., Bollen, 1989; Jöreskog,
1971; Raykov, 1997a,1997b), often used in the FA context and defined as follows.

Definition 3. Two items with scores X j and Xk are congeneric if, for scalars a jk and b jk ,

Ti j = a jkTik + b jk . (15)

Compared to congeneric items, essential τ -equivalence is more restrictive with a jk = 1 for all
j �= k. The covariances of congeneric items j , k, and l, which are a jkσ jk , a jlσ jl , and aklσkl ,
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are obviously different from one another when item-pair-dependent scalars a jk , a jl , and akl are
different. One may notice that inter-item correlations are also different. Hence, for congeneric
items we have strictly α < ρXX ′ .

Finally, we rewrite coefficient α to a form that provides much insight in its relationship to the
dimensionality of the data. Let σ̄ be the mean of the 1

2 J (J − 1) inter-item covariances σ jk , then

α = J 2σ̄

σ 2
X

. (16)

We note that coefficient α depends on the mean inter-item covariance but not on the distribution of
the inter-item covariances. This is important, because the distribution and not its mean holds the
information about the dimensionality of the item set. For example, a set of inter-item covariances
may have a mean equal to σ̄ = c, c is a number, and many different sets of varying inter-
item covariances representing various factor structures may have this same mean σ̄ = c. As an
extreme case, all inter-item covariances may be equal to σ jk = c, which represents essential
τ -equivalence, and thus we have σ̄ = σ jk = c. These observations make clear that a particular
α value can represent numerous cases of multidimensionality with essential τ -equivalence as a
limiting case, thus showing that α is uninformative of data dimensionality.

1.2. Discrepancy between Coefficient α and Reliability ρXX ′

Discrepancy refers to the difference between two parameters, such as α − ρXX ′ ; if items are
essentially τ -equivalent, then discrepancy α − ρXX ′ = 0, but given that essential τ -equivalence
fails for real tests, in practice, discrepancy α − ρXX ′ < 0. We notice that test constructors often
successfully aim for high reliability when the test is used to diagnose individuals, say, at least
.8 or .9 (Oosterwijk, Van der Ark, & Sijtsma, 2019), rendering discrepancy small for many real
tests. It is of interest to know when discrepancy is large negative so that coefficient α is rather
uninformative of reliability and should be re-assessed or ignored. Discrepancy is especially large
when individual items have little if anything in common (Miller, 1995) so that σ̄ ≈ 0 [Eq. (16)],
but their scores are highly repeatable across hypothetical replications, meaning σ 2

E ≈ 0, so that
ρXX ′ is close to 1 [Eq. (8)]. An artificial, didactically useful, and admittedly nonsensical example
makes the point clear. We consider a sum score of measures of shoe size, intelligence, and blood
sugar level. In a group of adults, we expect little association between the three measures, resulting
in σ̄ ≈ 0 and thus a low α value, perhaps α ≈ 0 [Eq. (16)]. However, across hypothetical
replications, we expect little variation in the results per person, hence, we expect little random
measurement error, σ 2

E ≈ 0, and a high reliability, ρXX ′ ≈ 1 [Eq. (8)]. Thus, discrepancy of
coefficient α and reliability ρXX ′ is large negative, almost α − ρXX ′ = −1, and the conclusion
must be that coefficient α is uninformative of reliability ρXX ′ . The usefulness of the example is
that it shows that cases of extremely pronounced multidimensionality produce large discrepancy.
The example also suggests that a real test that one constructed skillfully is not this extremely
multidimensional. For less extreme and substantively more sensible cases of multidimensionality,
we suggest one considers separate subtests that are homogeneous by content, each subtest showing
small discrepancy α − ρXX ′ .

This is the right place to consider a popular FA perspective on reliability. This FA perspective
argues that if one replaces the true-score variance in the CTT reliability definition [Eq. (6)] with
the common-factor variance resulting in an FA reliability definition denoted ρ∗

XX , discrepancy
is smaller when one compares coefficient α with ρ∗

XX rather than ρXX ′ (Bentler, 2009). The
broader context of the FA approach is that it enables the accommodation of multidimensionality
and correlated errors in a reliability analysis. Thus, the approach should convince us to adopt the
FA definition of reliability and reject the CTT reliability. However, we should realize that unless
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one assumes that factor-model variance equals true-score variance, the FA reliability definition is
different from the CTT reliability definition [Eq. (6)] and the consequence of this inequality is that
FA reliability does not equal the product-moment correlation of two parallel tests, ρXX ′ . Thus, by
adopting the FA definition of reliability the price one pays for smaller discrepancy is that reliability
no longer is a measure for repeatability but a measure for proportion of test-score variance that
is factor-model variance, for example, common-factor variance. This raises the question whether
one is still dealing with reliability or with another quantity. Irrespective of this issue, we will show
that in this case, the chosen factor model still is a CTT model. Next, we focus on discrepancy,
α − ρ∗

XX . Before we do, we should mention that Bentler (2009, p. 138) uses notation ρxx for the
FA definition and ρ∗

XX for the CTT definition, which refers to our definition in Eq. (6). Because
for the CTT definition the common notation is ρXX ′ , we will stick to it and use ρ∗

XX for the FA
definition. We do not use a prime in the FA definition, because parallel tests no longer play a
role in that context. Another word of caution refers to the fact that the next exercise is entirely
theoretical; the model discussed is not estimable.

Bentler (2009) suggested splitting score X j for item j in the sum of a common factor, an
item-specific factor, and a random error, so that true score Tj is the sum of the common factor
and an item-specific factor. Then, replacing the true score with the common factor in the relevant
equations in the reliability definition [Eq. (8)], Bentler argued that coefficient α based on the
common factor is a lower bound to the reliability based on the common factor, ρ∗

XX . He also
showed that ρ∗

XX is a lower bound to the reliability based on the true score [Eq. (6)]; hence,
α ≤ ρ∗

XX ≤ ρXX ′ . It follows that adopting Bentler’s model, discrepancy α − ρ∗
XX is smaller than

it is in the CTT context, where one considers α −ρXX ′ . On the other hand, we show that although
the terminology of item-specific factors suggests that one has to treat this score component separate
of the common factor and the random error, the item-specific factor behavesmathematically as if it
were randommeasurement error. The effect is that by introducing the item-specific factor, random
measurement-error variance increases, and hence, true-score variance decreases. Thus, common-
factor reliability equals true-score reliability, and the model does not change discrepancy; that is,
α − ρ∗

XX = α − ρXX ′ .
To see how this works, following a suggestion Bentler made, we define the common factor,

such that C j = a jθ , where θ is the item-independent factor and a j the item’s loading. Thus, the
common factor θ depends on the specific items through the item loadings a j . Bollen (1989, pp.
218-221) proposed the factor model X j = b j + a jθ + δ j , where Tj = b j + a jθ and δ j is a
residual including randommeasurement error, and derived a corresponding reliability coefficient.
Mellenbergh (1998) assumed δ j = E j and studied the one-factor model X j = b j + a jθ + E j .
Moreover, he proposed a reliability coefficient for the estimated factor score θ̂ rather than test score
X . We follow Bentler’s discussion and use his notation. Then, in addition to common factor C j ,
the item-specific factor is denoted S j , which is unique to one item, and the random measurement
error is denoted E j [Eq. (2)]. In Bollen’s model, the item-specific component would be part of
δ j = S j + E j , whereas in Mellenbergh’s model, it would be ignored, resulting in δ j = E j .
Bentler assumed that the three score components C j , S j , and E j do not correlate. For person i ,
the resulting model is a factor model, equal to

Xi j = Ci j + Si j + Ei j . (17)

For a test score defined as the sum of the item scores [Eq. (5)], we also have C = ∑J
j=1 C j ,

S = ∑J
j=1 S j , and E = ∑J

j=1 E j . An alternative definition of reliability, in fact, an FA definition,
then is
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ρ∗
XX = σ 2

C

σ 2
X

= 1 − σ 2
S + σ 2

E

σ 2
X

. (18)

Because this reliability definition focuses on the common factor rather than the dimension-free
true score T , Bentler considered ρ∗

XX an appropriate coefficient of internal consistency, whereas
he considered the classical coefficient ρXX ′ inappropriate for this purpose. Thus, in Bentler’s
conception, internal consistency refers to unidimensionality operationalized by a common factor.
He showed that in the factor model in Eq. (17), coefficient α is a lower bound to ρ∗

XX , and that
ρ∗
XX is a lower bound to the classical ρXX ′ . Consequently, we have

∣∣α − ρ∗
XX

∣∣ ≤ ∣∣α − ρXX ′
∣∣. The

reason for larger discrepancy with respect to ρXX ′ is that the CTT approach ignores item-specific
score components that are systematic across a group of people, so that E(S j ) �= 0, but correlate
0 with other score components. The FA approach to reliability is of special interest to us, which
is why we follow Bentler’s line of reasoning and notice the following.

Because both score components S and E are uncorrelated with each other and with common
factor C , at the model level they show the same correlation behavior, and even though one can
speak of a score component S that has an interpretation different from randommeasurement error,
in Bentler’s approach S and E cannot be distinguishedmathematically. We notice that the general
result E(S j ) �= 0 and E(E j ) = 0 do not play a role in the derivations; hence, we can ignore
possible conceptual differences between S j and E j and treat S j as a random error component.
We combine S and E as residual ε = S + E , with σ 2

ε = σ 2
S + σ 2

E + 2σSE , in which σSE = 0 by
definition, and it follows immediately that

σ 2
ε ≥ σ 2

E �⇒ ρ∗
XX = 1 − σ 2

ε

σ 2
X

≤ 1 − σ 2
E

σ 2
X

= ρXX ′ . (19)

Because σ 2
ε = σ 2

S + σ 2
E , from Eq. (19) and following Bentler (2009, Eq. 3) we conclude that

ρ∗
XX + σ 2

S

σ 2
X

= ρXX ′ , (20)

with equality

ρ∗
XX = ρXX ′ ⇐⇒ σ 2

S = 0. (21)

The result in Eq. (21) shows the conditions for which CTT reliability ρXX ′ [Eq. (6)] and Bentler’s
factor-model reliability ρ∗

XX [Eq. (18)] are equal. We will use this result after we have considered
the condition for which α = ρ∗

XX and how this condition reduces to essential τ -equivalence when
ρ∗
XX = ρXX ′ .

Rather than reiterating Bentler’s proof, which follows a different trajectory, we notice that
mathematically, for the proof that α ≤ ρ∗

XX one does not distinguish the factor model [Eq. (17)]
from the CTT model [Eq. (3)] in ways that are essential for the proof. The only difference is that
residual-error variance, σ 2

ε , is at least as great as random measurement error variance, σ 2
E (i.e.,

σ 2
ε ≥ σ 2

E ); hence, given fixed test-score variance, we find that α ≤ ρ∗
XX holds. It is paramount

noticing that all that the use of the residual variance shows is that a greater error variance here
defined as σ 2

ε but mathematically behaving like σ 2
E in CTT, reduces reliability. Thus, it holds that

α ≤ ρ∗
XX ≤ ρXX ′ . (22)
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We saw already that the second inequality becomes an equality if σ 2
S = 0, and then, coefficient

α again is a lower bound to reliability ρ∗
XX = ρXX ′ , with equality if the items are essential

τ -equivalent. When does α = ρ∗
XX?

To establish the condition for which α = ρ∗
XX , we consider three items j , k, and l (also,

see Bentler, 2009). Similar to essential τ -equivalence, we define the concept of essential C-
equivalence. By definition, the common factor components of the items must be essentially C-
equivalent, common factor C replacing true score T (or τ); that is, for items j and k, we define
Ci j = Cik + d jk , d jk is an item-pair-dependent scalar. Definitions are similar for item pairs j
and l, and k and l. First, we notice that σ(C j ,Ck) = σ(Ck + d jk,Ck) = σ 2

Ck
, and replacing

roles for items j and k, we find σ 2
C j

= σ 2
Ck
, and extending results to all three items, we find

σ 2
C j

= σ 2
Ck

= σ 2
Cl
. Second, because by assumption, different score components correlate 0 within

and between items, and because scalars appearing in a sum do not affect covariances, writing
σ
(
C j ,Ck

) = σ(X j − S j − E j , Xk − Sk − Ek − d jk) = σ jk , and for the other item pairs we find
σ(C j ,Cl) = σ jl and σ(Ck,Cl) = σkl . Combining results for the variances and the covariances,
we find

σ jk = σ jl = σkl . (23)

Hence, essentially C-equivalent items have equal inter-item covariances. For items, the common
factor model equals X j = C j + ε j , Xk = Ck + εk , and Xl = Cl + εl , and for essentially
C-equivalent items, there are no restrictions on the variances of the residuals, so that, in general,
σ 2

ε j
�= σ 2

εk
�= σ 2

εl
, including equality signs as a possibility. Consequently, as with essentially τ -

equivalent items, inter-item correlations are not necessarily equal. Another way to look at essential
C-equivalence is to use the model C j = a jθ , and notice that

σ 2
C j

= σ 2
Ck

�⇒ a2jσ
2
θ = a2kσ

2
θ , hence, a j = ak . (24)

From this result, one can deduce that essentially C-equivalent items, as they are defined here
in terms of a common factor model with item-specific factors, have equal loadings. Thus, the
mathematical conditions for α = ρ∗

XX are identical to those for α = ρXX ′ , emphasizing that the
CTT framework fully operates here.

Thus, we have shown that (1) item-specific factors behave like random measurement error
in CTT, so that ρ∗

XX = ρXX ′ , and (2) α = ρ∗
XX if and only if items are essentially C-equivalent,

which is consistent with essential τ -equivalence in CTT. Ignoring the different terminology, we
conclude that reliability based on the common-factor model [Eq. (17)] simply is CTT reliability,
common-factor variance σ 2

C replacing true-score variance σ 2
T and residual variance σ 2

ε including
item-specific factor variances σ 2

S replacing random measurement-error variance σ 2
E .

1.3. Bias of Sample Estimate α̂

If one estimates coefficient α from a sample of size N , substituting parameter item-score
variances σ 2

j by sample S2j and parameter inter-item covariances σ jk by sample S jk resulting in
estimate α̂, then in some samples α̂ may be larger than true reliability (Verhelst, 1998). This is a
common result of sampling error, but it is not a typical property of coefficient α.

If one considers the mean of sampling estimate α̂ across random samples of fixed size N ,
denoted E(α̂), then E(α̂) − α is the bias of α̂ relative to parameter α. Figure 1 clarifies the bias
for coefficient α and reliability ρXX ′ . For essentially τ -equivalent items and normally distributed
true scores and measurement errors, using results presented by Feldt (1965), Verhelst (1998, p.
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Figure 1.

Scale for coefficient α (L ≤ α ≤ 1; L < 0) and reliability ρ
XX ′ (0 ≤ ρ

XX ′ ≤ 1). Estimates like α̂2 exceed reliability

ρ
XX ′ . Expectation ε(α̂) is smaller than parameter α (dot . suggests ε

(
α̂
) − α is usually small).

21) showed that estimate α̂ is negatively biased with respect to coefficient α by means of the
expected value,

E
(
1 − α̂

1 − α

)
= N − 1

N − 3
, N > 3. (25)

Hence, on average estimate α̂ underestimates parameter α. As N grows,

lim
N→∞

(
N − 1

N − 3

)
= 1, (26)

and already, for modest N , the bias soon is negligible.
Given less strict conditions than essential τ -equivalence and using data generated based on

various parameter choices for a data-simulationmodel, Oosterwijk (2016, p. 53) reported negative
bias of α̂ relative to α for some models (i.e., α̂ − α < 0, α̂ is the mean of α̂ acrosss samples).
Moreover, he did not find positive bias for other models. For covariance matrices generated under
a single-factor model, Pfadt et al. (2021) found that mean α̂ (i.e., α̂) showed negative bias that
decreased to nearly 0 as sample size grew from N = 50 to N = 500.

We did additional analyses on data generated from a single-factor model for varying mean
inter-item correlation, test length, and sample size, and 1,000 replicated data sets in each design
cell. Table 1 showsmaximum negative mean bias equal to−0.00197 andmaximum positive mean
bias equal to 0.00008. Assuming normality, negative mean bias was significant more often than
expected based on the null hypothesis of no bias, thus supporting the theoretical negative bias
result in Eq. (25) for finite sample size. Positive mean bias was never significant. These results
provide us with confidence that estimate α̂ is negatively biased with respect to population α, albeit
only mildly.

The confirmation that estimate α̂ is not positively biased with respect to α is important,
because, if large enough, a positively biased estimate α̂ could also systematically overestimate
reliability ρXX ′ , which is at least as large as coefficient α. However, it does not. Because reliability
ρXX ′ is of more interest to us than lower bound coefficient α, we are primarily interested in the
degree to which E(α̂) deviates from reliability ρXX ′ . We define the difference E(α̂) − ρXX ′ as
the bias of estimate α̂ with respect to reliability ρXX ′ . Because we found absence of positive bias
of estimate α̂ with respect to α (Table 1) and because α ≤ ρXX ′ , it seems safe to conclude that
estimate α̂ is negatively biased with respect to reliability ρXX ′ .

By the lower bound theorem, discrepancy α−ρXX ′ is non-positive. The discrepancy depends
on the distribution of the item scores and the test score, which depend in complex ways on the
properties of the items. For concrete cases, we do not know the magnitude of the discrepancy,
only that parameter α cannot be larger than parameter ρXX ′ . Studies using artificial examples
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Table 1.
Bias of α Estimate (α̂) and (Standard Error).

ρ̄ J N
100 500 1000 2000 5000

.3 20 −1.97* (0.40) −0.21 (0.16) −0.07 (0.11) 0 (0.08) 0.08 (0.05)
50 −0.59* (0.14) −0.09 (0.06) −0.02 (0.04) −0.02 (0.03) −0.04 (0.02)

.5 20 −0.96* (0.17) −0.08 (0.08) −0.13* (0.06) 0.02 (0.04) −0.02 (0.02)
50 −0.22* (0.06) −0.03 (0.02) −0.04* (0.02) −0.02 (0.01) −0.01 (0.01)

.7 20 −0.19* (0.05) −0.03 (0.02) −0.01 (0.02) −0.02* (0.01) 0.01 (0.01)
50 −0.12* (0.03) −0.02* (0.01) 0 (0.01) −0.01 (0.01) −0.01* (0)

.8 20 −0.14* (0.04) −0.04* (0.02) 0 (0.01) −0.01 (0.01) 0.01 (0.01)
50 −0.06* (0.02) −0.01 (0.01) −0.01* (0.01) 0 (0) 0 (0)

Note. Bias (α̂ − α) for four values of mean inter-item correlation (ρ), two values of test length (J ), and
five values of sample size (N ), 1000 replications per design cell. Entries have to be multiplied by .001; for
example, −1.97 (0.40) stands for −0.00197 (0.0040). Significance is indicated by “*” and was tested by
checking whether the normal theory confidence interval contained value zero

(e.g., Sijtsma, 2009) suggest discrepancy varies considerably and can be large when data are
multidimensional. Thus, it makes sense to use coefficient α and other lower bounds only when
the data are approximately unidimensional (Dunn et al., 2014).

2. Two Critical Claims about Coefficient α

Now that we have discussed the state of knowledge with respect to coefficient α, we are ready
for discussing the two claims oftenmade with respect to coefficient α and often used to discourage
people from using coefficient α and sometimes other CTT lower bounds as well. The claims are:
(1) Essential τ -equivalence is unlikely to hold for real data collected with a set of items; hence,
coefficient α has negative discrepancy with respect to reliability, and therefore, coefficient α is not
useful. (2) When one incorporates correlated errors in the FA model, theoretically, coefficient α

can be greater than test-score reliability, again triggering the conclusion that coefficient α should
not be used.

2.1. Claim (1): Essential τ -Equivalence is Unrealistic; Hence, Lower Bounds Must Not be Used

All Models Are Wrong; What’s the Consequence for Coefficient α? Several authors (e.g.,
Cho, 2016; Cho & Kim, 2015; Dunn et al., 2014; Graham, 2006; Teo & Fan, 2013) have claimed
that coefficient α is useful only if what they call the model of essential τ -equivalence provides
the correct description of the data. The reason for this claim is that equality α = ρXX ′ holds if and
only if items or other test parts on which coefficient α is based are essentially τ equivalent. Before
wemove on, as an asidewe note that for binary scored itemswith different proportions of 1-scores,
essential τ -equivalence fails by definition, implying that α < ρXX ′ and coefficient α is a strict
lower bound. Returning to Claim (1) and assuming it refers to continuous item scores, authors
making the claim often use FA definitions of reliability and essential τ -equivalence, formalizing
the latter condition with item difficulty b j and item-independent loading a on common factor θ ,
as

X j = b j + aθ + E j , (27)
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with X j continuous. We agree with many of the commentaries on coefficient α that essential τ -
equivalence and the corresponding FA model [Eq. (27)] pose restrictive conditions for a method
to satisfy, but we question whether this implies one should limit the usefulness of coefficient α

to this condition. Although often not explicated in the commentaries, by implication the conclu-
sion to dismiss coefficient α implies dismissing all other classical reliability lower bounds (e.g.,
Bentler & Woodward, 1980; Guttman, 1945; Ten Berge & Zegers, 1978) when their equality
to reliability depends on the condition of essential τ -equivalence. This perspective ignores the
frequent usefulness of lower bounds in practice, and we will explain why we are not prepared to
throw the baby out with the bath water.

Beforewe explainwhy lower bounds can be useful, we consider Box (1976) for his interesting
and much acclaimed clarification that models do not fit data but can be useful approximations.
His famous quote “All models are wrong, but some are useful” (Box & Draper, 1987, p. 424) is
more than an aphorism and states that by their very nature models are idealizations meant to pick
up salient features of the phenomenon under study rather than capture all the details. Essential τ -
equivalence originally was not proposed as a model but was derived as the mathematical condition
for which α = ρXX ′ , but we agree one might as well consider it a model for item equivalence.
However, like all other models the model of essential τ -equivalence, using Box’s words, can only
be wrong, and for real data we can safely conclude that, strictly, α < ρXX ′ . Does this mean
that one cannot use coefficient α anymore? A conclusion like this would imply that, following
Box, because essential τ -equivalence or its FA version [Eq. (27)] is wrong by definition, one
could not use CTT nor FA reliability methods in practice, but we expect that very few colleagues
would be prepared to draw this conclusion. Models are wrong but when they fit by approximation,
results based on those models may still be useful. In the context of this article, this observation
applies to both essential τ -equivalence and its FA version [Eq. (27)], and to all factor models
that substantiate reliability estimation based on one of these factor models. Here, the question we
discuss is whether parameter α having negative discrepancy with respect to parameter ρXX ′ can
be useful in practice.

Practical Considerations for Using Lower Bounds. Suppose one assesses consumer goods
or services with respect to quality criteria. One may think of treatment success rates of hospitals
and the percentage of students attending a particular high school that are admitted by good to
excellent universities, but alsomundane indexes such as a car’s fuel consumption and a computer’s
memory and speed. Consumers have a natural inclination to require high treatment success and
admittance rates, low fuel consumption, and large memory and high speed. Similarly, researchers
and test practitioners require highly reliable test scores, thus welcoming high sample values. Two
practical situations in which a person may be inclined to hope for high reliability values occur
when external parties require high reliability as one of the necessary conditions for providing a
particular “reward.”Onemay think of a publisher requiring high reliability as one of the conditions
for publishing a test and a health insurance company requiring similar conditions for reimbursing
the costs of diagnosing a psychological condition.

In situations in which people have an interest in reporting high reliability values, one may
argue that some restraint may be in order. Given the need for restraint, one may argue that
coefficient α and other reliability methods having small negative discrepancy and small negative
biaswith respect to reliability ρXX ′ may even provide some protection against toomuch optimism.
Greater discrepancy and bias provide more protection, but also provide little information about
true reliability. For coefficient α, discrepancy and bias tend to be small for tests containing items
consistent with one attribute and having approximately the same psychometric quality. To avoid
confusion, we do not argue with the common statistical preference for zero discrepancy and bias
(e.g., Casella & Berger, 1990), but wish to emphasize that the availability of small-discrepancy
reliability lower bounds helps to mitigate too much optimism about reliability, especially when
the optimism is based on small samples.



KLAAS SIJTSMA, JULIUS M. PFADT

Reporting reliability values that are too high due to small sample size can be avoided by
using larger samples and for several methods N ≥ 500 may be just enough, as we discuss next.
Commentaries on coefficient α do not so much promote essential τ -equivalence as a desideratum
but rather expose essential τ -equivalence as a model the items must satisfy for coefficient α to
equal reliability ρXX ′ and to be useful. We argue next that for approximate unidimensionality,
lower bounds such as coefficient α come rather close to reliability ρXX ′ and in samples that are
large enough do not tend to overestimate ρXX ′ , which we consider a virtue for a quality measure.
These are strong arguments favoring these lower-bound coefficients for reliability estimation.

Selection of Lower Bounds. In addition to coefficient α, several other lower bounds exist
(Sijtsma&Van der Ark, 2021, provide an overview). Guttman (1945) presented six lower bounds,
denoted coefficients λ1 through λ6, with λ3 = α. Mathematically, λ1 < λ3(= α) ≤ λ2, and
λ3 (= α) < λ4, which is the maximum value of coefficient α for all possible splits of the test in
two test halves. Ten Berge and Zegers (1978) proposed an infinite series of lower bounds, denoted
μm , m = 0, 1, . . ., so that μ0 ≤ μ1 ≤ μ2 ≤ . . ., and μ0 = λ3 = α and μ1 = λ2. Woodward and
Bentler (1978; Bentler & Woodward, 1980) proposed the greatest lower bound (GLB). All other
lower bounds are smaller than the GLB. Next, for population results, we discuss lower bounds that
have a large negative discrepancy with respect to reliability ρXX ′ . For sample results, we consider
lower bound estimates that are too large, because they show positive bias relative to parameter
ρXX ′ .

First, if a lower bound has a large negative discrepancy relative to reliability ρXX ′ , it may
be practically useless, simply because it provides little information about reliability other than
that reliability is much greater. We already noticed that when data are highly multidimensional,
coefficient α has large negative discrepancy and may not be useful. The opposite is not true; that
is, values of coefficient α are uninformative of the dimensionality of the data. In fact, a low α may
represent unidimensional data and a high α may represent multidimensional data; all is possible.
Nevertheless, Miller (1995) argued that when low, α values might warn against different items
representing partly different attributes. It may but then again, it may not, see the discussion on
coefficient α’s dependence on mean inter-item covariance related to Eq. (16). Miller (1995) was
not wrong that low α may indicate multidimensionality, but our point is that it can also indicate
anything else and based on α alone one cannot draw conclusions about the dimensionality of the
data. We recommend researchers to use FA or item response theory (IRT) for identifying item
subsets, and to use coefficient α to estimate reliability for each item subset.

Second, lower bounds based on algorithms optimizing certainmethod features may capitalize
on chance and produce positively biased estimates even if their discrepancy is negative (which
it is by definition). Such methods may not be useful in practice. Oosterwijk, Van der Ark, and
Sijtsma (2017) found that theoretical lower bounds coefficient λ4 and the GLB tend to capitalize
on chance when estimated for generated data, both unidimensional and 2-dimensional, and tend
to overestimate reliability ρXX ′ . Between 78% and 100% of sample values were larger than
ρXX ′ irrespective of sample size 50 ≤ N ≤ 1000, and especially for test length of 10 and 15
items. (Larger test lengths were not included.) Dimensionality had little impact on results, and
proportions of overestimates were invariably high. These results demonstrate that one should use
reliability methods such as coefficient λ4 and GLB with great restraint. (Sijtsma, 2009, was still
rather positive about the GLB, but later results suggested the GLB’s deficiencies.)

Oosterwijk et al. (2017) also found in simulated data that for unidimensionality, coefficient
λ2’s discrepancy did not exceed −.002, but for 2-dimensionality discrepancy could become as
great as −.072. For unidimensionality, less than 50% of the estimates λ̂2 exceeded reliability
ρXX ′ , and this percentage decreased as N increased. Because coefficient α is mathematically
similar and only a little smaller than coefficient λ2, based on experience often no more than .01,
results for coefficient α may be similar to results for coefficient λ2. Both coefficients α and λ2
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have the virtue of simplicity and produce quite good results, but more definitive results may be
in order.

2.2. Claim (2): Correlated Errors Cause Failure of the Lower Bound Theorem

Conceptual Differences Between CTT and FA Approaches. One cannot measure a psycholog-
ical attribute without at the same time also recording skills, auxiliary attributes, and environmental
constancies that affect people differentially. In other words, non-target attributes always contam-
inate psychological measurement implying that a measurement value is never a reflection of only
the target attribute. Whereas CTT is blind to this reality and seeks to answer the question to
what degree a set of measurement values, no matter their origins, is repeatable under the same
circumstances, the FA approach to reliability seeks to disentangle target from non-target influ-
ences on measurement and define reliability based only on the target attribute. There are also
FA approaches that are based on sets of target and non-target attributes. We already discussed
Bentler’s approach (Bentler, 2009) that explicitly defined a common factor representing the target
attribute, and non-target influences separated into item-specific systematic influences and random
measurement error, all score components correlating zero.

The systematic non-target influences are sometimes called systematic errors, where the ter-
minology of error suggests one rather wished the influences did not happen. Non-target influences
need not correlate zero among one another and with target abilities. For example, visual-motor
coordination and speed may play an auxiliary role when responding to typical maze items in an
intelligence test that predominantly measures perceptual planning ability (Groth-Marnat, 2003,
pp. 177-178). Children showing the same level on the target attribute of perceptual planning ability
may obtain systematically different test scores when they show different levels of the non-target
skills of visual-motor coordination and speed. When this happens, non-target influences affect
inter-item covariances. CTT includes all systematic influences, both target and non-target, on item
and test performance in the true score. In the example, the true score reflects not only perceptual
planning ability but also visual-motor coordination and speed, and perhaps other influences as
well. The vital difference between the FA and CTT approaches is that FA does not and CTT does
ignore the test score’s composition. The FA perspective commits to identifying the factor structure
of the item set and incorporate this structure in the reliability approach.

We consider the CTT and FA approaches to reliability as representing different perspectives
on reliability. Whether one accepts including all systematic performance influences in the true
score and defines reliability as the proportion of test-score variance that is true-score variance or
separates target and systematic non-target influences and defines reliability as the proportion of
common-factor variance (Bentler, 2009) or a variation thereof, is a matter of preference. The CTT
perspective, perhaps not even as a conscious strategy, is that the measurement of, for example,
perceptual planning ability can only exist in real life together with the simultaneous measurement
of visual-motor coordination and speed. The FA perspective would thus isolate the common
factor representing perceptual planning ability—a hypothesis one needs to investigate by means
of additional validity research—and then estimate the proportion of test-score variance that is
common-factor variance.

We think both stances are legitimate—taking the test performance for granted as it appears in
real psychological measurement or separating the various influences to obtain a purer measure—
butwe also notice the following. First, when responding to items, people simply use auxiliary skills
and attributes, react in particular ways to stimulus cues, and are distracted by many external cues,
and are incapable of suppressing doing all of this when providing a response. Second, by replacing
the true-score perspective with the common-factor perspective, one loses the interpretation of
reliability as the correlation between two parallel tests representing replications. The FA approach
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to reliability does not answer the question what would happen when a group of people repeatedly
takes the same test under the same circumstances.

The Lower Bound Theorem Assumes Uncorrelated Errors. Several authors discussed corre-
lated errors (e.g., Cho & Kim, 2015; Dunn et al., 2014; Green & Hershberger, 2000; Green &
Yang, 2009; Lucke, 2005; Rae, 2006; Teo & Fan, 2013). For example, Raykov (2001) assumed
that non-target influences on the performance on several items cause correlated errors. An exam-
ple is social desirability affecting the responses to some items in a personality inventory. Another
example is the presence of noise in the testing facility as a characteristic of the test administration
procedure. One could argue that such non-target influences necessitate a model that allows for
correlated errors. An attempted proof, such as in Raykov (2001), that allows correlated errors
does not arrive at the lower bound theorem, which is based on the assumption that errors do not
correlate. Models assuming correlating errors lead to different reliability approaches.

CTT only distinguishes the true score and random measurement error, but in the preceding
section, we argued that several attributes affect item performance, one usually targeted or intended
and the others non-targeted or unintended and both assumed distinct from random measurement
error. The essence of discussions about coefficient α allegedly not being a reliability lower bound
is that authors are of the opinion that non-targeted attribute influences cannot be part of the true
score and have a distinct position in a model, often as a systematic error component. A model
implying correlated errors is the basis for studying whether coefficient α still is a lower bound
under this alternative model (see, e.g., Raykov, 2001). It is not, because a model assuming only
uncorrelated errors underlies the lower bound theorem.

Whereas this conclusion seems to let coefficient α off the hook, we acknowledge that
researchers might come across a test situation that they suspect includes correlated errors and
wonder whether to compute coefficient α or not. We argue that it is always admissible to compute
coefficient α since we identified another misconception at play that seems to disqualify any reli-
ability coefficient that cannot account for correlating errors. This misconception, in particular, is
the assumption that each particular test allegedly has only one reliability. From this uniqueness
assumption, it follows that if one administers the test to a group susceptible to social desirability
or if one administers it in a noisy testing facility, the collected data are confounded and cannot
produce the “correct” reliability. Hence, the need for correlated errors that allow the focus on the
target influence and accommodate non-target influences to be included in the error term of the
model. Then, focusing on the target influence would produce the correct reliability. However, this
approach misses an important point. This point is that CTT reliability is defined for any combina-
tion of test, group to which it is administered, and administration procedure, and in each situation
defined by test, group, and procedure, reliability has a unique value. Thus, reliability values are
dependent on the triplet test, group, and procedure. From the perspective of CTT, there are no bad
tests, groups responding unfortunately, and disrupted administration procedures; none plays a role
in the model. All reliability does is express the degree to which test scores are repeatable, and it
does this for all triplets of test, population, and procedure. Each triplet produces data resulting in
different numerical values for coefficient α and reliability ρXX ′ , and the lower bound theorem is
always true at the population level. Driving this to the limit, if we consider the same group taking
the same test in one condition with loud, disturbing background noise halfway through the test
affecting performance on some items and in another condition without the noise, the conditions
produce different reliabilities according to CTT.

Of course, we do not advocate using bad tests, blindly accepting non-target influences, and
tainted administration procedures, but the fact remains that the lower bound theorem is true no
matter the triplet of test, group, and procedure. Neither do we imply that one should not use test
theories modeling the true score implying correlated errors; if one wishes, one should. CTT deals
with true-score variance, σ 2

T , but does not decompose it. FA approaches to reliability decompose
true-score variance and use the decomposition to derive interesting results for thatmodel.Whereas
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CTT defines reliability as the correlation between two parallel tests, hence the degree to which
a test score X is repeatable, FA defines reliability as the proportion of variance of test score X
that the factor model one uses explains. McDonald (1999) proposed coefficient ω to estimate this
reliability. Coefficient ω knows different versions corresponding to different factor models. We
notice that there is great potential in the FA approach to reliability. For instance, Mellenbergh
(1998) suggested FA reliability focusing on the estimated common factor score, θ̂ , rather than the
test score X as coefficient ω does. Focusing on the estimated factor score seems to be consistent
with the FA approach in which the factor score seems to define the scale of interest.

We endwith recommendations for researchers. First, if you simplywish to know the degree to
which test scores obtained in a group following a particular administration procedure are repeat-
able, you may use a lower bound to CTT reliability, such as coefficient α. Key to understanding
this recommendation is that CTT reliability depends on any test administered to any group fol-
lowing any procedure, and that coefficient α computed from data collected in a specific situation
is always a lower bound to reliability specific of that same situation. Second, if you have doubts
about the quality of the test, its constituting items, or the administration procedure, you may
choose to improve the test, the items, the administration procedure, or a combination and then
estimate CTT reliability for the improved situation using a lower bound method. Third, if you
wish to correct test performance by modeling target influences and non-target influences that you
consider undesirable and then determine reliability free of the non-target influences, you may use
coefficient ω for the factor model that fits the collected data.

3. Discussion and Conclusions

In psychology and many other research areas, coefficient α is one of the most reported
measures for test quality. In addition to having become one of the landmarks in scientific reference,
coefficient α also has attracted much criticism. Despite the criticisms, researchers continue using
coefficient α, which we claim has value in estimating test-score reliability next to other methods.

We summarize the usefulness of coefficient α as: Coefficient α is a mathematical lower bound
to the reliability of a test score; that is, α ≤ ρXX ′ [Eq. (14)]. A few remarks are in order. The
remarks pertain to population results and parameters, unless indicated otherwise.

• The lower bound theorem, α ≤ ρXX ′ , is a correct mathematical result from CTT.
• In samples, estimates of coefficient α follow a sampling distribution, and some estimates

may be greater than reliability ρXX ′ .
• In case of approximate unidimensionality (one factor), coefficient α is close to reliability,

ρXX ′ .
• In case of multidimensionality (multiple factors), coefficient α may be much smaller than

reliability, ρXX ′ .
• Coefficient α is not an index for internal consistency. In samples, we recommend using

FA or IRT for identifying subsets of items and estimating coefficient α for each subset.
This is really all there is to say about coefficient α. We add the following recommendation:

• If one models reliability in an FA context, we recommend estimating the FA-tailored
reliability coefficient ω or to estimate the reliability of the estimated factor score.

It is remarkable that colleagues have articulated and continue to articulate so many criticisms
on coefficientα. In this contribution,wehave argued that a lower boundmeasure such as coefficient
α but also coefficient λ2 can be considered as a mild insurance policy against too much optimism
about reliability. We have also argued that a lower bound theorem that was derived under certain
conditions simply is true, and onlywhen one changes the conditions will the theorem fail. A caveat
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to using CTT-based lower bounds is that in research, they may produce inflation of attenuation
correction (Lord & Novick, 1968, p. 69). We are unaware of similar results for FA reliability.

We emphasize that there is nothing wrong with the FA approach, but also remind the reader
that it is different from CTT. Briefly, in CTT, any score component that correlates with another
score component contributes to the true-score variance, and all other score components that
correlate zero with the item’s true score and other items’ error scores contribute to the error-
score variance. CTT is uncritical about further subdivisions. However, the FA approach is critical
by distinguishing a common factor from group factors and optional item-specific factors, thus
splitting the true score variance into different parts and possibly assigning item-specific factors to
the model’s residual. Different versions of coefficient ω reflect different factor models. Whether
one uses CTT or FA is a matter of taste; both are mathematically consistent. Mixing up models
may lead to false claims about the less preferred model and its methods, obviously something to
avoid. The CTT definition of reliability, which expresses the degree to which two parallel tests
or test replications correlate linearly [Eq. (6)], is a valuable contribution to measurement, and
coefficient α provides a lower bound that is useful when the test measures one dimension or factor
by approximation.
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