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Abstract—Many of the most fundamental examples in probabil-
ity involve the pose statistics of coins and dice as they are dropped
on a flat surface. For these parts, the probability assigned to
each stable face is justified based on part symmetry, although
most gamblers are familiar with the possibility of loaded dice. In
industrial part feeding, parts also arrive in random orientations.
We consider the following problem: given part geometry and
parameters such as center of mass, estimate the probability of
encountering each stable pose of the part.

We describe three estimators for solving this problem for poly-
hedral parts with known center of mass. The first estimator uses
a quasistatic motion model that is computed in timeO(n logn)
for a part with n vertices. The second estimator has the same time
complexity but takes into account a measure of dynamic stability
based on perturbation. The third estimator uses repeated Monte
Carlo experiments wit(15ra05-goldberg)h a mechanics simulation
package. To evaluate these estimators, we used a robot and
computer vision system to record the pose statistics based on 3595
physical drop experiments with four different parts. We compare
this data to the results from each estimator. We believe this is
the first paper to systematically compare alternative estimators
and to correlate their performance with statistically significant
experiments on industrial parts.

Index Terms—Design for assembly (DFA), part feeding, pose
estimation, pose statistics, probability, simulation, stable poses.

I. INTRODUCTION

OUR motivation for studying pose statistics is to develop
a science base for part feeding.Part feeders, which

singulate and orient parts prior to packing and insertion, are
critical components of automated assembly lines and one of
the biggest obstacles to flexible assembly. Flexible assembly
systems can be rapidly reconfigured to handle new or changed
parts, which can dramatically reduce the time and costs needed
to bring new products to market.

We consider the following problem, treating one part in
isolation and assuming that the worksurface is flat and much
larger than the part. For a rigid part with known center of
mass and inertia tensor, denote thefaces of its convex hull
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We treat part orientations as equivalent if one can be
transformed to another with a rotation about the gravity axis in
the world frame. We refer to the set of equivalent orientations
as aposeof the part. To represent each pose, we attach a
body frame to the part with origin at its center of mass. The
unit gravity vector in this frame corresponds to a point on
the unit sphere in the body frame. Such a point uniquely
defines a pose of the part. Thus we represent the space of
part poses with the unit sphere. Let be the initial
probability density function on this space of poses and
be the probability density function after the part comes to rest
on the worksurface. For a polyhedral part, the part must come
to rest on one of the faces of of its convex hull, so can be
specified by where is the probability that part
has the final pose with face in contact with the worksurface.

Estimating Pose Statistics (EPS):Assume part is repeat-
edly dropped from a known distribution of poses, onto
a flat worksurface. Estimate

We consider three estimators for solving this problem for
polyhedral parts. We start with an estimate based on a qua-
sistatic motion model first reported in [38]. Next we describe
a perturbed quasistaticestimator that incorporates a model of
dynamic stability. We then introduce a third estimator based on
repeated Monte Carlo simulation experiments usingImpulse, a
mechanics simulation package [26]–[28]. We discuss impulse-
based simulation, a paradigm for efficient simulation, and
present its model for frictional collisions.

To evaluate these estimators, we used the robot and com-
puter vision system shown in Fig. 1 to perform 3595 physical
drop trials using the four real parts shown in Fig. 2. In each
trial the system determined the part’s final orientation. We
compare this data to the results from each estimator. (Our
data was also used as a benchmark for the simulation system
described in [12]).

We find that dynamic simulation provides the most accurate
results, but requires significantly more computation time. This
paper is a revised and updated version of [25].

II. RELATED WORK

An excellent introduction to mechanical parts feeders can be
found in Boothroyd’s book [6], which describes vibratory bowl
feeders in detail as well as nonvibratory feeders such as the
magnetic and revolving hook feeders. Sony introduced a novel
approach using random motion of parts over part-specific
pallets [29], [35].

Although there is a substantial body of research in feeder
design, practitioners still rely on instinct and rules-of-thumb
[20]. Part feeders are responsible for up to 30% of the cost
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Fig. 1. Flexible parts feeding workcell using machine vision, a high-speed
robot arm, and pivoting gripper.

and 50% of workcell failures [30], [6]. Thus systematic feeder
design remains one of the biggest obstacles to automated
manufacturing.

One of the earliest systematic efforts to model part feeding
was Erdmann and Mason’s analysis of the mechanics of a part
moving in a tilting tray [14]. This was followed by a number
of efforts to rigorously model mechanics and uncertainty [2],
[7], [8], [15], [21]. A closely related example is Peshkin and
Sanderson’s study of feeding parts on a conveyor belt as they
move against a sequence of passive fences [31]; this model
was extended in a sequence of papers [1], [4], [37].

A variety of sensor-based (robotic) alternatives to mechan-
ical bowl feeders have been proposed. For example, [23]
propose an optical silhouette sensor with air nozzle to reject
all but the desired pose on a feeder track. Carlisleet. al. [9]
proposed a flexible part feeding system that combines machine
vision with a high-speed robot arm. In contrast to custom-
designed hardware such as the bowl feeder, only software
is changed when a new part is to be fed. The idea is that
a collection of like parts are randomly scattered on a flat
worktable where they are subject to the force of gravity. An
overhead vision system determines the position and orientation
of each part. The robot arm then picks up each part and moves
it into a desired final position and orientation as illustrated in
Fig. 1. A recent paper [16] outlines how feeder throughput can
be estimated based on estimates of pose statistics, conveyor
speed, and arm cycle time. Similar feeder designs are described
in [10], [39].

To facilitate the design of parts feeders, researchers have
considered configuration space models [2], [7], [8], [14], sim-
ulation [3], [17], [24], heuristics [20], and genetic algorithms
[11]. The latter paper made use of our preliminary results in
estimating pose statistics.

Boothroyd noted that the feedrate for a parts feeder is
based on pose statistics [6]. He gave a quasistatic estimator
for rectangular and cylindrical parts. Sanderson showed that
robot assembly can be analyzed in terms of pose statistics
[34]. Reference [38] improved on the Boothroyd estimator by
treating the convex hull of any polyhedral part and propagating
probability from unstable faces. The resulting estimate is a
good first approximation to experimental distributions but do
not take into account effects such as bouncing, vibrations,
collisions, and friction. An estimator based on face area and
height of the center of mass was reported in [19] but tested
only with rectangular parts.

III. T HE QUASI-STATIC ESTIMATOR

In our first model, we ignore part inertia and velocity,
treating part motion as quasistatic. We consider the part’s
initial pose to be uniformly distributed over the unit sphere

as explained in the previous section. After computing the
part’s convex hull the idea is to project the facets of
onto a sphere centered at the center of massIf is the
projection of face the ratio of the area of to the total
surface area of the sphere gives the probability that the part
will land on face under quasistatic conditions.

Assuming triangular faces, the ratio in question is given by

(1)

where the are the interior angles of (see Fig. 3).
The are computed as follows. Let

and Using standard notation for
triangles, let be the arc that results from projecting the line
from to onto the sphere (note that arcs are measured by
the angle subtended at the center of the sphere). One can solve
for using the law of cosines

(2)

and and are found similarly. Given all the can be
found using the spherical law of cosines

(3)

and analogous computations give and
This procedure results in an initial estimate of eachTo

treat faces of that are statically unstable, we project the
center of mass onto the plane of each faceIf the projected
point lies outside face gravity will cause the part to topple
over to adjacent face In this case is added to and

is set to zero.
To facilitate this propagation, we define thequasistatic

graph (QSG) to be a directed graph in which each node
corresponds to one facet of the convex hull The QSG has
a directed link from node to node if and only if facet
topples to facet and they share one common edge. Clearly,
the QSG is acyclic. We propagate probability along the QSG
using a breadth-first traverse.

The number of vertices and edges ofare both We
compute the convex hull in time. As a planar graph,
the convex hull of has faces and interior angles. Thus
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Fig. 2. Top: CAD models of the four parts used in the experiments. From left to right: insulator cap, large white, rectangular black, and square black stereo
buttons. Bottom: Photographs of the rectangular black stereo button in its seven stable states.

Fig. 3. Computing initial probabilities for each face.

we can compute the projected areas in time because we
only visit each interior angle once and can build the QSG in

time, because we just have to check the center of mass
against the edges twice. It takes time to do a breadth-
first traverse of this graph. Therefore the total time to compute
the probabilities is

IV. PERTURBED QUASI-STATIC (PQS) ESTIMATE

Since the quasistatic analysis does not model dynamic
disturbances, it often overestimates the probability of landing
on a facet that is stable but easily dislodged by small vibration.
In this section we describe a modification to the quasistatic
estimate that considers a “perturbation region” around each
edge of a stable face. Consider two facets of the part’s convex
hull, and and the bounding edgebetween them. Let

be the downward vector from the part’s center of mass.
In the quasistatic estimate, we assume that ifintersects
when in contact, the part will remain on facet However,
dynamic energy may cause the part to rotate across edge
when points inside facet but close to edge (Fig. 4). The
spherical projection of the perturbation region that falls inside
of the face yields a heuristic estimate of how likely the part is
to topple from to across their shared edge. We call
the “perturbation probability” for each pair of adjacent faces

Fig. 4. Under the perturbed-quasistatic model, the part remains on facetFi;

sinceg intersectsFi: However dynamic effects make it likely that the part
will topple onto facetFj : To model this, we consider a “perturbation region”
around the common edge using a cone of disturbance vectors.

(each edge). We use these to compute a “perturbed quasistatic”
(PQS) estimate in time which agrees better with
the data from experiments.

We consider perturbations to the gravity vector that form a
right cone of half-angle with apex at the part’s center of mass.
The value of depends on how far dynamic forces can tilt the
gravity vector. If we sweep the gravity vectoralong the part
edge the perturbation cone sweeps out a perturbation region
around the edge.

To compute the perturbation probability, we consider the
triangle formed by edge and two edges from its endpoints to
the projected center of mass on facet Call this When we
project onto the unit sphere, we denote the arc corresponding
to with If we translate the plane defined by the center of
mass and the arc until it intersects the sphere with a new
arc such that the spherical distance betweenand is

the spherical region between and is the spherical
projection of the perturbation region [Fig. 5(c)].

If we denote any point on the unit sphere by a vector
which is parameterized by

(4)
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Fig. 5. (a) Perturbations to the gravity vector form a cone. (b) Perturbation
region for one part edge. (c) Perturbation probability for each edge using the
PQS model.

then the area of is

(5)

where is the corresponding region in terms of and
and is the fundamental vector product of the surface

As we cannot solve this integral in closed form, we
approximate the projected perturbation region by the area of
a rectangle of length and width

We transfer perturbation probability between adjacent facets
and then propagate down the QSG as in the quasistatic
estimate. We transfer from facet to adjacent facet

if is unstable or if has a lower initial probability
under the quasistatic estimate. The first condition insures that
the perturbation probability will wind up at a stable facet
after propagating through the QSG. Both conditions reflect
the intuition that parts will tend to roll toward more stable
states. The only extra computation is finding the probabilities
of perturbation regions and transferring the perturbation
probabilities. Therefore the PQS estimate has time complexity:

The parameter in the PQS estimate depends on how far
the part is dropped, how much mechanical energy it can store,
the coefficients of friction and restitution, and other physical
and dynamic properties. In our physical experiments, the drop
heights and materials were constant, so we used data from
the first physical experiment to choose a reasonable value: in
this case 20 . We used this same value to estimate the
distribution for all parts.

The computation time on SPARC20 is less than 1 s for
all four parts. About 90% of this is used for constructing the
convex hull. It is important to keep in mind that the PQS
is a heuristic estimate. We do not make any claims that this
captures the intricate physics of dynamic collisions. A better
heuristic may be possible by more sophisticated propagation
of perturbation probabilities which we are now exploring. A
full treatment of dynamic effects, at the price of increased
computation, is described in the next section.

V. DYNAMIC SIMULATION

To obtain more accurate pose distribution predictions, one
could perform full dynamic simulations of the dropped part

Fig. 6. A collision between two rigid bodies.

over many trials. This seems prohibitive for two reasons.
First, the interaction between the part and environment is very
collision intensive, and it is notoriously difficult to model the
dynamics of collisions with friction [22]. Second, dynamic
simulation is much slower than the previous described esti-
mators, and so obtaining a statistically significant number of
trials may take too long.

Mirtich and Canny have studiedimpulse-basedsimulation,
a paradigm for dynamic simulation that addresses these prob-
lems. The method handles frictional collisions in a natural way,
and for general three-dimensional (3-D) rigid body simulation,
the simulatorImpulsehas the fastest execution times reported
in the literature [28].

A. Computing Frictional Collisions

Details aboutImpulse, and a comparison of constraint-
and impulse-based simulation are in [27], [28]. In the lat-
ter paradigm,all interactions between simulated bodies are
affected through frictional collisions, thus a good collision
model is crucial to physical accuracy. Our model is similar
to that of Routh [33], although we derive equations which
are more amenable to numerical integration. Keller also gives
an excellent treatment [18], and Bhatt and Koechling give
a classification of frictional collisions, based on the flow
patterns of tangential contact velocity [5]. Finally, Wang and
Mason have studied two-dimensional (2-D) impact dynamics
for robotic applications, based on Routh’s approach [36].

Consider two rigid bodies coming into contact as shown in
Fig. 6. Each body has a known mass inertia tensor
linear center of mass velocity and an angular velocity
If is the offset vector of the contact point relative to body
’s center of mass, then the absolute velocityof the contact

point on body is given by

(6)

and the relative contact velocityat the contact point is given
by

(7)

Define a collision coordinate system with the-axis aligned
with the contact normal and directed from body 2 to body 1. If



GOLDBERG et al.: PART POSE STATISTICS: ESTIMATORS AND EXPERIMENTS 853

the surfaces are not smooth, the normal can be approximated
by the displacement vector between the closest points on the
bodies. In this coordinate system, the objects are colliding
if has negative (i.e., normal) component. In this case,
a pair of collision impulses ( and ) must be applied to
prevent interpenetration; the goal is to computeWe assume:
infinitesimal collision time, the Coulomb friction model, and
Poisson’s hypothesis for restitution.

Infinitesimal collision time implies the positions of the two
bodies may be treated as constant during the collision. Since

is an impulsive force, the velocities of the bodies change
during the course of the collision. Because the frictional forces
depend on the relative sliding velocity, the velocity profile
during the collision must be analyzed.

Let denote a collision parameter which starts at 0 and
increases monotonically during the collision. All body veloc-
ities as well as the relative velocity at the contact point are
functions of Let be the total impulse imparted up to
point in the collision. From basic physics

(8)

(9)

Applying (6) gives

(10)

where is the 3 3 identity matrix and is the canonical
skew-symmetric matrix corresponding to Computing
analogously is used instead of and applying (7) gives

(11)

The 3 3 matrix is symmetric. More importantly, the
infinitesimal collision time assumption implies and are
constant during a collision, hence is also constant. We can
differentiate (11) with respect to obtaining

(12)

1) Sliding Mode: While the tangential component of is
nonzero, the bodies are sliding relative to each other, and
is completely constrained. Let be the relative direction
of sliding during the collision, that is
Also choose to be the accumulated normal component
of impulse. Under Coulomb friction, one finds that

(13)

Expressing the right hand side of (13) in terms ofand
substituting into (12) gives

(14)

Fig. 7. Trajectories of the the tangential components of the system (14) for
a particularKKK: The crosses indicate different initial sliding velocities.

This nonlinear differential equation for is valid as long as
the bodies are sliding relative to each other. By integrating the
equation with respect to the collision parameter(i.e.,
one can track during the course of the collision. Projections
of the trajectories into the - plane are shown in Fig. 7
for a particular

The basic impulse calculation algorithm proceeds as fol-
lows. After computing the initial and verifying that
is negative, is numerically integrated using (14) is
the independent variable). During integration, increases,
reaching zero at the point of maximum compression. At this
point, is the normal impulse applied during compression,
and multiplying it by gives its terminating value, by
Poisson’s hypothesis for restitution. The integration continues
to the terminating value, andis recovered by inverting (11).

2) Sticking Mode:Sticking occurs if the relative tangential
velocity ever vanishes during integration of (14). In this case,
Coulomb friction requires that the frictional force lie within
the friction cone, although its direction is not specified. When
sticking is detected, the system first checks whether it is a
stable sticking condition by setting in (12), and
solving for One can choose such that is of the form

If

(15)

a frictional force lying within the friction cone can maintain
sticking, and so 0 and for the
duration of the collision.

If the friction is not sufficient to maintain
sticking, and sliding immediately resumes in a directionof
the ray emanating from the origin in the tangential velocity plot
(In Fig. 7, This ray always exists and is unique in
cases of instable sticking.
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B. Additional Dynamic Considerations

The dynamic simulation can take into account parameters
that are not considered by the quasistatic and perturbed qua-
sistatic estimators. The flexible feeder system shown in Fig. 1
dumps parts from an upper belt onto a lower belt in order
to singulate them. Final poses are measured on the lower
belt. The precise drop height between belts at the time of
the simulation experiments is unknown. We estimate it at 12.0
cm. The horizontal velocity of the parts as they leave the upper
belt was estimated at 5.0 cm/s. The coefficients of friction and
restitution were both estimated to be 0.3.

Since the parts are in a stable resting state on the upper
belt, before being dropped onto the lower belt, the initial
distribution of orientations is not uniform, but similar to
the final (initially unknown) distribution. To model this, the
initial orientations for the first 20 drops are chosen randomly,
assuming a uniform distribution over Thus we bootstrap the
process by estimating the initial pose distribution.

For all remaining drops, the initial (upper belt) poses are
chosen from the current estimate of the final pose distribution;
the results of each simulation run are then used to re-estimate
the initial conditions. A slight perturbation (a rotation of up
to 1.5 degrees about a randomly chosen axis) is also applied
to the initial pose to introduce noise into the system due to
belt vibration. This number is purely a guess; it was not tuned
during the experiments, but no attempt was made to estimate
it scientifically.

The 20 initial drop tests do not necessarily lead to a unique
stationary distribution of initial poses. One improvement over
the method used in our experiments would be to verify a
proposed initial distribution by performing some small, fixed
number of drop tests using it. If the initial and final distribu-
tions match well, the initial distribution is at least stationary
and therefore a reasonable guess. Otherwise, the bootstrap-
ping and verification should be repeated. Alternatively, one
could perform the bootstrapping and verification steps multiple
times, and choose the most stationary distribution to seed the
initial distribution for the rest of the drop tests.

VI. EXPERIMENTAL RESULTS

All of the estimators described in this paper were applied
to four test parts. The parts were all small, plastic, rigid parts,
of the type typically used in automated assembly as shown in
Fig. 2. For the dynamic simulation, 2000 drops were simulated
requiring approximately two hours of computation per part.

Part #1 is an insulator cap purchased at a local hardware
store. Parts #2, #3, and #4 are pushbuttons designed for a
commercial car stereo system. Geometric models of each part
were constructed by measuring the parts with a ruler. Centers
of mass and moments of inertia for the parts were computed
automatically byImpulse.

The system shown in Fig. 1 was used to perform 3595 phys-
ical drop trials. Tables I–IV show the results. All quantities in
the tables are percentages.

The error percentages included in the tables indicate the
overall performance of each estimator for each sample part.
They are computed as the average deviation of the estimator’s

TABLE I
ORANGE INSULATOR CAP DATA

TABLE II
WHITE STEREO BUTTON DATA

TABLE III
RECTANGULAR BLACK STEREO BUTTON DATA

predictions from the physical test percentage, weighted by the
frequency with which that state actually occurs.

Let represent the probability of each ofstates,
as measured in the physical test. Let represent the
corresponding probabilities computed by one of the estimators.
The error percentage for that estimator is given by

(16)

A. Discussion

The quasistatic and perturbed quasistatic estimators are
extremely fast, requiring less than a second of computation
time for parts with 50 facets. Dynamic simulation is slower;
for each part, 2000 drops were simulated, taking approximately
two hours per part. The data presented in Tables I–IV bring
out several interesting points concerning the accuracy of the
estimators’ predictions.
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TABLE IV
SQUARE BLACK STEREO BUTTON DATA

The perturbed quasistatic estimator’s predictions are consis-
tently more accurate than those of the quasistatic estimator,
and the added computation time is negligible. Hence, the
perturbed quasistatic estimator should always be chosen over
the quasistatic one.

The dynamic simulation estimator is the most accurate for
all sample parts, except the insulator cap (Table I), for which
the perturbed quasistatic estimator slightly outperforms it. The
dynamic simulation estimator’s prediction accuracy is also the
most consistent; the composite error is less than 5% in all
cases. Nonetheless, a penalty of three to four orders of magni-
tude in execution time must be paid for this added accuracy;
whether this is appropriate or not depends on the situation.

In an interactive setting, where a designer is perhaps edit-
ing the CAD model of a part in order to improve feeder
throughput, the perturbed quasistatic estimator is clearly the
best choice. The designer need only wait seconds to see how
changing a part’s CAD model alters the pose distribution and
feeder throughput.

The dynamic simulation estimator is useful for obtaining a
more accurate estimate once the design has been determined,
or for analyzing the effects of more subtle design changes. It
models several factors that are not considered by the standard
and perturbed quasistatic estimators, including: friction, col-
lisions with energy loss, mass moments of inertia, height of
drop, and initial conditions of the part prior to drop. To study
the effects of varying these parameters, dynamic simulation is
appropriate.

The quasistatic methods are based on a uniform distribution
of initial orientations. In the common case where the true
distribution is unknown, this is a reasonable guess. In contrast,
dynamic simulation can produce results for other distributions
just by choosing the random initial orientations from the
distribution. If knowledge about the distribution is known,
dynamic simulation has an added accuracy advantage over the
quasistatic methods.

Our simulation experiments involved 2000 drop tests. Often,
fewer trials may be sufficient, reducing the computational

cost of this method. Suppose the true (unknown) probability
that a part lands in a particular pose is The number of
times the part lands in this pose overtrials is a binomial
random variable, which may often be approximated by a
normal distribution1. A confidence intervalstatement is of the
form: “ lies within the range with
certainty.” Here, is the probability estimate obtained from
the trials, is the allowable error tolerance, andis the
level of the statistical test. Given and one can bound the
number of trials necessary by

(17)

where is the cumulative normal distribution function.
For example, to pinpoint the probability of a particular final
pose to within 5%, with 90% certainty, 0.05 and
0.10. From (17), 385 trials are sufficient. See [13] for more
information.

VII. CONCLUSION

Predicting the pose distribution of rigid parts dropped onto
a flat surface is important in evaluating part designs for
assembly. These distributions are necessary to estimate feeder
throughput, which can then be used to determine how many
robots and assembly lines are required to meet specified
production rates. This can greatly reduce the time required
to set-up or changeover automated factories and hence allow
new products to be more rapidly brought to market.

We have presented three estimators for predicting the pose
distributions of rigid parts dropped onto a flat surface. We have
compared the predictions from these estimators to physical test
results, and believe that this is the first systematic comparison
of pose estimators with experiments using real industrial parts.

Our results indicate that a perturbed quasistatic estimator,
based on a refinement of the quasistatic estimator presented
in [38], produces significantly more accurate results, with
negligible added computation time. The perturbed quasistatic
estimator certainly has the highest accuracy to execution time
ratio of all three estimators studied. The third estimator, based
on dynamic simulation of the dropped parts using the simulator
Impulse, generally gives the most accurate predictions, with
averaged errors under 5% for all four test parts. This estimator
can also be used to study sensitivities to parameters not
modeled by the other estimators, such as the coefficient of
friction or the initial part velocity. However, this estimator
takes one to two hours to generate predictions, as opposed
to under a second required by the standard and perturbed
quasistatic estimators. In an interactive setting, the quasistatic
estimator is the method of choice, providing reasonably good
predictions very quickly. The dynamic simulation estimator
might find application later in the design cycle, where more
careful analysis is required.

This work in estimating pose statistics complements other
ongoing work in automated assembly. Raoet al. and Gold-
berg have studied the use of a pivoting gripper for Adept’s

1A common rule of thumb is that the normal approximation is valid if the
numbers of successes and failures during the trial series both exceed five [13].
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flexible feeder; assuming part pose is known, they give an
algorithm to generate pivot grasps for a part

with faces and stable configurations [32].
The perturbed quasistatic estimator described in this paper

has been incorporated into a commercial simulation package
where it is used to predict part behavior for rapid design
of modular workcells such as the one shown in Fig. 1. In
the future, part pose statistics can be used in CAD systems,
allowing users to alter the design of parts to achieve a desired
distribution of poses.
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