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_ Abstract—Many of the most fundamental examples in probabil- We treat part orientations as equivalent if one can be
ity involve the pose statistics of coins and dice as they are dropped transformed to another with a rotation about the gravity axis in
on a flat surface. For these parts, the probability assigned 0 yhq \yorid frame. We refer to the set of equivalent orientations
each stable face is justified based on part symmetry, although f th t T ¢ h ttach
most gamblers are familiar with the possibility of loaded dice. In as aposeo € part. o_ reprg;en Qac pose, we aftach a
industrial part feeding, parts also arrive in random orientations. Pody frame to the part with origin at its center of mass. The
We consider the following problem: given part geometry and unit gravity vectorg in this frame corresponds to a point on
parameters such as center of mass, estimate the probability of the unit sphere in the body frame. Such a point uniquely
encountering each stable pose of the part. defines a pose of the part. Thus we represent the space of

We describe three estimators for solving this problem for poly- . . L
hedral parts with known center of mass. The first estimator uses part poses withS, the unit sphere. LePiyiiia1 be the initial

a quasistatic motion model that is computed in timeO(nlogn) Probability density function on this space of poses &gl

for a part with n vertices. The second estimator has the same time be the probability density function after the part comes to rest
complexity but takes into account a measure of dynamic stability on the worksurface. For a polyhedral part, the part must come
based on perturbation. The third estimator uses repeated Monte to rest on one of the faces of of its convex hullg,.; can be

Carlo experiments wit(15ra05-goldberg)h a mechanics simulation e . -
package. To evaluate these estimators, we used a robot angsSPecified bypy, - - -, p,, wherep; is the probability that parP

computer vision system to record the pose statistics based on 3595has the final pose with fadg in contact with the worksurface.

physical drop experiments with four different parts. We compare Estimating Pose Statistics (EPSKssume parfP is repeat-

this data to the results from each estimator. We believe this is edly dropped from a known distribution of pos@%,.;:i.i, onto

the first paper to sy_stematically compare alt_emative (_asti_mators a flat worksurface. Estimat®s,....

and to correlate.thelr performance with statistically significant Wi ider th timat f ving thi bl f

experiments on industrial parts. e consider three estimators for solving this problem for

polyhedral parts. We start with an estimate based on a qua-

sistatic motion model first reported in [38]. Next we describe

a perturbed quasistatiestimator that incorporates a model of

dynamic stability. We then introduce a third estimator based on

|. INTRODUCTION repeated Monte Carlo simulation experiments usingulse a
echanics simulation package [26]-[28]. We discuss impulse-

Eased simulation, a paradigm for efficient simulation, and

Index Terms—Design for assembly (DFA), part feeding, pose
estimation, pose statistics, probability, simulation, stable poses.

UR maotivation for studying pose statistics is to develo
a science base for part feedinBart feeders which ) alc o
singulate and orient parts prior to packing and insertion, aP&eSent its model for frictional collisions.
critical components of automated assembly lines and one of © eya_lluate these estimators, we used the robot and com-
the biggest obstacles to flexible assembly. Flexible assemBfer Vision system shown in Fig. 1 to perform 3595 physical
systems can be rapidly reconfigured to handle new or chandi@P trials using the four real parts shown in Fig. 2. In each

parts, which can dramatically reduce the time and costs needé@l the system determined the part's final orientation. We
to bring new products to market. compare this data to the results from each estimator. (Our

We consider the following problem, treating one part ifata was also used as a benchmark for the simulation system
' gscribed in [12]).

isolation and assuming that the worksurface is flat and mug ’ o . )
We find that dynamic simulation provides the most accurate

larger than the part. For a rigid paft with known center of ) 2 N :
mass and inertia tensor. denote théaces of its convex hull "€sults, but requires significantly more computation time. This

Hby F, - ,F,. paper is a revised and updated version of [25].
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Boothroyd noted that the feedrate for a parts feeder is
based on pose statistics [6]. He gave a quasistatic estimator
for rectangular and cylindrical parts. Sanderson showed that
robot assembly can be analyzed in terms of pose statistics
[34]. Reference [38] improved on the Boothroyd estimator by
treating the convex hull of any polyhedral part and propagating
probability from unstable faces. The resulting estimate is a
good first approximation to experimental distributions but do
not take into account effects such as bouncing, vibrations,
collisions, and friction. An estimator based on face area and
height of the center of mass was reported in [19] but tested
only with rectangular parts.

Ill. THE QUASI-STATIC ESTIMATOR

In our first model, we ignore part inertia and velocity,
treating part motion as quasistatic. We consider the part's
initial pose to be uniformly distributed over the unit sphere
S as explained in the previous section. After computing the
part’'s convex hullH, the idea is to project the facets &f
onto a sphere centered at the center of mad$§ F; is the
projection of faceF, the ratio of the area of; to the total
Fig. 1. Flexible parts feeding workcell using machine vision, a high-speeqrface area of the sphere gives the probability that the part
robot arm, and pivoting gripper. . . . L.

will land on face " under quasistatic conditions.
Assuming triangular faces, the ratio in question is given by
and_ 50% of V\_/orkcell failures [3Q], [6]. Thus systematic feeder Bot Bu+fBs—m
design remains one of the biggest obstacles to automated A= 1
manufacturing. d

One of the earliest systematic efforts to model part feeditgrere thes; are the interior angles of’. (see Fig. 3).
was Erdmann and Mason’s analysis of the mechanics of a parf Ne/3; are computed as follows. Léto = \/¢* + v, de1 =
moving in a tilting tray [14]. This was followed by a numbery/¢® +v{, anddo1 = \/vg + v{. Using standard notation for
of efforts to rigorously model mechanics and uncertainty [2{fiangles, lets; be the arc that results from projecting the line
[7], [8], [15], [21]. A closely related example is Peshkin androm g to v; onto the sphere (note that arcs are measured by
Sanderson’s study of feeding parts on a conveyor belt as tH8§ angle subtended at the center of the sphere). One can solve
move against a sequence of passive fences [31]; this motf| 62 using the law of cosines
was extgnded in a sequence of papers [1], [{1], [37]. B2, = A2y + d2, — 2duodey cos 6 )

A variety of sensor-based (robotic) alternatives to mechan-
ical bowl feeders have been proposed. For example, [28)d&, andé; are found similarly. Given all thé;, 3> can be
propose an optical silhouette sensor with air nozzle to rejdound using the spherical law of cosines
all but the desired pose on a feeder track. Carlitleal. [9]
proposed a flexible part feeding system that combines machine

vision with a high-speed robot arm. In contrast to customy,q analogous computations gigg and 3.

designed hardware such as the bowl feeder, only softwarerpjs procedure results in an initial estimate of eaghTo

is changed when a new part is to be fed. The idea is thadat faces ofHf that are statically unstable, we project the

a collection of like parts are randomly scattered on a flgbnter of mass onto the plane of each f&gelf the projected

worktable where they are subject to the force of gravity. Afgint lies outside facé, gravity will cause the part to topple

overhead vision system determines the position and orientatigfer to adjacent facé’;. In this casep; is added top;, and

of each part. The robot arm then picks up each part and movesis set to zero.

it into a desired final position and orientation as illustrated in Tg facilitate this propagation, we define thgiasistatic

Fig. 1. A recent paper [16] outlines how feeder throughput cgjlaph (QSG) to be a directed graph in which each node

be estimated based on estimates of pose statistics, conveysifesponds to one facet of the convex hill The QSG has

speed, and arm cycle time. Similar feeder designs are describeglirected link from node to node; if and only if facetF;

in [10], [39]. topples to face#’; and they share one common edge. Clearly,
To facilitate the design of parts feeders, researchers haie QSG is acyclic. We propagate probability along the QSG

considered configuration space models [2], [7], [8], [14], simising a breadth-first traverse.

ulation [3], [17], [24], heuristics [20], and genetic algorithms The number of vertices and edgesfare bothO(n). We

[11]. The latter paper made use of our preliminary results @ompute the convex hull i®(n logn) time. As a planar graph,

estimating pose statistics. the convex hull ofP hasO(n) faces and interior angles. Thus

(1)

cos 82 = cos 6y cos 61 + sin &g sin §; cos Fs 3)
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Fig. 2. Top: CAD models of the four parts used in the experiments. From left to right: insulator cap, large white, rectangular black, and squamedlack st
buttons. Bottom: Photographs of the rectangular black stereo button in its seven stable states.

Fig. 4. Under the perturbed-quasistatic model, the part remains onFacet
sinceg intersectsF;. However dynamic effects make it likely that the part
will topple onto facetF’;. To model this, we consider a “perturbation region”
around the common edge using a cone of disturbance vectors.

Fig. 3. Computing initial probabilities for each face.

we can compute the projected area®in) time because we
only visit each interior angle once and can build the QSG
O(n) time, because we just have to check the center of m
against the edges twice. It takégn) time to do a breadth-
first traverse of this graph. Therefore the total time to comp
the probabilities isO(nlogn).

each edge). We use these to compute a “perturbed quasistatic
QS) estimate in tim&(nlogn) which agrees better with
3R data from experiments.
We consider perturbations to the gravity vector that form a
uﬁ%ht cone of half-angle with apex at the part’s center of mass.
The value ofe depends on how far dynamic forces can tilt the
gravity vector. If we sweep the gravity vectgralong the part
IV. PERTURBED QUASI-STATIC (PQS) ESTIMATE edgec, the perturbation cone sweeps out a perturbation region
Since the quasistatic analysis does not model dynangiround the edge.
disturbances, it often overestimates the probability of landingTo compute the perturbation probability, we consider the
on a facet that is stable but easily dislodged by small vibratiomiangle formed by edge and two edges from its endpoints to
In this section we describe a modification to the quasistatite projected center of mass on faéét Call this7". When we
estimate that considers a “perturbation region” around eagtoject?’ onto the unit sphere, we denote the arc corresponding
edge of a stable face. Consider two facets of the part’s convexc with a. If we translate the plane defined by the center of
hull, F; and F};, and the bounding edge between them. Let massc and the ara: until it intersects the sphere with a new
g be the downward vector from the part's center of masarc a’ such that the spherical distance betwegrand a is
In the quasistatic estimate, we assume that ifitersectsl; ¢, the spherical regiort betweena’ and « is the spherical
when in contact, the part will remain on facEt. However, projection of the perturbation region [Fig. 5(c)].
dynamic energy may cause the part to rotate across edge If we denote any point on the unit sphere by a vector
wheng points inside facef; but close to edge (Fig. 4). The r = (z,y, 2), which is parameterized by
spherical projection of the perturbation region that falls inside
of the face yields a heuristic estimate of how likely the part is _ _
to topple from#; to F; across their shared edge. We cap;; y = singpsin @
the “perturbation probability” for each pair of adjacent faces Z = cos (4)

x = sinpcosf
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Fig. 5. (a) Perturbations to the gravity vector form a cone. (b) Perturbation
region for one part edge. (c) Perturbation probability for each edge using the
PQS model.

Fig. 6. A collision between two rigid bodies.

then the area ok is . . o
over many trials. This seems prohibitive for two reasons.
o= [ 1.0l e a6
Q

(5) First, the interaction between the part and environment is very
collision intensive, and it is notoriously difficult to model the

where Q2 is the corresponding region in terms of and 6, dynamics of collisions with friction [22]. Second, dynamic

and N (g, ) is the fundamental vector product of the surfacéimulation is much slower than the previous described esti-
v/, x rj. As we cannot solve this integral in closed form, wénators, and so obtaining a statistically significant number of

approximate the projected perturbation region by the area!fflS may take too long. . _ _
a rectangle of lengtha| and widthe. Mirtich and Canny have studieichpulse-basedimulation,

We transfer perturbation probability between adjacent facétgP@radigm for dynamic simulation that addresses these prob-

and then propagate down the QSG as in the quasistéﬁ@s-The method handles frictional collisions in a natural way,
estimate. We transfenp;; from facet F; to adjacent facet and for general three-dimensional (3-D) rigid body simulation,

F; if F; is unstable or ifF; has a lower initial probability 'the simulatoimpulsehas the fastest execution times reported

under the quasistatic estimate. The first condition insures tifatthe literature [28].
the perturbation probability will wind up at a stable facet o o
after propagating through the QSG. Both conditions reflef¢ Computing Frictional Collisions
the intuition that parts will tend to roll toward more stable Details aboutimpulse and a comparison of constraint-
states. The only extra computation is finding the probabilitiethd impulse-based simulation are in [27], [28]. In the lat-
of O(n) perturbation regions and transferring the perturbatiasr paradigm,all interactions between simulated bodies are
probabilities. Therefore the PQS estimate has time complexibffected through frictional collisions, thus a good collision
O(nlogn). model is crucial to physical accuracy. Our model is similar
The parametet in the PQS estimate depends on how fao that of Routh [33], although we derive equations which
the part is dropped, how much mechanical energy it can stosge more amenable to numerical integration. Keller also gives
the coefficients of friction and restitution, and other physicain excellent treatment [18], and Bhatt and Koechling give
and dynamic properties. In our physical experiments, the drapclassification of frictional collisions, based on the flow
heights and materials were constant, so we used data frpaiterns of tangential contact velocity [5]. Finally, Wang and
the first physical experiment to choose a reasonable valueMason have studied two-dimensional (2-D) impact dynamics
this casec = 20°. We used this same value to estimate the for robotic applications, based on Routh’s approach [36].
distribution for all parts. Consider two rigid bodies coming into contact as shown in
The computation time on SPARC20 is less than 1 s f@ig. 6. Each body has a known mass:;, inertia tensorJ;,
all four parts. About 90% of this is used for constructing thinear center of mass velocity;, and an angular velocity;.
convex hull. It is important to keep in mind that the PQ$ r; is the offset vector of the contact point relative to body
is a heuristic estimate. We do not make any claims that this center of mass, then the absolute veloeityof the contact
captures the intricate physics of dynamic collisions. A bett@bint on body: is given by
heuristic may be possible by more sophisticated propagation
of perturbation probabilities which we are now exploring. A

full treatment of dynamic effects, at the price of increaseghq the relative contact velocityat the contact point is given
computation, is described in the next section. by

U, =V, +w; Xr; (6)

V. DYNAMIC SIMULATION u=U — Uz (7)

To obtain more accurate pose distribution predictions, oneDefine a collision coordinate system with thexis aligned
could perform full dynamic simulations of the dropped pamvith the contact normal and directed from body 2 to body 1. If
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the surfaces are not smooth, the normal can be approximated
by the displacement vector between the closest points on the 5
bodies. In this coordinate system, the objects are colliding

if » has negativez (i.e., normal) component. In this case, 4/
a pair of collision impulsesp( and —p) must be applied to
prevent interpenetration; the goal is to compgit®Ve assume:
infinitesimal collision time, the Coulomb friction model, and
Poisson’s hypothesis for restitution.

Infinitesimal collision time implies the positions of the two 4|
bodies may be treated as constant during the collision. Since
p is an impulsive force, the velocities of the bodies changeg: oF
during the course of the collision. Because the frictional forces..
depend on the relative sliding velocity, the velocity profile -1+
during the collision must be analyzed.

Let v denote a collision parameter which starts at 0 and 2|
increases monotonically during the collision. All body veloc-
ities as well as the relative velocity at the contact point are 3
functions of~. Let p(+) be the total impulse imparted up to
point v in the collision. From basic physics

oL

1 5 . . . : . . . .

Avi(y) =—p(v) (8) 5 -4 3 2 A °o 1 2 3 4 5
mi x velocity

_ 71

Awl(’y) - Jl [Irl x P(’Y)]~ (9) Fig. 7.' Trajectories of the t'he _tangemial components _of the system (14) for
Applying (6) gives a particularK. The crosses indicate different initial sliding velocities.
1 1 . . . . . . .
Auy = [m—l — 7 Jy 17’1:|p(’y) (10) This nonlinear differential equation far is valid as long as
1

the bodies are sliding relative to each other. By integrating the
wherel is the 3x 3 identity matrix and; is the canonical equation with respect to the collision parametefi.e., p.),
skew-symmetric matrix corresponding#p. ComputingAu, one can tracke during the course of the collision. Projections
analogously(—p is used instead g#), and applying (7) gives of the trajectories into the:,-u, plane are shown in Fig. 7
1 1 for a particularK.
Ay = K— + —)I— P — 7~‘2J2_17~’2} p(v). (11)  The basic impulse calculation algorithm proceeds as fol-
LA T - lows. After computing the initiake and verifying thatu,
K is negative,u is numerically integrated using (14). is
The 3 x 3 matrix K is symmetric. More importantly, the the independent variable). During integratian, increases,
infinitesimal collision time assumption implies and J; are reaching zero at the point of maximum compression. At this
constant during a collision, hendé is also constant. We canpoint, p.. is the normal impulse applied during compression,
differentiate (11) with respect tg, obtaining and multiplying it by (1 + e) gives its terminating value, by
, , Poisson’s hypothesis for restitution. The integration continues
w =Kp. (12) {5 the terminating value, angis recovered by inverting (11).

1) Sliding Mode: While the tangential component af is 2) Sticking Mode: Sticking occurs if the relative tangential
nonzero, the bodies are sliding relative to each other, gandVvelocity ever vanishes during integration of (14). In this case,
is completely constrained. Leék(v) be the relative direction Coulomb friction requires that the frictional force lie within
of sliding during the collision, that i¥9 = arg(u, + iu,). the friction cone, although its direction is not specified. When

Also choosey to be p., the accumulated normal componensticking is detected, the system first checks whether it is a

of impulse. Under Coulomb friction, one finds that stable sticking condition by setting= (0,0, \)” in (12), and
i cos solving for p’. One can choose such thatp’ is of the form
- = (o, 5,17 If
p = | —psind |. (13) P (@ 5,1)
1 o + 7 < pf (15)
Expressing the right hand side of (13) in termsofand a frictional force lying within the friction cone can maintain
substituting into (12) gives sticking, and sou, = u, = 0 andp’ = («,3,1)7 for the
_u Ug duration of the collision.
» /u% +u2 _If _a2 + 32 >_u_2, the fricti_on is not suffic_ient to maintain
Tl K Uy (14) sticking, and sliding immediately resumes in a directirof
“;J - —uﬁ ' the ray emanating from the origin in the tangential velocity plot
L U Uy (In Fig. 7, 6. ~ 45°). This ray always exists and is unique in

1 cases of instable sticking.
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B. Additional Dynamic Considerations TABLE |
. . . . ORANGE INSULATOR CAP DATA
The dynamic simulation can take into account parameters
that are not considered by the quasistatic and perturbed qua- Quasi- | P'turbed | Dynamic | Physical
sistatic estimators. The flexible feeder system shown in Fig. 1 Pose | Static Q-S Sim. Tests®
dumps parts from an upper belt onto a lower belt in order
to singulate them. Final poses are measured on the lower ! 305 465 419 460
belt. The precise drop height between belts at the time of 2| 373 302 4 262 | 271
the simulation experiments is unknown. We estimate it at 12.0 3| 196 | 198 283 19.7
cm. The horizontal velocity of the parts as they leave the upper 4 8.3 35 30 50
belt was estimated at 5.0 cm/s. The coefficients of friction and 5 4.2 0.0 0.8 2.2
restitution were both estimated to be 0.3. error | 10.1 1.2 4.0 -
Since the parts are in a stable resting state on the upper
belt, before being dropped onto the lower belt, the initial TABLE Il
distribution of orientations is not uniform, but similar to WHITE STEREO BUTTON DATA
the final (initially unknown) distribution. To model this, the
initial orientations for the first 20 drops are chosen randomly, Quasi- | P'turbed | Dynamic | Physical
assuming a uniform distribution ovét Thus we bootstrap the Pose | Static | Q-S Sim. | Tests®
process by estimating the initial pose distribution. ) 345 188 7 758
For all remaining drops, the initial (upper belt) poses are ) 39'9 30'6 0.9 138
chosen from the current estimate of the final pose distribution; ‘ ’ ) i
the results of each simulation run are then used to re-estimate 3 192 20.5 4 10.5
the initial conditions. A slight perturbation (a rotation of up 4 6.3 00 01 0.0
to 1.5 degrees about a randomly chosen axis) is also applied error | 358 | 238 | 44 -
to the initial pose to introduce noise into the system due to
belt vibration. This number is purely a guess; it was not tuned TABLE 1l
during the experiments, but no attempt was made to estimate RECTANGULAR BLACK STEREO BUTTON DATA
it scientifically. Quagf?m;&i—mﬁg;ﬁa
The 20 initial drop tests do not necessarily lead to a unique Pose | Static Qs Sim. Tests®
stationary distribution of initial poses. One improvement over
the method used in our experiments would be to verify a 1 36.2 47.3 54.1 56.0
proposed initial distribution by performing some small, fixed 2 16.0 25.5 24.1 24.5
number of drop tests using it. If the initial and final distribu- 3 17.4 17.0 14.0 13.6
tions match well, the initial distribution is at least stationary 4 8.1 12 1.4 4.4
and therefore a reasonable guess. Otherwise, the bootstrap- 5 10.6 45 53 1.4
ping and verification should be repeated. Alternatively, one 6 75 44 10 03
could perform the bootstrapping and verification steps multiple 7 43 0.0 03 0.0
times, and choose the most stationary distribution to seed the B
o T error | 14.0 5.8 1.4 -
initial distribution for the rest of the drop tests. -
VI. EXPERIMENTAL RESULTS predictions from the physical test percentage, weighted by the
. . . . . frequency with which that state actually occurs.
All of the estimators described in this paper were applled‘el_et i+~ pn represent the probability of each ofstates,

to four test parts. The parts were all small, plastic, rigid partgS measured in the physical test. gt - - , a,, represent the

of the type typically used in automated assembly as shown rresponding probabilities computed by one of the estimators.

n
Fig. 2. For the dynamic simulation, 2000 drops were simulatél:% . S

. : . e error percentage for that estimator is given by
requiring approximately two hours of computation per part.

Part #1 is an insulator cap purchased at a local hardware n
store. Parts #2, #3, and #4 are pushbuttons designed for a e =100 Z pilai — pil. (16)
commercial car stereo system. Geometric models of each part i=1

were constructed by measuring the parts with a ruler. Centers _ .

of mass and moments of inertia for the parts were comput®d Discussion

automatically bylmpulse The quasistatic and perturbed quasistatic estimators are
The system shown in Fig. 1 was used to perform 3595 phyextremely fast, requiring less than a second of computation

ical drop trials. Tables I-IV show the results. All quantities iime for parts with 50 facets. Dynamic simulation is slower;

the tables are percentages. for each part, 2000 drops were simulated, taking approximately
The error percentages included in the tables indicate ttveo hours per part. The data presented in Tables |-V bring

overall performance of each estimator for each sample partit several interesting points concerning the accuracy of the

They are computed as the average deviation of the estimat@&imators’ predictions.
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TABLE IV cost of this method. Suppose the true (unknown) probability
SQUARE BLACK STEREO BUTTON DATA that a part lands in a particular pose jis The number of
Quasi- | P’turbed | Dynamic | Physical times the part lands in this pose overtrials is a binomial
Pose | Static | Q-S Sim. | Tests® random variable, which may often be approximated by a
normal distributiod. A confidence intervastatement is of the
1 357 46.6 68.4 62.2 form: “p lies within the rangé ;. — &, 2+ 6), with 100(1— )%
2 17.5 155 16.6 152 certainty.” Here,;. is the probability estimate obtained from
3 12.1 17.0 6.1 11.0 the n trials, 6 is the allowable error tolerance, amdis the
4 7.2 8.6 6.0 47 level of the statistical test. Givefi and «, one can bound the
5 3.9 1.6 2.7 3.1 number of trials necessary by
6 5.6 1.5 0.0 2.8 a
7 3.8 3.9 03 0.5 ot (1 - 5)
n— ——— <% a7
8 4.2 1.7 0.0 0.0 26
o | 30 23 0.0 0.0 where ®(z) is the cumulative normal distribution function.
10} 2.6 0.7 0.0 0.0 For example, to pinpoint the probability of a particular final
1 22 0.0 0.0 0.0 pose to within 5%, with 90% certainty, = 0.05 anda =
12 2.1 0.5 0.0 0.0 0.10. From (17), 385 trials are sufficient. See [13] for more
error 17.2 10.7 4.8 - information.

The perturbed quasistatic estimator’s predictions are consis- VII. CONCLUSION

tently more accurate than those of the quasistatic estimatorPredicting the pose distribution of rigid parts dropped onto
and the added computation time is negligible. Hence, tleflat surface is important in evaluating part designs for
perturbed quasistatic estimator should always be chosen og&sgembly. These distributions are necessary to estimate feeder
the quasistatic one. throughput, which can then be used to determine how many
The dynamic simulation estimator is the most accurate fe@bots and assembly lines are required to meet specified
all sample parts, except the insulator cap (Table 1), for whigioduction rates. This can greatly reduce the time required
the perturbed quasistatic estimator slightly outperforms it. Th@ set-up or changeover automated factories and hence allow
dynamic simulation estimator’s prediction accuracy is also ttgw products to be more rapidly brought to market.
most consistent; the composite error is less than 5% in allWe have presented three estimators for predicting the pose
cases. Nonetheless, a penalty of three to four orders of magfistributions of rigid parts dropped onto a flat surface. We have
tude in execution time must be paid for this added accurag@mpared the predictions from these estimators to physical test
whether this is appropriate or not depends on the situationresults, and believe that this is the first systematic comparison
In an interactive setting, where a designer is perhaps edf-pose estimators with experiments using real industrial parts.
ing the CAD model of a part in order to improve feeder Our results indicate that a perturbed quasistatic estimator,
throughput, the perturbed quasistatic estimator is clearly thased on a refinement of the quasistatic estimator presented
best choice. The designer need only wait seconds to see HBw38], produces significantly more accurate results, with
changing a part's CAD model alters the pose distribution amggligible added computation time. The perturbed quasistatic
feeder throughput. estimator certainly has the highest accuracy to execution time
The dynamic simulation estimator is useful for obtaining &atio of all three estimators studied. The third estimator, based
more accurate estimate once the design has been determif8dlynamic simulation of the dropped parts using the simulator
or for analyzing the effects of more subtle design changes.Impulse generally gives the most accurate predictions, with
models several factors that are not considered by the standaveraged errors under 5% for all four test parts. This estimator
and perturbed quasistatic estimators, including: friction, cotan also be used to study sensitivities to parameters not
lisions with energy loss, mass moments of inertia, height gfodeled by the other estimators, such as the coefficient of
drop, and initial conditions of the part prior to drop. To studjriction or the initial part velocity. However, this estimator
the effects of varying these parameters, dynamic simulationtékes one to two hours to generate predictions, as opposed
appropriate. to under a second required by the standard and perturbed
The quasistatic methods are based on a uniform distributigrasistatic estimators. In an interactive setting, the quasistatic
of initial orientations. In the common case where the trugstimator is the method of choice, providing reasonably good
distribution is unknown, this is a reasonable guess. In contra@tedictions very quickly. The dynamic simulation estimator
dynamic simulation can produce results for other distributiomgight find application later in the design cycle, where more
just by choosing the random initial orientations from theareful analysis is required.
distribution. If knowledge about the distribution is known, This work in estimating pose statistics complements other
dynamic simulation has an added accuracy advantage over@igoing work in automated assembly. Rebal. and Gold-
quasistatic methods. berg have studied the use of a pivoting gripper for Adept's
Our simulation experiments involved 2000 drop tests. Often'1A common rule of thumb is that the normal approximation is valid if the
fewer trials may be sufficient, reducing the computationalmbers of successes and failures during the trial series both exceed five [13].
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flexible feeder; assuming part pose is known, they give @1p] S. S. G. Lee, B. K. A. Ngoi, L. E. N. Lim, and S. W. Lye, “Deter-
O(m?nlogn) algorithm to generate pivot grasps for a part

with n faces andn stable configurations [32].

[20]

The perturbed quasistatic estimator described in this paper
has been incorporated into a commercial simulation package
where it is used to predict part behavior for rapid desigpy)
of modular workcells such as the one shown in Fig. 1. In
the future, part pose statistics can be used in CAD syster#sz,]
allowing users to alter the design of parts to achieve a desired

distribution of poses.

(23]

ACKNOWLEDGMENT [24]

The authors would like to thank A. Rao and J. Wiegley,

Z. Yeh, and Y. Zhuang for implementing versions of thé?

guasistatic estimator in 1992, 1993, and 1994, respectively,
I. Emiris and J. Canny for the convex hull routine used it#6]
the current implementation, R. Zanutta and |. Nessas for h 59]
with experiments, and R. Brost and B. Shimano for useful

feedback during the research.

(1]

(2]

(3]

(4]

(3]

(6]
(7]
(8]
(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(28]

REFERENCES [29]
S. Akella, W. Huang, K. Lynch, and M. Mason, “Planar manipulation
on a conveyor by a one joint robot with and without sensing,Pinc.  [30]
2nd Workshop Algor. Foundations Rohdfoulouse, France, July 1996.

S. Akella and M. T. Mason, “An open-loop planner for posing polygonal31]
objects in the plane by pushing,” iRroc. IEEE Int. Conf. Robot.
Automat, May 1992.

D. Berkowitz and J. Canny, “Designing parts feeders using dynamic sin32]
ulation,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRAJinneapolis,

MN, 1996.

R. P. Berrety, M. Overmars, F. Van der Stappen, and K. Goldberg, “0Oi33]
fence design and the complexity of push plans for orienting parts,” in
Proc. ACM 13th Symp. Computat. Gepiice, France, June 1997.  [34]
V. Bhatt and J. Koechling, “Classifying dynamic behavior during three-
dimensional frictional rigid body impact,” ifProc. IEEE Int. Conf. [35]
Robot. Automat.May 1994.

G. Boothroyd, C. Poli, and L. E. MurchAutomatic Assembly New

York: Marcel Dekker, 1982. [36]
R. C. Brost, “Analysis and Planning of Planar Manipulation Tasks,”
Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA, Jan. 1991.

M. Caine, “The design of shape interactions using motion constraintg37]
in Proc. IEEE Int. Conf. Robot. Automatl994, pp. 366—-371.

B. Carlisle, K. Goldberg, A. Rao, and J. Wiegley, “A pivoting gripper

for feeding industrial parts,” ifProc. IEEE Int. Conf. Robot. Automat. [38]
May 1994, pp. 1650-1655.

G. Causey and R. Quinn, “Design of a flexible parts feeding system,”
in Proc. IEEE Int. Conf. Robot. Automatl997.

A. Christiansen, A. Edwards, and C. A. Coello, “Automated design diB9]
parts feeders using a genetic algorithm,Aroc. IEEE Int. Conf. Robot.
Automat. (ICRA)Minneapolis, MN, 1996.

A. Deguet, A. Joukhadar, and C. Laugier, “Models and algorithms for
the collision of rigid and deformable bodies,” in P. K. Agarwal, L.
Kavraki, and M. Mason, Edslnternational Workshop on Algorithmic
Foundations of Robotics Wellesley, MA: A. K. Peters, 1998.

J. L. Devore Probability & Statistics for Engineering and the Sciences
Monterey, CA: Brooks/Cole, 1982.

M. A. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,” in Proc. IEEE Int. Conf. Robot. Automatl986, also
in IEEE J. Robot. Automatvol. 4, Aug. 1988.

K. Goldberg,Stochastic Plans for Robotic ManipulatioRh.D. disserta-
tion, Dept. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Aug
1990.

D. Gudmundsson and K. Goldberg, “Estimating and optimizing througl
put of a robotic part feeder using queueing theory,Pioc. Int. Conf.
Intell. Robots Syst. (IROSYictoria, B.C., Canada, 1998.

M. Jakiela and J. Krishnasamy, “Computer simulation of vibrator
parts feeding and assembly,” FProc. 2nd Int. Conf. Discrete Element
Methods Mar. 1993.

J. B. Keller, “Impact with friction,”J. Appl. Mech. vol. 53, pp. 1-4,
Mar. 1986.

mining the probabilities of natural resting aspects of parts from their
geometries,”Assembly Automatvol. 17, no. 2, pp. 137-142, 1997.

L. Lim, B. Ngoi, S. Lee, S. Lye, and P. Tan, “A computer-aided
framework for the selection and sequencing of orientating devices for the
vibratory bowl feeder,’Int. J. Prod. Res.vol. 32, no. 11, pp. 2513-2524,
1994,

K. Lynch, “The mechanics of fine manipulation by pushing,”Rroc.
IEEE Int. Conf. Robot. AutomatMay 1992, pp. 2269-2276.

M. T. Mason, K. Goldberg, and Y. Wang, “Progress in robotic ma-
nipulation,” in Proc. 15th Grantees Conf. Prod. Res. Techndhn.
1989.

G. Maul and N. Jaksic, “Sensor-based solution to contiguous and
overlapping parts in vibratory bowl feeders]’ Manufact. Syst.vol.

13, no. 3, 1994.

G. Maul and M. Thomas, “A systems model and simulation of the
vibratory bowl feeder,’J. Manufact. Systvol. 16, no. 5, pp. 309-314,
1997.

5] B. Mirtich, Y. Zhuang, K. Goldberg, J. Craig, R. Zanutta, B. Carlisle,

and J. Canny, “Estimating pose statistics for robotic part feeders,” in
Proc. IEEE Int. Conf. Robot. Automatl996, pp. 1140-1146.

B. Mirtich, “Impulse-based dynamic simulation of rigid body systems,”
Ph.D. dissertation, Univ. California, Berkeley, Dec. 1996.

B. Mirtich and J. Canny, “Impulse-based dynamic simulation,” in K.
Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, Edghe
Algorithmic Foundations of Robotics Boston, MA: A. K. Peters, 1995.

, “Impulse-based simulation of rigid bodies,” Bymposium on
Interactive 3D Graphics New York: ACM, 1995, pp. 181-188.

P. Moncevicz, M. Jakiela, and K. Ulrich, “Orientation and insertion of
randomly presented parts using viratory agitation, Pimc. ASME 3rd
Conf. Flexible Assembly SysBept. 1991.

J. L. Nevins and D. E. Whitney, “Computer-controlled assemhb8gf.
Amer, vol. 238, no. 2, pp. 62-74, Feb. 1978.

M. A. Peshkin and A. C. Sanderson, “Planning robotic manipulation
strategies for workpieces that sliddEEE J. Robot. Automatvol. 4,

pp. 524-31, Oct. 1988.

A. Rao, D. Kriegman, and K. Goldberg, “Complete algorithms for feed-
ing polyhedral parts using pivot graspsZEE Trans. Robot. Automat.
vol. 12, pp. 331-342, Apr. 1996.

E. J. Routh,Elementary Rigid Dynamics London, U.K.: Macmillan,
1905.

A. C. Sanderson, “Parts entropy methods for robotic assembly system
design,” inProc. IEEE Int. Conf. Robot. Automatl984, pp. 600-608.

M. Shirai and A. Saito, “Parts supply in Sony’'s general purpose
assembly system: SMARTpn. J. Adv. Automat. Technolol. 1, no.
108, 1989.

Y. Wang and M. T. Mason, “Modeling impact dynamics for robotic
operations,” inProc. IEEE Int. Conf. Robot. AutomaMay 1987, pp.
678-685.

J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski, “A com-
plete algorithm for designing passive fences to orient paAssembly
Automat, vol. 17, no. 2, pp. 129-136, Aug. 1997.

J. Wiegley, A. Rao, and K. Goldberg, “Computing a statistical distribu-
tion of stable poses for a polyhedron,” FProc. 30th Annu. Allerton
Conf. Commun., Contr., ComputJniv. lllinois, Urbana-Champaign,
Oct. 1992.

W. Wolfson and S. Gordon, “Designing a parts feeding system for
maximum flexibility,” Assembly Automatvol. 17, no. 2, 1997.

Ken Goldberg (S'84-M'90-SM'98) received the
Ph.D. degree from the School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
in 1990.

He is Associate Professor of industrial engineer-
ing with the University of California, Berkeley. His
primary research interest is geometric algorithms for
feeding, sorting, and fixturing industrial parts.

Dr. Goldberg was named a National Science
Foundation Young Investigator in 1994 and a NSF
Presidential Faculty Fellow in 1995. He is currently

serving his second term on the AdCom of the IEEE Robotics and Automation
Society.



GOLDBERG et al. PART POSE STATISTICS: ESTIMATORS AND EXPERIMENTS

Brian V. Mirtich (S'94—-M’96) received the Ph.D.
degree in computer science from the University o
California, Berkeley, in 1996.

He is a Research Scientist with the Mitsubish
Electric Research Laboratory (MERL), Cambridge
MA. His research interests are in the areas o °
robotics, computer graphics and computational g
ometry, and problems and applications of rigid body"

857

Brian R. Carlisle (SM'99) received the B.S. and
M.S. degrees in mechanical engineering from Stan-
ford University, Stanford, CA.

He is Chairman and Chief Executive Officer
of Adept Technology, Inc., San Jose, CA, which
manufactures and sells industrial robots and vision
systems. He holds several patents including one for
AdeptOne, the world’s first direct-drive robot.

Mr. Carlisle serves on the Board of Directors, Na-
tional Center for Manufacturing Sciences (NCMS),
and the Board of Directors, National Coalition for
Advanced Manufacturing (NACFAM). He is the Past President of the U.S.
Robotic Industries Association and the former Co-Chairman of the Automation
Forum of the National Electrical Manufacturers Association.

Yan Zhuang (S'91-M'95) received the M.A. degree

in applied mathematics and the M.S. degree in

computer science from the University of Southern

California, Los Angeles, in 1995, and is currently ) ) .
pursuing the Ph.D. degree in computer science aohn Canny received the Ph.D. degree in computer science from the

the University of California, Berkeley. Massachusetts Institute of Technology, Cambridge, in 1987.

His research interests include real-time simulation He is a Full Professor with the Computer Science Division, University of
and animation of physically realistic deformationCalifornia, Berkeley, which he joined in 1987. . )
of soft objects, surgical training system, geometric Dr. Canny received the ACM Doctoral Dissertation Award in 1987, the
model simplification, and geometric algorithms forMachtey Award in 1987, was one of the first 20 recipients of a Packard
fixturing, feeding, and sorting industrial parts. Foundation Fellowship in 1989, and became an NSF Presidential Young

Mr. Zhuang is a member of ACM and ASME. Investigator in 1989.

simulation.
Dr. Mirtich is a member of ACM.

John Craig (S'81-M'86) received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1986.

He is Director of R&D, Silma Division, Adept
Technology, Inc., San Jose, CA. His primary inter-
est areas are simulation and off-line programming
of industrial robots, physically-based modelling of
assembly automation systems, discrete event simu-
lation and yield prediction, and user interfaces.

Dr. Craig received the RIA’'s Engelberger Award
in robotics.




