
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002 105

Partial Abductive Inference in Bayesian Belief
Networks—An Evolutionary Computation Approach

by Using Problem-Specific Genetic Operators
Luis M. de Campos, José A. Gámez, and Serafín Moral

Abstract—Abductive inference in Bayesian belief networks
(BBNs) is intended as the process of generating the most
probable configurations given observed evidence. When we are
interested only in a subset of the network’s variables, this problem
is called partial abductive inference. Both problems are NP-hard
and so exact computation is not always possible. In this paper, a
genetic algorithm is used to perform partial abductive inference
in BBNs. The main contribution is the introduction of new genetic
operators designed specifically for this problem. By using these
genetic operators, we try to take advantage of the calculations
previously carried out, when a new individual is evaluated. The
algorithm is tested using a widely used Bayesian network and
a randomly generated one and then compared with a previous
genetic algorithm based on classical genetic operators. From the
experimental results, we conclude that the new genetic operators
preserve the accuracy of the previous algorithm, and also reduce
the number of operations performed during the evaluation of
individuals. The performance of the genetic algorithm is, thus,
improved.

Index Terms—Abductive inference, bayesian belief networks,
evolutionary computation, genetic operators, most probable
explanation, probabilistic reasoning.

I. INTRODUCTION

PROBABILISTIC methods were discarded for some time
as a tool for dealing with uncertain reasoning because they

required too complex a specification and computation. Never-
theless, with the appearance of probabilistic network models
(mainly Bayesian and Markov networks [1], [2]), probability
has enjoyed a spectacular revival, being nowadays one of the
most accepted and used measures of uncertainty.

Bayesian belief networks (BBNs) are used frequently as the
kernel of a probabilistic expert system because they provide an
efficient representation of the joint probability distribution and
allow calculation of probabilities by means of local computa-
tion, i.e., probabilistic computations are carried out over the ini-
tial pieces of information instead of using a global distribution.

In this paper, we are interested in a particular type of infer-
ence, known as abductive reasoning or diagnostic reasoning. In
fact, it is in the field of diagnosis where abductive reasoning
has its clearest application [3]–[5], although other applications

Manuscript received December 10, 1999; revised January 3, 2001 and May
29, 2001. This work was supported by the Spanish Comisión Interministerial de
Ciencia y Tecnología (CICYT) under Project TIC97–1135-CO4–01.

L. M. de Campos and S. Moral are with the Departamento de Ciencias de la
Computación e I.A., Universidad de Granada, 18071 Granada, Spain.

J. A. Gámez is with the Departamento de Informática, Universidad de
Castilla-La Mancha, 02071 Albacete, Spain.

Publisher Item Identifier S 1089-778X(02)02974-0.

exist in natural language understanding [6],[7], vision [8], legal
reasoning [9], plan recognition [10],[11], planning [12], and
learning [13].

Abduction [14] is defined as the process of generating a plau-
sible explanation for a given set of observations or facts. In the
context of probabilistic reasoning, abductive inference corre-
sponds to finding the maximuma posterioriprobability state
of the system’s variables, given some evidence (observed vari-
ables). It is well known that abductive reasoning in BBNs is
a NP-hard problem [15] and this fact has motivated the devel-
opment of approximate algorithms. As abductive inference in
BBNs can be viewed as a combinatorial optimization problem,
the use of optimization meta heuristics arises as a good choice
to solve it in an approximate way.

In [16], an evolutionary computation approach was employed
to tackle the problem of partial abductive inference in BBNs.
Concretely, the kind of evolutionary algorithms employed was
genetic algorithm (GA). GAs [17] are population-based algo-
rithms inspired by the mechanics of natural selection and nat-
ural genetics, i.e., survival of the fittest, and have been applied
widely to many difficult optimization problems. In this paper,
we focus on the design of specific crossover and mutation op-
erators for the problem of partial abductive inference, with the
aim of improving the performance of the GA presented in [16].
To do so, we establish a double goal.

1) As the majority of the computational effort in our problem
is devoted to evaluating individuals (probabilistic propa-
gation), we aim to reduce the number of calculations car-
ried out when an individual is evaluated by reusing some
of the calculations carried out during the evaluation of
previous similar individuals.

2) The GA with new operators should have a degree of accu-
racy similar to that obtained when the classical operators
are used. After all, more important than getting a quick
answer is obtaining a good answer.

The rest of the paper is organized as follows. In Section II,
we revise the problem of abductive inference in BBNs. (Some
introductory material about BBN’s and inference in BBN’s is
given in Appendix I, while knowledge about GAs is assumed.)
In Section III, we briefly review the previous work related to
GAs and abductive inference in BBN’s, providing a more de-
tailed study of the algorithm presented in [16]. In Section IV,
we describe the new genetic operators. Section V describes the
experimentation carried out in order to test the behavior of the
new operators, while the results are shown in Appendix II. Fi-
nally, Section VI contains the concluding remarks.

1087-778X/02$17.00 © 2002 IEEE

106 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

II. PRELIMINARIES

In this section, we briefly revise the problem of abductive
inference in Bayesian networks. To follow this section, some
knowledge about propagation in Bayesian networks is assumed
(see Appendix I for details and notation).

A. Abductive Inference

Abductive inference in BBNs, also known as belief revision
[18] or the most probable explanation (MPE) problem [19] is de-
fined as the problem of finding the MPE of observed evidence.
In the context of BBNs, an explanation for a set of observations

is a configuration of states for the network variables
such that is consistent with , i.e., . In

fact, the explanation is because the values taken by the
variables in are previously known. Given the large number
of possible explanations and since we are interested in the best
explanation, our goal will be to obtain the MPE.

Thus, abductive inference in BBNs [1] corresponds to finding
the maximum a posteriori probability state of the network, given
the observed variables (the evidence). In a more formal way, if

is the set of observed variables and is the set of unob-
served variables, we aim to obtain the configurationof
such that

(1)

where is the observed evidence. Usually, is
known as the MPE.

Dawid [20] has shown that the MPE can be found using prob-
ability propagation methods, but replacing summation by max-
imum in the marginalization operator (due to the distributive
property of maximum with respect to multiplication). There-
fore, the process of searching for the MPE has the same com-
plexity as probabilities propagation. However, in general we are
interested not only in the MPE, but in theMPEs. For example,
in a diagnostic problem, we could probably be more confident
in the diagnosis knowing the set of most probable diagnoses be-
cause we could pay attention to the similarities and differences
of the states taken by the variables in the set of top explanations.

Nilsson [21] has shown that only theupward phase of the
propagation algorithm is necessary in order to perform abduc-
tive inference over a join tree. However, he has also proved that
by using Dawid’s algorithm, only the three most probable con-
figurations can be identified directly, but in general the fourth
cannot be found directly. So, in order to obtain theMPEs
(), more complex methods have to be used [22],[23].

B. Partial Abductive Inference

Sometimes we are interested in obtaining theMPEs only
for a subset of the network’s variables called the explanation set
[24]. This problem is known as partial abductive inference and
we think that, in practical applications, this is more useful than
the classical abductive inference problem. In fact, in system di-
agnosis, we can select as the explanation set those variables rep-
resenting diseases in a medical diagnosis problem, the variables
representing critical components (starter, battery, alternator) in
a car diagnosis problem, etc.

Now, if we denote the explanation set by , then we
aim to obtain the configuration of such that

(2)
where . In general, is not equal to the pro-
jection of the configuration over , so we need to obtain

directly (2).
The process of finding the MPE is more complex than that

of finding because not all join trees obtained from the orig-
inal BBN are valid. In fact, because summation and maximum
have to be used simultaneously and these operations do not show
a commutative behavior, the variables of must form a sub-
tree of the complete join tree. The construction of the join tree
is based on the triangulation of an undirected graph. In partial
abductive inference [25], in order to obtain a valid join tree, in-
stead of searching for arbitrary deletion sequences, we can only
consider sequences in which the variables in come before
the variables in . In [25], it is shown that the size of the ob-
tained join tree grows significantly1 in relation to the size of the
join tree obtained without restrictions and so the propagation al-
gorithm for partial abductive inference will be less efficient than
propagation algorithms for (total) abductive inference.

III. A BDUCTIVE INFERENCE AND GENETIC

ALGORITHMS—PREVIOUS WORKS

GAs have been previously used to address NP-hard problems
related to BBNs, such as triangulation of graphs [26], imprecise
probabilities propagation [27], estimation of a causal ordering
for the variables [28],[29], and learning [30]. Given the success
of these applications, the NP-hardness of the abductive infer-
ence problem and the fact that abductive inference in BBNs can
be defined as a combinatorial optimization problem, several au-
thors have used GAs to approximate a solution (Rojas-Guzman
and Kramer [31],[32], Gelsema [33]). Below, we describe some
relevant points of these algorithms.

In [31] and [32], a chromosome of the population is rep-
resented as a copy of the graph included in the BBN, but in
which every variable has been instantiated to one of its pos-
sible states. This representation makes it possible to implement
the crossover operator as the interchange of a subgraph with the
center in the variable , being randomly selected for each
crossover. In Gelsema’s algorithm [33], a chromosome is a con-
figuration of the unobserved variables, i.e., a string of integers.
In this case, crossover is implemented as the classical one-point
crossover. It is worth noting that Gelsema uses thea priori prob-
abilities of the BBN and the observed evidence to generate the
initial population, so that the search starts in promising regions
of the search space.

The algorithms presented [31]–[33] have in common the use
of the same procedure in order to calculate the fitness of an indi-

1As an example, consider a BBN with seven variablesfX ; . . . ; X ; Y g,
such that there is a linkY ! X for each variableX . If all the variables
can take ten different states, then the size of theoptimumjoin tree obtained in
order to apply probabilities propagation or (total) abductive inference is 600,
while the size of the join tree obtained for partial abductive inference taking
X = fX ; . . . ; X g is 10 .

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 107

vidual. As is proportional to , this value
can be used as thefitnessfor . The calculation of this value
can be easily carried out because the state of all the variables is
known () and so the chain rule (9) can be ap-
plied. Therefore, to evaluate a chromosome, it is necessary
to perform multiplications.

Although the previous algorithms are designed to deal with
the problem of total abductive inference and not with the partial
one, in [33] the task of approximating the best set of (partial)
explanations is attempted by integrating the appropriate mem-
bers occurring in the final population of the GA. As Gelsema
[33] points out, this problem is not a trivial matter, and in fact
Gelsema’s method only finds the best explanation in a small
percentage of the runs, not being ranked as the best in most of
them [16].

De Camposet al. [16] have applied GAs to the problem of
partial abductive inference, but approaching the problem di-
rectly. The rest of this section is devoted to the review of this
algorithm, as it is the basis of the present paper.

1) Representation of the Population:A chromosome or in-
dividual of the population is a configuration of states for the
variables in the explanation set , i.e., a string of integers of
length . Notice that in this case it is not useful to represent
a chromosome as a graph because we are working only with a
subset of the variables in the graph and its associated subgraph
will usually be a set of disconnected graphs.

2) Evaluation Function: In partial abductive inference,
can be used as the fitness for a chromosome.

However, as

it is necessary to use the chain rule times to evaluate a
chromosome. For example, if we have a network with

bivalued variables , , and
, then the number of operations to evaluate a chromosome

is bounded by multiplications and summa-
tions. Clearly, this is computationally intractable given the large
number of individuals to be evaluated in the execution of a GA.
Because of this, de Camposet al. [16] propose to evaluate a
chromosome by means of a probabilistic propagation.

As we can see in Algorithm 1 (Appendix I-B), the probability
can be calculated by summing in the clique root after

the upward phase. When we are going to evaluate a chromo-
some, the state taken by the variables in the explanation set is
known, so we can treat those variables as evidence and calculate

by using the first three steps of Algorithm 1. Algo-
rithm 2 shows the pseudocode of the evaluation function used
in [16].

Algorithm 2: Evaluation Function

Input: The join tree T = fC1; . . . ; Ctg with the

evidence XO = xO previously instantiated.

The configuration xE to be evaluated.

Output: P (xE ; xO).

1. Incorporate XE = xE to T as evidence.

2. for i t downto 2 do

- if ch(Ci)6=; then

M i!fa(i)
C nS (Ci)
 C 2ch(C)M

k!i

else M i!fa(i)
C nS (Ci)

- Send M i!fa(i)

3. 0(C1) (C1)
 C 2ch(C)M
k!1

4. P (xE ; xO) C
 0(c1):

Therefore, to evaluate a chromosome, only the first phase of
probabilities propagation needs to be carried out. Furthermore,
given the type of inference to be performed (probabilities prop-
agation), the join tree over which the propagation will be carried
out is obtained without any constraint and so its size is signifi-
cantly smaller than the (mostly prohibitive) size of the join tree
used for exact partial abduction. Moreover, in [16], the authors
propose three operations in order to improve the efficiency of
the evaluation function: 1) the join tree is precomputed (pruned)
for each explanation set; 2) the way in which the marginalization
(summation) is peformed is modified in order to avoid having to
instantiate the chromosome in the join tree and so it is not neces-
sary to reload the initial potentials when a new chromosome has
to be evaluated; and 3) a hash table is used to store the fitness of
the chromosomes previously evaluated, making it unnecessary
to repeat the propagation. Although in this paper we also take
advantage of these improvements, for the sake of simplicity, we
focus our discussion on the evaluation function as it appears in
Algorithm 2. For more details, see [16].

3) Generation of the Initial Population:Half of the initial
population is generated randomly (the search starts with points
in all the search space) and the other half is generated by simu-
lation, using a procedure inspired in the idea of Gelsema and is
based on Henrion’s probabilistic logic sampling [34] (the search
starts with points in promising regions).

4) Transition From One Population to the Next
: To obtain a new generation, a procedure similar to the mod-

ified GA (modGA) proposed by Michalewicz [35] is used. This
GA falls into the category of preservative, generational, and
elitist selection and has similar theoretical properties as the clas-
sical GA. The main modification with respect to the classical
GA is that in modGA the classical selection step is not per-
formed, but rather distinct chromosomes (usually those that
fit best) are selected from to be copied to .

Other models of GAs (classical and steady state) were consid-
ered at the beginning of our experimentation. Although all the
models worked quite well, when the goal was to search for the
best explanation, we decided to use modGA because its struc-
ture seemed to fit best the problem of searching for theMPEs,
perhaps due to the fact that modGA maintains a subpopulation
containing the best individuals found during the search.

In [16] the parameters used were those cited below. Although
the majority of them have been maintained for this paper, we
indicate those that have been modified.

1) Select the best 50% chromosomes from and copy
them to . In this way, the population diversity
is ensured and the premature convergence problem is
avoided.

108 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

(a) (b)

Fig. 1. (a) Messages sent during the evaluation ofc . (b) Messages sent during the evaluation ofc .

2) 35% of the new population is obtained by crossover.
The crossover operator used is the classical two-point
crossover and the two children obtained are copied to

. In the original work [16], the chromosomes are
selected with a probability proportional to their fitness,
but in this paper, we will use a probability of selection
based on the position in which individuals areranked
according to their fitness. Our experimentation indicates
that this type of selection improves the behavior of our
algorithm, especially with respect to the variability of
the outcomes.

3) 15% of the new population is obtained by mutation. Mu-
tation is carried out by selecting a chromosome from
and modifying one of its components, the resulting chro-
mosome is copied to . We, thus, apply genetic op-
erators on whole individuals as opposed to individual bits
(classical mutation). As Michalewicz [35] points out, this
would provide an uniform treatment of all operators used
in the GA. Theparentsfor mutation are selected from

with a probability based on their rank, except for
thebestchromosome, which is always selected as a parent
(thus, the area in the proximity of the best chromosome is
explored). In the original work, parents for mutation were
selected randomly, but we have changed this for the same
reasons as in the crossover.

Notice that in , only half of the population is new
and so only those chromosomes are candidates to be evaluated
in each generation. This fact is important in our problem be-
cause of the evaluation function complexity. When a new chro-
mosome is evaluated, it is tested to see whether it should be
included in , an array which contains the best individ-
uals obtained from the beginning up to the current generation.
The numbers 50, 35, and 15 were selected by experimentation in
[16], although the behavior of the algorithm seems not to be too
sensitive to small variations around these numbers. However,
a drastic reduction in the number of individuals to be mutated
could degrade (in general) the behavior of the algorithm, espe-
cially with respect to searching the MPEs.

5) Stopping Criterion: The algorithm stops when a fixed
number of iterations () has been carried out. The probability
of the chromosomes stored in is then divided by
in order to obtain .

As in this paper, we are going to experiment with different
population sizes and different ways of initializing the popula-
tion, we have modified the stopping criterion in the following
way: the algorithm stops when the probability mass of the ex-
planations included in does not improve in ten genera-
tions.

IV. DESIGN OF THENEW GENETIC OPERATORS

The main disadvantage of the GA presented in [16] [from now
on called GA with classical operators (GACO)] is the need to
perform a complete upward propagation each time a new chro-
mosome has to be evaluated. In this section, we introduce new
genetic operators to avoid this disadvantage. The new opera-
tors are based on the following idea: when a new chromosome,
obtained by mutation or crossover has to be evaluated, we can
take advantage of some of the calculations carried out during
the evaluation of their parents’ chromosomes. The modification
of GACO to include the new genetic operators will be called
GA with specific operators (GASO). Of course, the evaluation
of a new chromosome in GASO will be faster than in GACO,
although the amount of memory needed will be greater too be-
cause we have to store the relevant information created during
the evaluation of a chromosome. Let us motivate the new oper-
ators with an example.

Example 1:Consider the join tree in Fig. 11 (see Appendix I)
and the explanation set . The messages
required to evaluate the configurations (chromosomes)

and
are shown in Fig. 1(a) and (b), respectively.

The variables inside brackets in each cluster are the separator
set with its father and we will refer to the variables outside the
brackets as theresidual set. We have also underlined the vari-
ables of the explanation set in the residual sets (notice that a

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 109

variable can be included in the separator set of several clusters,
but only in one of them as residual.2)

As variables and take the same value in both configu-
rations and , it is clear that the messages ,
and will be the same in the evaluation of both configura-
tions. Therefore, if we store the calculated messages forand
we use that information for the evaluation of, we only need
to operate in clusters , , and [depicted in dashed line in
Fig. 1(b)].

In fact, in the previous example, we have a subtree with
the same evaluation for both configurations (remarked in
Fig. 1). This gives us the following idea: we can associate a
join tree to each chromosome of the population and implement
the crossover and mutation between trees and not between
chromosomes. In this way, we can avoid the calculations
corresponding to the interchanged subtrees.

The relevant information generated when a chromosome is
being evaluated is the set of messages sent among the clus-
ters. This is good because the size required to store the mes-
sages is much lower3 than the size required to store the clique
potentials. Therefore, in GASO, a chromosome is represented
by a string of integers (as in GACO) plus (a vector containing)
the messages sent during its evaluation. Asnever computes
its message, the vector will be defined from 2 to

, will represent the message sent by
during the evaluation of chromosome.

Algorithm 3 shows the pseudocode of the modified evaluation
function, in which the vector is considered.

Algorithm 3: Modified Evaluation Function

Input: The join tree T = fC1; . . . ; Ctg with the

evidence XO = xO previously instantiated.

The chromosome c to be evaluated and its asso-

ciated vector messages(c).

Output: the fitness for c, P (c; xO).

Auxiliary variable: change
1. Incorporate XE = c to T as evidence.

2. change false

3. for i t downto 2 do

3.1 if messages(c)[i] = NIL then

- if ch(Ci) 6= ; then

M i!fa(i)
C nS (Ci)
 C 2ch(C)M

k!i

else M i!fa(i)
C nS (Ci)

- messages(c)[i] M i!fa(i)

- Send M i!fa(i)

- change true

4. if (change = true) then

 0(C1) (C1)
 C 2ch(C)M
k!1

5. P (xE ; xO) C
 0(c1)

The structure of GASO will be the same as that described
previously for GACO, except the necessary changes in the eval-
uation function in order to adapt it to the new genetic operators.
Before introducing more specifically the mutation and crossover

2The cluster in which the variable is summed out (marginalized).
3In our experiments, the messages take up about the 20%-25% of the size

required to store the clique potentials.

operators, it should be pointed out that the initial population is
evaluated using the evaluation function presented in Algorithm
2 because, at the beginning, there is no information to reuse.

A. Mutation

We shall denote by the separator set of with respect to
its father and by the residual set of , i.e., .
Let us define the following set:

(3)

As the relevant information about a variable is obtained
when this variable is summed out (marginalized) and marginal-
ization is carried out in the cluster which contains the variable

in its residual set, then contains all the clusters that con-
cern us with respect to the explanation set. The proposed
mutation operator is shown in Algorithm 4, where we have used

as the set containing all the clusters in the path between
and the root .

Algorithm 4: Mutation

Input: The chromosome c to be mutated and its

associated vector messages(c).

Output: The mutated chromosome c0 and its asso-

ciated vector messages(c0).

1. Copy c to c0 and messages(c) to messages(c0).

2. Select randomly a cluster Ci 2 CR.

3. Select randomly a variable Xj 2 Ri \XE .

4. Mutate the variable Xj in c0.

5. for all Ck 2 anc(Ci) [fCig do

messages(c0)[k] NIL

Therefore, to evaluate the obtained chromosome, we only
have to carry out new calculations in the cluster containing the
mutated variable and in all their ancestors in the join tree. The re-
maining clusters can reuse the messages calculated forbecause
they are not affected by the modified variable. For example,
if we consider the join tree depicted in Fig. 11 and the expla-
nation set , then .
Fig. 2(a) shows the messages sent during the evaluation of chro-
mosome . If the cluster is selected in Step 2 of Algorithm
4, then it is clear that variable will be mutated and the state
of the join tree to be used for evaluating chromosomeis de-
picted in Fig. 2(b) (where empty messages are the messages to
be calculated and dashed clusters represent the clusters where
new computations have to be carried out).

Notice that in the previous example we have considered one
of the worst cases because the selected cluster is a leaf in the
join tree. For example, if in step two of Algorithm 4 we select
cluster with the result that variable is mutated, then all the
previous messages are valid and the only new computation is
performed in cluster (Step 5 of Algorithm 3).

B. Crossover

In Example 1, we have seen how the variables (more prop-
erly, the clusters of that contain those variables) of the ex-
planation set whose state was changed could be isolated in a
subtree. This gives us the following idea: if we select a cluster

110 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

(a) (b)

Fig. 2. (a) Messages sent during the evaluation ofc . (b) State of the join tree after mutating variableG and before the evaluation ofc .

Fig. 3. Structure of the crossover operator.

of and we interchange between two chromosomesand
, the subtree whose root is , then to evaluate the new

chromosomes and (obtained by interchanging the state of
the explanation set variables contained in the residual set of the
clusters in), we need only to operate on the clusters be-
longing to . Fig. 3 shows the structure of this crossover
and Algorithm 5 shows the pseudocode of the crossover oper-
ator.

Algorithm 5: Crossover

Input: The parent chromosomes c1 and c2 and

their associated vectors messages(c1) and

messages(c2).

Output: The obtained chromosomes c
0

1 and c
0

2,

and their associated vectors messages(c01) and

messages(c02).

1. Copy c1 to c
0

1 and messages (c1) to messages

(c01).

2. Copy c2 to c
0

2 and messages(c2) to messages(c02).

3. Select (randomly) a cluster Ck 2 T .

4. Interchange between c
0

1 and c
0

2, the state

taken by the explanation set variables be-

longing to the residual set of the clusters

contained in Tk \ CR.

5. for all Ci 2 anc(CK) do

- messages(c01)[i] NIL

- messages(c02)[i] NIL

Fig. 4 shows the messages sent during the evaluation of chro-
mosomes and

. If we select cluster
as the crossover point, then the state of variablesand

is interchanged between and , obtaining the two children
and

. Fig. 5 shows the state of the join
tree before evaluating the new chromosomes and we can see that
only one message and two clusters are involved in new compu-
tations, so the evaluation of the two children will be faster.

Remember that if a new chromosome(obtained by mutation
or crossover) has been evaluated previously, we do not recalcu-
late it again, recovering its fitness from the hash table. Then,
the vector will contain some noncalculated mes-
sages. This is no problem for Algorithms 4 and 5, which are
able to deal with empty of null (NIL) messages. The only con-
sequence is that (in general) the number of new computations re-
quired to evaluate an offspring whose father had NIL messages
will be greater. For example, in Fig. 6(a) we have the messages
sent during the evaluation of (messages are represented as
white-headed arrows) and in Fig. 6(b) we have the content of the
vector messages for chromosome(messages are represented
as blackheaded arrows and absence of arrows denotes NIL mes-
sages). If is selected as the crossover point, Fig. 6(c) and (d)
shows the state of the join tree before evaluating the two children

and . It is clear that the state of both join trees is correct for
the application of Algorithm 3, but as a consequence of the NIL
messages in , the number of new computations to be carried
out in is greater than those caused directly by takingas
the crossover point.

1) Selecting the Crossover Point:Step 3 of Algorithm 5
(crossover) is

Select (randomly) a cluster

We may now ask the following two questions.

1) Are all the clusters in good candidates to be selected as
the crossover point?

2) Is random selection the best way to select the crossover
point?

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 111

(a) (b)

Fig. 4. Messages sent during the evaluation of (a)c and (b)c .

(a) (b)

Fig. 5. State of the join tree after performing the crossover and before the evaluation of (a)c and (b)c , whenC has been selected as crossover point.

With respect to the first question, it is clear that the root cannot
be selected as the crossover point because, in that case, the entire
chromosome is interchanged and so the operation does not con-
stitute a crossover. However, the root is not the only cluster to be
avoided as a crossover point. For example, in the join tree shown
in Fig. 7, if we select as the crossover point, the only infor-
mation to interchange is that corresponding to variable. How-
ever, if we select as the crossover point, the interchanged in-
formation is exactly the same, but the subtree to interchange is
greater and, therefore, the number of new computations to eval-
uate the children is smaller. From this example, we can conclude
that it not all the clusters should be regarded as crossover points.

We shall now formalize the previous idea.
Definition 1: The amount of interchanged information when

cluster is selected as the crossover point (denoted as)
is defined as the number of explanation set variables contained
in the residual set of the clusters in. More formally

(4)

Column two of Table I shows the amount of interchanged
information when a cluster is selected as crossover point for the
join tree in Fig. 7.

Definition 2: All the clusters in the join tree arevalid as
crossover points except those included in the following two cat-
egories:

1) the root of the join tree;
2) any cluster such that .
The fourth column of Table I shows the clusters that are con-

sidered as valid crossover points for the join tree in Fig. 7.
At this point, we have answered the first question, but what

about the way a cluster is selected as the crossover point? In
the rest of this discussion, we only consider the clusters that are
valid crossover points. In Table I, we can see that the majority
of the crossover points have a small value of , so if all the
crossover points have the same probability (random selection)
of being selected as the crossover point, then the convergence
of the GA could be slowed down. Therefore, in order to give
priority to the crossover points with higher value of , we can
select a crossover point with probability proportional to .

112 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

(a) (b)

(c) (d)

Fig. 6. Example of crossover with NIL messages. (a) Parent 1. (b) Parent 2.
(c) Child 1. (d) Child 2.

Fig. 7. Join tree.

However, to have a very high value of is not good ei-
ther because, in that case, the children obtained after applying
the crossover will also be very similar to their parents. In our
example, if the children are equal to their parents
except in the state of a variable (the same as for). To
correct this situation, we define as

(5)

Therefore, we will use instead of to implement the
proportional selection

(6)

In order to smooth the differences among the probabilities of
selection, we can apply logarithms

(7)

TABLE I
VALUE OF I(C) FOR EACH CLUSTERC OF FIG. 7

Fig. 8. Structure of the two-point crossover operator.

The third column of Table I shows the values of and the
last three columns of the table show the probability of selection
for three different selection criteria: random, proportional, and
log-proportional.

C. Two-Point Crossover

In order to increase the diversity of possible crossovers, we
introduce the two-point crossover. This operator is a direct adap-
tation of the crossover defined in Section IV-B, but selecting two
clusters as crossover points and interchanging the two subtrees.
The structure of the two-point crossover is shown in Fig. 8.

If denotes the number of valid crossover points in a join
tree with respect to an explanation set , then the number of
different crossovers is:

1) , with one crossover point;
2) , with two crossover points.
In this way, we have increased the number of possible

crossovers significantly; for example, if , we have
passed from ten to an upper limit of 45. This number is an
upper limit because some crossover points are descendants
(in the join tree) of other crossover points and if this situation
occurs during the crossover, we are acting in the same way as
in the case of one-point crossover.

The GASO algorithm with the two-point crossover operator
will be denoted as GASO2.

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 113

TABLE II
SOME CHARACTERISTICS OF THENETWORKSUSED IN THEEXPERIMENTS

TABLE III
DESCRIPTION OF THEEXPERIMENTS

V. EXPERIMENTAL EVALUATION

To evaluate our algorithms we have carried out four exper-
iments, described in Sections V-A. In Section V-B, the per-
formance measures used to compare the different algorithms
are defined. Finally, in Section V-C, the experimental results
are analyzed and some conclusions are formulated. Due to the
great amount of generated data and to make possible a contin-
uous reading of the paper, tables and figures are placed in Ap-
pendix II.

A. Description of the Experiments

Three experiments have been carried out over the well-known
Alarm network4 [38] and the other over an artificially gener-
ated Bayesian network:random100. The networkrandom100
has been generated by allowing a maximum of five parents for
each variable and by using the following procedure5 in order to
generate the probabilities: two uniform random numbersand

are generated and the probability of the two values (marginal
for root nodes and conditional for the rest) of a variable are de-
termined by normalizing and , which gives rise to extreme
probabilities.

Table II shows some information about these networks, where
min, max, and mean make reference to the size of the probability
table attached to each node and states makes reference to the
number of possible values that each variable can take.

Table III shows a brief description of each experiment. The
column informs us of the number of variables included
in the explanation set, while the column informs us of the
way these variables were selected as the explanation set. In all
the experiments, the variables to be included in the explanation

4TheAlarm Bayesian network constitutes a classical problem for the testing
of several types of algorithms (learning, propagation, etc.) in the Uncertainty in
Artificial Intelligence (UAI) community; as an example, we can cite two papers
[36],[37] of the most recent conference on this topic (UAI’2000). This network
has also been used to test previous abductive inference algorithms [32].

5This process of generating Bayesian networks was used by Canoet al. [39]
in order to obtain very complex problems.

set were selected in a pseudorandom way, i.e., several sets con-
taining variables were randomly generated and the most
difficult one to be solved by exact computation was chosen. The
difficulty of a problem was measured as a function of the time
and space needed to solve the problem exactly. To solve the
problem exactly, we have used software implemented in Java
and running on an Intel Pentium III (600 MHz) with 384 MB of
RAM, Linux operating system, together with the JDK 1.2 virtual
machine. The time needed to solve Experiments 1, 2, and 3 was
between 1 and 1.5 h, while solving a total abductive inference
problem using this software takes less than 0.5 s. For Experi-
ment 4, we have not been able to solve the problem exactly be-
cause of memory requirements, i.e., the “out of memory error”
was obtained as response. This error is due to the enormous size
of the join tree obtained from therandom100network by means
of a compilation constrained by the selected explanation set. In
these networks, total abductive inference requires less than 9 s.
Notice that this fact does not imply that all the problems with
these explanation set sizes are equally hard to solve, because the
complexity of the problem depends on: 1) the selected explana-
tion set and 2) the topology of the network. However, the cases
considered here are examples of problems in which exact com-
putation is not suitable.

In all the experiments, five variables have been selected as
evidence, being instantiated to theira priori less probable state.
In the four experiments, we have taken , i.e., we look
for the 50 MPEs. Taking into account the value of, two dif-
ferent population sizes have been considered: 100 (2) and
200 (4). Two ways of creating the initial population have
been considered: random and random heuristic (as
in [16]). Unlike the stopping criterion considered in [16], i.e.,
a fixed number of generations, here the algorithms stop when

(see the next section) does not improve in ten genera-
tions.

The four experiments have been solved by the GACO algo-
rithm and by six versions of the GASO algorithm (GASO1r,
GASO1p, GASO1l, GAS2r, GASO2p, and GASO2l), where the
number indicates if we are using one or two cliques as crossover
points, and the letter denotes the way in which the crossover
points are selected: random (r), proportional (p), or logarithmic
(l).

B. Performance Measures

The data we have collected during the execution of the algo-
rithms is related to the following.

1) The probability mass of the MPEs found. Thus,
and represent the

probability mass of the first 1, 10, 25, and 50 MPEs found
by the exact algorithm and , , ,
and represent the probability mass of the first 1,
10, 25, and 50 MPEs found by the proposed algorithms.
For Experiments 1, 2, and 3, we present the percentage
of probability mass obtained with respect to the exact
algorithm (). For
Experiment 4, because of the absence of exact results,
we directly present .

2) The number of generations performed by the GA.

114 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

3) The number of different6 evaluated individuals during the
execution of the GA.

4) The number of additions and multiplications carried out
during the evaluation of the individuals (propagation).
Notice that these are the basic parameters to be consid-
ered as far as the goal of this paper is concerned because
we try to improve the evaluation of individuals and the
operations involved in the evaluation (probabilistic prop-
agation) are combination (multiplication) and marginal-
ization (addition).

In the tables, the best result in each major column (e.g, av-
erage for %mass1) is in boldface. All the algorithms have been
run 50 times over each experiment and, therefore, the average
() and the standard deviation (SD) are shown. Moreover, a
statistical study7 has been done in order to ascertain whether
there are significant differences among the algorithms used.
The Tukey (Studentized) testwith a 0.05 level of significance
has been used for the analysis of two samples: GACO versus
GASO1r, GACO versus GASO1l, etc. When significant differ-
ences are found, they are shown in the average column of the
tables (see Appendix II-A) by:

1) a plus sign () for significant difference in favor of
GASO;

2) a minus sign () for significant difference in favor of
GACO.

In fact, statistical tests are performed not only between the
GASO algorithms and GACO, but also between every pair of
GASO algorithms: GASO1r versus GASO1p, GASO1r versus
GASO1, etc. The information produced by these tests is summa-
rized with the help of the Student–Newman–Keuls (SNK) mul-
tiple range test (with 0.05 level of significance). This method
works in the following way:

1) order the means ;
2) call compare().
Compare(): Compare and by using a critical value

determined by the significance level of the test, the degrees of
freedom from the analysis of variance, and the number of means
in the range of means being tested. If the range is not significant,
no further testing is done and the set of considered means is
declared homogenous. Otherwise, call compare() and
compare().

The method first ranks the means (averages) from smallest to
largest and then looks for homogenous intervals of values. This
is done by a recursive procedure. It tests the difference between
the smallest and largest means of a sequence. If it is not signif-
icant, then all the sequence is considered homogenous. In other
case, two new intervals are generated for test: one removing the
smallest value of the sequence and the other by removing the
largest value. A more detailed description can be found, e.g.,
in [40]. The output of this test is shown in a compact way by
means of diagrams like the one displayed in Fig. 9. On it, the
intervals with no significant differences are connected with hor-
izontal lines. The meaning of this diagram can be interpreted as
the following.

6Notice that due to the use of a hash table, no propagation is carried out when
an individual is revisited.

7The BMDP program has been used to perform the statistical analysis of the
experimental results.

Fig. 9. Example of the output produced by the multiple test. Notice that in this
kind of diagram, GASO has been abbreviated to SO and GACO to CO.

1) The algorithms are ordered from best average (b) (left) to
worst average (w) (right).

2) Four groups are established {GASO1l, GASO1p,
GASO1r}, {GASO1p, GASO1r, GASO21}, {GASO2l,
GASO2r, GASO2p}, and {GACO}, indicating that
neither of the average differences between the algorithms
included in each group are significant.

3) Since no line connects the {GACO} group with any
other group, it differs significantly from all the other
algorithms.

4) Since no line connects GASO1l with the {GASO2l,
GASO2r, GASO2p} group, these groups differ signifi-
cantly from each other.

5) A similar conclusion to the previous one can be obtained
for {GASO1l, GASO1p} with respect to {GASO2r,
GASO2p}.

The obtained diagrams are shown in Appendix II-B. When
there is no diagram for some of the studied parameters (i.e.,
mass1), it means that there is a line grouping all the algorithms,
i.e., there is no significant difference between them.

In order to analyze the different options in relation with the
population (size and initialization), statistical tests have been
carried out among the four combinations: R1, H1, R1, H2,
where “R” is random population, “H” is 1/2 heuristic popula-
tion, “1” is population of size 100, and “2” is population of size
200. The analysis has been carried out from the results obtained
by GASO1p and GASO2p. We have selected proportional
selection of crossover points because it seems to be the medium
case. The diagrams obtained are shown in Appendix II-B.

C. Analysis of the Experimental Results

From the experimental results obtained and with the help of
the statistical analysis carried out, the two main conclusions ob-
tained are the following.

1) The accuracy of the GA with the new proposed operators
is similar to the accuracy of the GA in which the clas-
sical operators are used. In fact, there is no significant
difference with respect to mass1 and mass10 in any of
the experiments carried out. The statistical analysis has
revealed that significant differences exist with respect to
mass25 and mass50 in a few cases, but sometimes in favor
of GACO (9) and sometimes in favor of GASO (15).

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 115

2) The way in which the individuals are evaluatd has been
improved. In fact, in all the series,8 significant differences
in favor of GASO versus GACO have been found with re-
spect to the number of multiplications and additions car-
ried out during the evaluation of individuals.

As these conclusions coincide with our goals, we think that
the new genetic operators proposed constitute a considerable
improvement to the problem of tackling partial abductive infer-
ence in BBNs by GAs. Moreover, from the experimentation and
the statistical analysis, the following more specific conclusions
can also be obtained.

1) GASO Versus GACO:
1) There is no series in which a significant difference unfa-

voralbe to GASO2l or GASO2r has been found with re-
spect to mass(1, 10, 25, 50).

2) The differences found with respect to additions are,
roughly speaking, that GACO requires between 1.7 and
2.4 more additions than GASO. In the case of multipli-
cations, GACO requires, roughly speaking, between 1.3
and 1.8 more multiplications than GASO. Notice that
the reduction ratios are different even for the experi-
ments carried out over the same network, which is due
to the fact that savings depend on the topology of the
precomputated join tree, and on the way variables in the
explanation set are distributed over the join tree.

3) With respect to the number of generations carried out,
we can see that significant differences unfavorable to
GASO1r with respect to GACO can be observed in
some cases (one in Experiments 2 and 4, and three in
Experiment 3). By contrast, significant differences in
favor of GASO2l with respect to GACO can be observed
in 12 of the 16 series.

4) The behavior of the two approaches seems to be similar
with respect to the number of different evaluated individ-
uals, except in experiment 4, where several times signif-
icant differences have been found in favor of the GASO
approach. The four cases in which significant differences
are observed in favor of GACO are always with respect
to the random selection of crossover points.

5) The extra amount of computer memory required by the
GASO approach can be calculated by using the following
expression:

(8)

where is the percentage of space required to store the
messages with respect to the space required to store the
cliques in join tree. In our experimentshas taken values
in the interval [0.2, 0.27]. Therefore, if a double needs
four bytes to be represented, then the computer memory
necessary to store the join tree in Experiments 1, 2, and
3 is about 5 kB, while 18 kB are required to store the
join tree used in Experiment 4. However, if the GASO ap-
proach is applied and population size is 200, then about
150 kB, 156 kB, 125 kB and 745 kB are required to store
the vector in Experiments 1, 2, 3, and 4, re-
spectively. As we can see, the amount of memory required

8Sixteen series have been carried out: four experiments by four population
combinations.

has increased with respect to the GACO approach, al-
though these memory requirements are clearly affordable
in today’s personal computers.

2) Different GASO Approaches:For this analysis, we focus
on the best group determined by the SNK test. By best group,
we mean the group in which the algorithm with the best average
is included. Notice that this does not mean that there are sig-
nificant differences between all the algorithms included in this
group and those that are excluded, but there is (at least) a sig-
nificant difference between the algorithm with the best average
and those that are excluded from the best group.

1) Accuracy:The accuracy exhibited by the six GASO algo-
rithms is similar. In fact, in all the series except one, the
six algorithms are included in the same group by the sta-
tistical analysis carried out. In the remaining one, there is
a significant difference in favor of the two-point crossover
approach with respect to the one-point approach.

2) Additions and multiplications:In this case, it seems that
when significant differences exist (12 of the 16 series),
they favor the one-point approach (except GASO1r,
which is excluded in four of the 12 series). The expla-
nation of this fact lies (in our opinion) in the greater
portion of the join tree that has to be reevaluated when
the two-point crossover approach is used.

3) Generations:From the analysis, it can be observed that
GASO2p and GASO2l are always included in the best
group. Although GASO1l and GASO2r are sometimes in-
cluded in the best group, it can be deduced that GASO2p
and GASO2l are the algorithms needing a small number
of generations before the stopping criterion is met.

4) Individuals: In 11 of the 16 series, all the algorithms are
included in the same group. In four of the five remaining
series, GASO1r is excluded from the best group. There-
fore, in this case, the six GASO algorithms seem to have
a similar behavior, the random selection being a bit more
unstable.

3) Different Population Options:

1) Accuracy:Three different groups can be considered here.
a) Experiment 2: This problem seems to be the easiest

one considered here, and no significant differences
between the four combinations are found.

b) Experiments 1 and 3:In these cases, the worst
choice is R1, which is always excluded from the
best group. The best option seems to be H2 because
it is always included in the best group and also has
the best average. However, H1 and R2 seem to be
competitive with H2, being included in the best
group most often.

c) Experiment 4:This case is strikingly different from
the previous one because the heuristic initialization
of the population yields worse results than a whole
random initialization.

Therefore, it seems that the introduction of promising
individuals in the initial population contributes to focus
the search to promising regions of the search space, al-
though in some situations (Experiment 4) these regions
can be local optima, being too difficult for the algorithm
to escape from them. Although in this paper we have al-
ways used the same percentage (50%) as in [16], it might

116 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

be a good idea to reduce the percentage of heuristic indi-
viduals introduced in the initial population.

2) Generations:With respect to this parameter, it is clear that
the presence of heuristic individuals focuses the search;
hence, and need a smaller number of generations
than and to meet the stopping criterion.

3) Individuals, additions, and multiplications:For these pa-
rameters, the four combinations are usually classified in
separate groups. Taking into account the averages, the
order in which they are ranked is

.Therefore, is the choice that consumes fewer re-
sources. Taking into account this fact and also that we are
trying to solve an inference problem (so a quick response
is usually important), together with the conclusion previ-
ously obtained from theaccuracyparameters (introduc-
tion of less than 50% of heuristic individuals), it seems
that the best choice would be if we need a quick an-
swer and if more time is available.

VI. CONCLUDING REMARKS

The problem of performing partial abductive inference in
BBNs has been studied. We have improved a previous GA
(GACO [16]) by introducing new specific genetic operators,
which take into account the way the chromosomes are being
evaluated. With the introduction of these new operators, the
process of evaluating new individuals (the most time con-
suming process in our GA) requires less computation and so the
resulting GA performs faster. Moreover, from the experimental
study carried out, we can conclude that the accuracy of the new
GA (GASO) is similar to the one obtained by the previously
known GA (GACO).

One disadvantage of the new operators with respect to the
classical genetic operators used in GACO is the extra amount of
computer memory required in GASO, but nowadays, this fact
does not constitute a major problem, while any gain in response
time is very much appreciated.

In our future work, we plan to study other ways of evaluating
a chromosome (approximate computation) and the use of other
optimization techniques such as simulated annealing[41] or tabu
search[42], [43].

APPENDIX I
PROPAGATION IN BAYESIAN NETWORKS

In this appendix, we introduce the Bayesian networks for-
malism (Appendix I-A) and describe how the basic inference
task (probabilities or evidence propagation) is carried out (Ap-
pendix I-B).

A. Bayesian Networks

A BBN [1], [44] is a directed acyclic graph where each node
represents a random variable and the topology of the graph de-
fines a set of conditional independence properties. These prop-
erties can be identified using a graphical criterion called d-sep-
aration (see [1]). The quantitative part of the model is given by
a probability distribution for each node conditioned to its par-
ents. For example, Fig. 10 shows a Bayesian network with eight
variables.

Fig. 10. Bayesian network.

Before proceeding, we define the following notation. A lower
case subscript indicates a single variable (e.g.,). An upper
case subscript indicates a set of variables (e.g.,). For some
particular problems, the propositional variables are denoted by
capital letters without subscript . The state taken by
a variable is denoted by and the configuration of states
taken by a set of variables is denoted by . That is, cap-
ital letters are reserved for variables and sets of variables and
lowercase letters are reserved for states and configurations of
states. The set of different states that a variablecan take is
denoted by and the set of different configurations that a
subset of variables can take is denoted by .

If is the set of variables in the network,
then using the independence relationships encoded in the graph,
the joint probability can be factorized as

(9)

where contains the parents of in the graph. This
equation is known as the chain rule and allows us to represent
the joint probability distribution efficiently. For example, for the
network in Fig. 10, the number of values to be stored in order
to represent the joint probability distribution is 256 if each vari-
able can take two different states and 6561 if the number of dif-
ferent states is three. However, using the chain rule, the number
of values to be stored is 38 for the two states per variable case
and 109 for the three states per variable case.

B. Probabilities Propagation

The main type of inference in Bayesian networks is known
as probabilities propagation or evidence propagation. This
problem consists of obtaining the probability of a variable

given some observations (the evidence). For
example, what is the probability of having the flu knowing that
the patient has a cough and temperature?

In general, we are interested in obtaining thisa posteriori
probability for all the unobserved variables, so, if is
the observed evidence, the goal is to obtain for every

, where the backslash denotes the set difference
operation.

To compute , it is enough to compute
for every as the former is proportional to the
later. In fact, we have and

. To compute , we cannot
apply the chain rule (9), as this expression provides a factoriza-
tion of the joint probability distribution for all the variables in

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 117

the problem and here we need the probability distribution for
variables . If , then we have

(10)

The chain rule can be applied to compute each probability
, but we should apply it

times, adding the results afterwards. This approach is clearly
unfeasible even for moderate sets of probability distributions.
In the last few years, many algorithms [1], [45]–[48] have been
proposed to solve this problem (in an exact way) by taking
advantage of the conditional (in)dependences among variables
given by the structure of the graph. These algorithms are called
propagation algorithms because computations are performed lo-
cally and information is shared among the nodes in a network
by means of messages that are sent (propagated) across this net-
work. Although the propagation problem is NP-hard [49] in the
worst case, the existing algorithms work efficiently for moderate
size networks.

Nowadays, the most frequently used propagation algorithms
are based in the transformation (compilation) of the Bayesian
network in a secondary structure called join tree or junction tree
in which the calculations are carried out. A join tree is a tree
whose nodes are clusters of variables and in which the following
two properties hold.

1) For each variable in the Bayesian network, there is
at least one cluster in the tree containing the set of
variables .

2) Running intersection property:If and are two clus-
ters in the join tree, then the variables in are con-
tained in every cluster along the path betweenand .

Property 1 is necessary in order to establish a potential repre-
sentation of the joint probability distribution. Each clusterin
the tree has associated a potential function .
These potentials are initialized in the following way.

1) For all clusters in the join tree, do ,
.

2) For all variables in the network, select one (and only
one) cluster , such that , and do

, where represents
point-by-point multiplication. (In this context, the opera-
tion is known ascombination).

After this initialization of the clusters, if denotes the set of
clusters in the join tree, then the following expression represents
a factorization of the joint probability distribution:

(11)

Running intersection property is necessary in order to ensure
that computations can be carried out in a local manner, i.e., to
ensure consistency in the message passing scheme (see [44] for
details).

A join tree can be viewed as an undirected graph or as a di-
rected graph if we select a cluster as the root. Fig. 11 shows a
join tree for the network in Fig. 10, where cluster 1 has been
selected as the root.

Associated with each edge of the join tree is a separator,
which is the set of variables in the intersection of the two clusters
at the endpoints of the edge. We use to denote the separator
between and .

Fig. 11. Multiple test for Experiment 1 with random population of size 100.

Depending on the way the inference is executed over the
join tree, we have several architectures: Lauritzen–Spiegelhalter
[46], Shafer–Shenoy [48], and HUGIN [50]. In this paper, we
focus on the Shafer–Shenoy architecture because it is the sim-
plest to explain and understand. Furthermore, for the propa-
gation tasks here required (abductive inference and likelihood
computation), the three architectures are equivalent.

In the Shafer–Shenoy architecture, there are two messages in
the separator between each pair of adjacent clustersand

, one in each direction. will denote the message from
to . The values of the messages are defined recursively

according to the following expression:

(12)

where is the set of neighboring clusters of .
The process of reducing a potential to a subset of variables of

the original set is calledmarginalization. In this algorithm, the
marginalization is carried out by a summation over the variables
of the original set that are not in the subset.

Note that the message going from to depends on the
potential in cluster as well as all the messages ar-
riving at from a cluster different from .
The propagation algorithm consists in an orderly computation
of messages in order to ensure thatsends a message to
when all the necessary elements to compute it are available, i.e.,

has collected information (messages) from all its neighbors
except .

During the propagation, the messages flow in two phases:
upward (from leaves to top) and downward (from top to leaves).
After the two phases thea posterioriprobability of each variable
can be calculated. Algorithm 1 shows the pseudocode of the
propagation algorithm.

1) The evidence is incorporated to the join tree
in the following way (by we denote the configuration
obtained from after removing the literals corresponding
to the variables not in)

.
(13)

118 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

2) The message passing scheme is controlled by means of
an iterative procedure, which uses a topological ordering
of the clusters in the join tree, i.e., if is an
edge in the tree, then . The direction of the edges
is established choosing as the root. In the paper, we
suppose that is always the root and that is
a topological ordering.

3) In the algorithm, denotes the set of children of
in , denotes the father of in , and

denotes the index of .

Algorithm 1: Probabilities Propagation in a Join

Tree

Input: The join tree T = fC ; . . . ; C g. The evidence

X = x .

Output: P (X jx) for all unobserved variable X .

1. Incorporate evidence X = x to T .

2. Upward phase

2.1 for i t downto 2 do

- Calculate and send M

2.2 (C) (C)
 M

3. P (x) (c) If P (x) = 0 exit.

4. Downward phase

4.1 for i 2 to t do

- Calculate and send M

5. for all X 2=X do

5.1 Select a cluster C such that X 2 C

5.2 (X) (C)

5.3 P (X jx) (X)=P (x)

In Step 3, if , the evidence is impossible, so there
is no reason to continue with the calculations. Algorithm 1 as-
sumes the existence of observed evidence; otherwise, Steps 1,
3, and 5.3 are not executed.

The crucial factor determining the complexity of the com-
putations is the size of the clusters. Each potential defined on
cluster needs values. So, the number of opera-
tions to send a message fromto is of this order of magni-
tude. The number of messages can always be made linear in the
number of variables. The problem is that is ex-
ponential in the size of . So, the propagation is feasible only
if we are capable of obtaining a join tree such that each cluster
has a reduced number ofvariables. This, in general, mainly de-
pends on the topology of the original network, but there are sit-
uations in which this never happens. Even the problem of ob-
taining an optimal join tree (minimum cluster size) is equivalent
to obtaining an optimal triangulation sequence of an undirected
graph and this problem is known to be NP-hard [51]

APPENDIX II
EXPERIMENTAL RESULTS

A. Output of the Algorithms
TABLE IV

RESULTSFOR EXPERIMENT 1 WITH RANDOM INITIAL POPULATION OF SIZE 100

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 119

TABLE V
RESULTSFOR EXPERIMENT 1 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 100

TABLE VI
RESULTSFOR EXPERIMENT 1 WITH RANDOM INITIAL POPULATION OF SIZE 200

120 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

TABLE VII
RESULTSFOR EXPERIMENT 1 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 200

TABLE VIII
RESULTSFOR EXPERIMENT 2 WITH RANDOM INITIAL POPULATION OF SIZE 100

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 121

TABLE IX
RESULTSFOR EXPERIMENT 2 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 100

TABLE X
RESULTSFOR EXPERIMENT 2 WITH RANDOM INITIAL POPULATION OF SIZE 200

122 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

TABLE XI
RESULTSFOR EXPERIMENT 2 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 200

TABLE XII
RESULTSFOR EXPERIMENT 3 WITH RANDOM INITIAL POPULATION OF SIZE 100

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 123

TABLE XIII
RESULTSFOR EXPERIMENT 3 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 100

TABLE XIV
RESULTSFOR EXPERIMENT 3 WITH RANDOM INITIAL POPULATION OF SIZE 200

124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

TABLE XV
RESULTSFOR EXPERIMENT 3 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 200

TABLE XVI
RESULTSFOR EXPERIMENT 4 WITH RANDOM INITIAL POPULATION OF SIZE 100

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 125

TABLE XVII
RESULTSFOR EXPERIMENT 4 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 100

TABLE XVIII
RESULTSFOR EXPERIMENT 4 WITH RANDOM INITIAL POPULATION OF SIZE 200

126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

TABLE XIX
RESULTSFOR EXPERIMENT 4 WITH 1/2 HEURISTIC INITIAL POPULATION OF SIZE 200

B. Multiple Test Diagrams

Fig. 12. Multiple test for Experiment 1 with random population of size 100.
Fig. 13. Multiple test for Experiment 1 with 1/2 heuristic population of size
100.

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 127

Fig. 14. Multiple test for Experiment 1 with random population of size 200.

Fig. 15. Multiple test for Experiment 1 with 1/2 heuristic population of size
200.

Fig. 16. Multiple test for Experiment 2 with random population of size 100.

Fig. 17. Multiple test for Experiment 2 with 1/2 heuristic population of size
100.

Fig. 18. Multiple test for Experiment 2 with random population of size 200.

Fig. 19. Multiple test for Experiment 2 with 1/2 heuristic population of size
200.

128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

Fig. 20. Multiple test for Experiment 3 with random population of size 100.

Fig. 21. Multiple test for Experiment 3 with 1/2 heuristic population of size
100.

Fig. 22. Multiple test for Experiment 3 with random population of size 200.

Fig. 23. Multiple test for Experiment 3 with 1/2 heuristic population of size
200.

Fig. 24. Multiple test for Experiment 4 with random population of size 100.

Fig. 25. Multiple test for Experiment 4 with 1/2 heuristic population of size
100.

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 129

Fig. 26. Multiple test for Experiment 4 with random population of size 200.

Fig. 27. Multiple test for Experiment 4 with 1/2 heuristic population of size
200.

Fig. 28. Multiple test for GASO1p and GASO2p in Experiment 1.

Fig. 29. Multiple test for GASO1p and GASO2p in Experiment 2.

130 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

Fig. 30. Multiple test for GASO1p and GASO2p in Experiment 3.
Fig. 31. Multiple test for GASO1p and GASO2p in Experiment 4.

ACKNOWLEDGMENT

The authors would like to thank D. B. Fogel and the anony-
mous reviewers for their careful reading of this paper and for
their constructive and valuable comments, which have helped
to improve the quality and the presentation of the paper.

REFERENCES

[1] J. Pearl,Probabilistic Reasoning in Intelligent Systems. San Mateo,
CA: Morgan Kaufmann, 1988.

[2] E. Castillo, J. M. Gutiérrez, and A. S. Hadi, “Expert systems and prob-
abilistic network models,” inMonographs in Computer Science, New
York: Springer-Verlag, 1997.

[3] Y. Peng and J. A. Reggia, “A probabilistic causal model for diagnostic
problem solving. Part one,”IEEE Trans. Syst., Man, Cybern., vol.
SMC-17, pp. 146–162, Mar. 1987.

[4] , “A probabilistic causal model for diagnostic problem solving. Part
one,”IEEE Trans. Syst., Man, Cybern., vol. SMC-17, pp. 395–406, May
1987.

[5] E. S. Gelsema, “Diagnostic reasoning based on a genetic algorithm op-
erating in a Bayesian belief network,”Pattern Recognit. Lett., vol. 17,
pp. 1047–1055, Sept. 1996.

[6] E. Charniak and E. McDermott,Introduction to Artificial Intelli-
gence. Reading, MA: Addison-Wesley, 1985.

[7] M. E. Stickel, “A Prolog-like inference system for computing min-
imum-cost abductive explanations in natural language interpretation,”
AI Center, SRI International, Menlo Park, CA, Tech. Rep. 451, 1988.

[8] U. P. Kumar and U. B. Desai, “Image interpretation using Bayesian net-
works,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 74–78,
Jan. 1996.

[9] P. Thagard, “Explanatory coherence,”Behav. Brain Sci., vol. 12, no. 3,
pp. 435–467, 1989.

[10] D. E. Appelt and M. Pollack, “Weighted abduction for plan ascription,”
User Model. User-Adapted Interaction, vol. 2, no. 1–2, 1991.

[11] H. Kautz and J. Allen, “Generalized plan recognition,” inProc. Nat.
Conf. Artificial Intelligence, Aug. 1986, pp. 32–37.

[12] D. Poole and K. Kanazawa, “A decision-theoretic abductive basis for
planning,” in Proc. AAAI Spring Symp. Decision-Theoretic Planning,
Mar. 1994, pp. 232–239.

[13] P. O’Rorke, S. Morris, and D. Schulenberg, “Theory formation by ab-
duction: Initial results of a case study based on the chemical revolu-
tion,” Dept. Info. Comput. Sci., Univ. California, Irvine, CA, Tech. Rep.
ICS-TR-89-25, 1989.

[14] H. E. Pople, “On the mechanization of abductive logic,” inProc. 3rd Int.
Joint Conf. Artificial Intelligence, 1973, pp. 147–152.

[15] S.E. Shimony, “Finding maps for belief networks is NP-hard,”Artif. In-
tell., vol. 68, no. 2, pp. 399–410, July 1994.

DE CAMPOSet al.: PARTIAL ABDUCTIVE INFERENCE IN BAYESIAN BELIEF NETWORKS 131

[16] L. M. d. Campos, J. A. Gámez, and S. Moral, “Partial abductive infer-
ence in Bayesian belief networks using a genetic algorithm,”Pattern
Recognit. Lett., vol. 20, no. 11-13, pp. 1211–1217, 1999.

[17] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,”IEEE Trans. Evol. Comput.,
vol. 1, pp. 3–17, Apr. 1997.

[18] J. Pearl, “Distributed revision of composite beliefs,”Artif. Intell., vol.
33, no. 2, pp. 173–215, Oct. 1987.

[19] B. K. Sy, “Reasoning MPE to multiply connected belief networks using
message passing,” inProc. 11th Natl. Conf. AI, July 1992, pp. 570–576.

[20] A. P. Dawid, “Applications of a general propagation algorithm for prob-
abilistic expert systems,”Statistics Comput., vol. 2, pp. 25–36, 1992.

[21] D. Nilsson, “An algorithm for finding the most probable configurations
of discrete variables that are specified in probabilistic expert systems,”
M.Sc. thesis, Univ. Copenhagen, Copenhagen, Denmark, 1994.

[22] , “An efficient algorithm for finding the M most probable config-
urations in Bayesian networks,”Statistics Comput., vol. 8, no. 2, pp.
159–173, June 1998.

[23] B. Seroussi and J. L. Goldmard, “An algorithm directly finding the K
most probable configurations in Bayesian networks,”Int. J. Approx.
Reason., vol. 11, no. 3, pp. 205–233, Oct. 1994.

[24] R. E. Neapolitan,Probabilistic Reasoning in Expert Systems. Theory
and Algorithms, New York: Wiley, 1990.

[25] L. M. d. Campos, J. A. Gámez, and S. Moral, “On the problem of per-
forming exact partial abductive inference in Bayesian belief networks
using junction trees,” inProc. 8th Int. Conf. Information Processing and
Management of Uncertainty in Knowledge-Based Systems, July 2000,
pp. 1270–1277.

[26] P. Larrañaga, C. M. Kuijpers, M. Poza, and R. H. Murga, “Decomposing
Bayesian networks: Triangulation of the moral graph with genetic algo-
rithms,” Statistics Comput., vol. 7, no. 1, pp. 19–34, 1997.

[27] A. Cano and S. Moral, “A genetic algorithm to approximate convex
sets of probabilities,” inProc. 6th Int. Conf. Information Processing
and Management of Uncertainty in Knowledge-Based Systems, 1996,
pp. 847–852.

[28] P. Larrañaga, C. Kuijpers, and R. Murga, “Learning Bayesian network
structures by searching for the best ordering with genetic algorithms,”
IEEE Trans. Syst., Man, Cybern., vol. 26, pp. 487–493, July 1996.

[29] L. M. de Campos and J. F. Huete, “Approximating causal orderings for
Bayesian networks using genetic algorithms and simulated annealing,”
in Proc. 8th Int. Conf. Information Processing and Management of Un-
certainty in Knowledge-Based Systems, July 2000, pp. 333–340.

[30] P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers,
“Structure learning of Bayesian networks by genetic algorithms. A
perfomance analysis of control parameters,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 18, pp. 912–926, Sept. 1996.

[31] C. Rojas-Guzman and M. A. Kramer, “Galgo: A genetic algorithm deci-
sion support tool for complex uncertain systems modeled with Bayesian
belief networks,” inProceedings of the 9th Conference on Uncertainty
in Artificial Intelligence. San Mateo, CA: Morgan Kauffman, 1993,
pp. 368–375.

[32] , “An evolutionary computing approach to probabilistic reasoning
in Bayesian networks,”Evol. Comput., vol. 4, no. 1, pp. 57–85, Spring
1996.

[33] E. S. Gelsema, “Abductive reasoning in Bayesian belief networks using
a genetic algorithm,”Pattern Recognit. Lett., vol. 16, no. 8, pp. 865–871,
Aug. 1995.

[34] M. Henrion, “Propagating uncertainty in Bayesian networks by prob-
abilistic logic sampling,” inUncertainty in Artificial Intelligence 2, J.
Lemmer and L. Kanal, Eds. Amsterdam, The Netherlands: North-Hol-
land, 1988, pp. 149–263.

[35] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Pro-
grams, 3rd ed. New York: Springer-Verlag, 1996.

[36] J. Cheng and M. J. Druzdzel, “Computational investigation of low-dis-
crepancy sequences in simulation algorithms for Bayesian networks,”
in Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth
Conference (UAI-2000). San Mateo, CA: Morgan Kaufmann, 2000,
pp. 72–81.

[37] N. Friedman and D. Koller, “Being Bayesian about network structure,”
in Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth
Conference (UAI-2000). San Mateo, CA: Morgan Kaufmann, 2000,
pp. 201–210.

[38] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, “The
ALARM monitoring system: A case study with two probabilistic infer-
ence techniques for belief networks,” inProceedings of the Second Eu-
ropean Conference on Artificial Intelligence in Medicine. New York:
Springer-Verlag, 1989, pp. 247–256.

[39] A. Cano, S. Moral, and A. Salmerón, “Penniless propagation in join
trees,”Int. J. Intell. Syst., vol. 15, no. 11, pp. 1027–1059, Nov. 2000.

[40] J. H. Zar, Biostatistical Analysis, 4th ed. Englewood Cliffs, NJ:
Pretice-Hall, 1999.

[41] P. J. M. V. Laarhoven and E. H. L. Aarts,Simulated An-
nealing. Amsterdam, The Netherlands: Reidel, 1988.

[42] F. Glover, “Tabu-Search: Part I,”ORSA J. Comput., vol. 1, no. 3, pp.
190–206, 1989.

[43] , “Tabu Search: Part II,”ORSA J. Comput., vol. 2, no. 1, pp. 4–32,
1990.

[44] F. V. Jensen,An Introduction to Bayesian Networks. London, U.K.:
UCL Press, 1996.

[45] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian updating in
causal probabilistic networks by local computation,”Comput. Statistics
Quart., vol. 4, pp. 269–282, 1990.

[46] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with prob-
abilities on graphical structures and their application to expert systems,”
J. R. Statistical Soc. Ser. B, vol. 50, no. 2, pp. 157–224, 1988.

[47] R. D. Shachter, B. D. D’Ambrosio, and B. D. D. Favero, “Symbolic
probabilistic inference in belief networks,” inProc. 8th Nat. Conf. Arti-
ficial Intelligence, July 1990, pp. 126–131.

[48] P. P. Shenoy and G. R. Shafer, “Axioms for probability and belief-func-
tion propagation,” inUncertainty in Artificial Intelligence, R. Shachter,
T. Levitt, L. Kanal, and J. Lemmer, Eds. Amsterdam, The Netherlands:
North-Holland, 1990, pp. 169–198.

[49] G. F. Cooper, “Probabilistic inference using belief networks is NP-hard,”
Artif. Intell., pp. 393–405, 1990.

[50] F. V. Jensen, K. G. Olesen, and S. K. Andersen, “An algebra of Bayesian
belief universes for knowledge based systems,”Networks, vol. 20, pp.
637–659, 1990.

[51] W. X. Wen, “Optimal decomposition of belief networks,” inUncertainty
in Artificial Intelligence 6, P. Bonnissone, M. Henrion, L. Kanal, and
J. Lemmer, Eds. Amsterdam, The Netherlands: North-Holland, 1990,
pp. 209–224.

Luis M. de Camposwas born in in 1961. He received
the M.S. degree in mathematics and the Ph.D. degree
from the University of Granada, Spain, in 1984 and
1988, respectively.

He is currently an Associate Professor of Com-
puter Science with the University of Granada, Spain.
His current research interests Numerical Representa-
tions of Uncertainty, Probabilistic Graphical Models,
Machine Learning, and Information Retrieval.

José A. Gámezreceived the M.S. and Ph.D. degrees
in computer science from the University of Granada,
Spain, in 1991 and 1998, respectively.

He is currently an Assistant Professor with the De-
partment of Computer Science at the Universitiy of
Castilla-La Mancha, Spain. His current research in-
terests include probabilistic reasoning, Bayesian net-
works, and the application of evolutionary computa-
tion to these topics and machine learning.

Serafín Moral received the Ph.D. degree from the
University of Granada, Spain, in 1984.

He is a Professor of Computer Science and Ar-
tificial Intelligence and a Member of the Research
Group on Uncertainty Treatment on Artificial Intel-
ligence at the University of Granada. His current re-
search interests include imprecise probabilities, prop-
agation algorithms in dependence graphs, and uncer-
tain and defeasible reasoning in general.

