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individual choices. Despite this, econometric partial adjustment models perform relatively well at

the aggregate level. Analyzing the classic employment adjustment problem, we show how discrete

and occasional microeconomic adjustment is well described by a new form of partial adjustment

model that aggregates the actions of a large number of heterogeneous producers. 

We begin by describing a basic model of discrete and occasional adjustment at the micro

level, where production units are essentially restricted to either operate with a fixed number of

workers or shut down. We show that this simple model is observationally equivalent at the market

level to the standard rational expectations partial adjustment model. We then construct a related, but

more realistic, model that incorporates the idea that increases or decreases in the size of an

establishment's workforce are subject to fixed adjustment costs. In the market equilibrium of this

model, employment responses to aggregate disturbances include changes both in employment

selected by individual establishments and in the measure of establishments actively undertaking

adjustment. Yet the model retains a partial adjustment flavor in its aggregate responses. Moreover,

in contrast to existing models of discrete adjustment, our generalized partial adjustment model is

sufficiently tractable to allow extension to general equilibrium.
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1 Introduction

In many contexts, actual factor demands clearly involve complicated dynamic elements

absent in static demand theory. For example, empirical studies of the market demand for

labor typically find that lags, either of demand or of the determinants of demand, con-

tribute substantially to the explanation of employment determination. The most frequent

rationalization of such lags is that individual plants face marginal costs that are increas-

ing in the extent of adjustment, leading them to choose partial adjustment toward the

levels suggested by static demand theory. Many empirical studies also indicate, however,

that the partial adjustment model is inconsistent with the behavior of individual plants

or firms. For example, Hamermesh (1989) shows that individual plants undertake discrete

and occasional workforce adjustments rather than the smooth changes implied by partial

adjustment. Nonetheless, the model continues to be a vehicle for applied work, essen-

tially because it is a tractable way of capturing some important dynamic aspects of market

demand. It is frequently thus employed in an apologetic manner, with the researcher

suggesting that it is a description of market, rather than individual, factor demand.1

We present a generalized partial adjustment model in which individual production units

adjust in a discrete and occasional manner, yet there is smooth adjustment at the aggregate

level. Specifically, individual units face differing fixed costs of adjustment, so the timing

of their adjustments is infrequent and asynchronized while aggregation across plants leads

to a smooth pattern of aggregate factor demand well-approximated by the standard par-

tial adjustment model. Our exposition of this model’s relation to the traditional model

commonly used in empirical work is unique to this paper.

Our basic framework is sufficiently tractable that it has already been applied to ex-

amine several topics, among them price adjustment and capital investment.2 Here, we

apply it to employment which, relative to the investment application, requires a different

timing to trace the resulting distribution of production. We provide the first comprehen-

sive presentation of the framework so that researchers may conveniently adapt it to study

other problems. To facilitate its broad application, we then extend the method to allow

for persistent idiosyncratic shocks.

Our model provides a microeconomic foundation for the variety of plant-level adjust-

ment examined in the empirical work of Caballero and Engel (1992, 1993) and Caballero,

1See, for example, Kollintzas (1985).
2Dotsey, King and Wolman (1999) use the framework to analyze price adjustment; Thomas (2002) uses

it to examine investment.
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Engel, and Haltiwanger (1997). There, individual production units are assumed to adjust

employment probabilistically, with adjustment probabilities being a function the difference

between a target level of employment and actual employment. Aggregating from such

adjustment hazard functions, which are their basic unit of analysis, they examine the im-

plications of the resulting state-dependent adjustment behavior for aggregate employment

demand dynamics. In the absence of a microeconomic foundation for such probabilistic ad-

justment, Caballero and Engel (1993, p. 360, paragraph 2) explain that they “trade some

deep parameters for empirical richness.” In contrast, we explicitly model the plant’s adjust-

ment decision as a generalized (S, s) problem and derive the adjustment hazard functions

that are the starting point of previous research.3

One key stylized fact uncovered in the empirical literature is that an important route

through which aggregate shocks affect aggregate employment is by changing the fraction

of plants that choose to adjust. Accordingly, we develop a model where the aggregate

adjustment rate is an endogenous function of the state of the economy. While our gener-

alized model is not observationally equivalent to the traditional partial adjustment model

with time-invariant aggregate adjustment rates, impulse responses establish that it retains

the basic features of gradual partial adjustment. Another distinguishing feature of our

theoretical approach is that it is feasible to undertake generalized (S, s) analysis within a

general equilibrium framework, so that the influence of aggregate shocks on equilibrium

adjustment patterns may be systematically studied. Moreover, it is sufficiently tractable to

accommodate additional sources of heterogeneity; thus, beyond achieving consistency with

the stylized facts highlighted here, the framework has the potential for use in applications

designed to examine richer aspects of establishment-level dynamics.

The organization of this discussion is as follows. Section 2 briefly reviews the essential

properties of the standard partial adjustment model, and section 3 describes the evidence

on microeconomic adjustment patterns that the standard model fails to explain. Section

4 develops a model that is consistent with the observation that individual establishments

hire varying amounts of labor at discrete and occasional times, and it illustrates a resulting

hedging effect on the demand for labor. Next, section 5 embeds the framework within a

fully specified general equilibrium macroeconomic model and endogenizes the timing of

employment changes by assuming that each plant faces a fixed cost of adjustment that is

random across both time and plants. The resulting generalized (S, s) model allows us to

examine the influence of deep parameters on the adjustment process. Moreover, with a

3Generalized (S, s) models were first studied by Caballero and Engel (1999) to explain the observed

lumpiness of plant-level investment demand.
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large number of plants, the model is similar to the traditional partial adjustment model in

that it yields a smooth market labor demand. We illustrate the properties of our generalized

partial adjustment model using a series of numerical examples.4 A distinguishing feature of

the model, beyond its consistency with the evidence on employment adjustment in section

3, is that it has the potential to reproduce the sharp changes in market employment demand

found in the data during episodes involving large changes in productivity.5 Moving from

our market demand examples, we then provide counterpart results that illustrate the role

of equilibrium in shaping the aggregate response to shocks. Finally, section 6 illustrates

how the framework is tractably extended to allow for persistent differences in productivity

across establishments, and section 7 concludes.

2 The standard partial adjustment model

The standard partial adjustment model relates current employment, Nt, to target or

desired employment, N∗
t , through Nt−Nt−1 = κ[N∗

t −Nt−1], where κ ∈ (0, 1) is the fraction
of the gap closed in the period. This specification implies the influence of past actual or

desired employment on current employment,

Nt = κN∗
t + (1− κ)Nt−1 = κ

∞X

j=0

(1− κ)jN∗
t−j . (1)

As shown by Sargent (1978), this empirical partial adjustment model may be derived as the

solution to a firm’s dynamic profit maximization problem under the assumption that there

are quadratic costs of adjusting the workforce. In the absence of costly adjustment, assume

that the firm’s workforce declines at the rate d ∈ [0, 1) due to quits or mismatches. If et
employees are hired at time t, then Nt = (1− d)Nt−1+et, and the cost of the workforce ad-

4Our generalized partial adjustment model is distinguished from earlier generalized cost of adjustment

models, as summarized, extended and critiqued in Mortensen (1973), in that it suggests very different
dynamics at the establishment-level. Nonetheless, because our model is essentially one with many dynam-

ically related factor demands, it is capable of generating some of the aggregate dynamics that motivated

researchers in this earlier area. For example, under unrestricted parameters, interrelated factor demand

models were found to be consistent with oscillatory approaches to the long-run position. Our model can

also generate such rich dynamics, although it does not do so under the parameters selected here.
5This is because the economywide rate of adjustment implied by our model varies with aggregate con-

ditions. The traditional model under-predicts employment changes during such episodes precisely because

the adjustment rate there is constant.

3



justment is Ξ (et) =
B
2 e
2
t , where B > 0.6 Let zt reflect current productivity, and wt be the

real wage, (both serially correlated random variables known at date t), and let production

be f(Nt, zt). Discounting future earnings by β ∈ (0, 1), the firm chooses {Nt, et}
∞
t=0 to max-

imize its expected present discounted value, E
hP∞

t=0 β
t
³
f(Nt, zt)−Ξ (et)−wtNt

´
| z0, w0

i
,

subject to Nt = (1− d)Nt−1 + et and given initial employment N−1. If the production

function is quadratic in employment, it is straightforward to show that

N∗
t = [Et

∞X

j=0

(β/κ)j(χaat+j − χwwt+j)], (2)

demonstrating that the presence of lags in employment implies leads under rational expec-

tations, as stressed by Sargent (1978).7

The key implications of the model are: (i) current employment, Nt, is directly re-

lated to lagged employment, Nt−1, because adjustments are costly, and (ii) expectations of

future wages and productivity influence current employment through the target, N∗
t , be-

cause, given adjustment costs, its choice will in part determine future employment. Taken

together, these features imply that adjustment costs dampen the response to changes in

current wage and productivity and yield smooth, gradual changes in employment over time.

3 Disconcerting evidence

While the traditional partial adjustment model offers a tractable framework with which

to study gradual aggregate labor adjustment, there is considerable empirical evidence to

suggest that the model is not consistent with the behavior of individual production units.

This evidence suggests a number of stylized facts about individual and aggregate adjust-

ment that we summarize here.

Stylized fact 1: Adjustment at the plant level is discrete, occasional and asynchronous.

Hamermesh (1989) examines monthly data on output and employment between 1983 and

1987 across seven manufacturing plants. For each plant, output fluctuates substantially

over the sample. Employment exhibits long periods of constancy broken by infrequent and

large jumps at times roughly coinciding with the largest output fluctuations. Hence, the

6This captures the idea that the firm’s marginal adjustment cost is rising in the extent of employment

adjustment; the same idea is incorporated in alternative adjustment cost functions used in applied work.

7 In (1) and (2), the parameters κ, χa and χw depend on the adjustment cost parameter B, the discount

factor β and the parameters of the production function.
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plant data are not consistent with the smooth employment adjustment that would arise

from convex adjustment costs.

Stylized fact 2: Aggregates exhibit smooth and partial adjustment. Hamermesh (1989)

also examines the behavior of the aggregate of his seven manufacturing plants. He finds

that fluctuations in aggregate employment resemble the dynamics of aggregate output and

appear consistent with smooth adjustment behavior of aggregates. More specifically, he

argues that the standard partial adjustment model works quite well at the aggregate level,

even though it does not describe the behavior of individual production units.8

Stylized fact 3: Adjustment hazards depend on aggregate conditions. Following the

econometric literature on discrete choices, the probability that an individual production

unit makes a discrete change in a particular date is typically called an adjustment hazard.

Caballero and Engel (1993) construct a general framework for studying aggregate employ-

ment changes that can incorporate a variety of assumptions about how adjustment hazards

are related to aggregate conditions. Using U.S. manufacturing data from 1961 through

1983, Caballero and Engel examine the dynamics of aggregate employment changes under

two alternative specifications for the hazard function: (1) a benchmark constant hazard

case and (2) an alternative hazard model involving higher moments of the cross-sectional

distribution of firms’ ‘disequilibrium’ levels, reflecting state-dependent adjustment behav-

ior. They find large increases in explanatory power for aggregate employment changes in

moving from the constant hazard model to a generalized hazard structure and attribute

this to the effects of large aggregate shocks upon the employment hazard.

Stylized fact 4: Adjustment hazards depend on measures of ‘micro gaps’. More direct ev-

idence on the importance of state-dependent adjustment hazards is provided by Caballero,

Engel and Haltiwanger (1997). Studying the direct relationship between the adjustment

8Hamermesh compares log likelihood values from the estimation of a smooth adjustment model based

on quadratic costs to those from a lumpy adjustment fixed-cost alternative. For plant level data, the

latter achieves much larger likelihood values, indicating that lumpy adjustment based on fixed costs better

describes the micro data. Further, his switching model estimates of the percentage ‘disequilibrium’ required

to induce adjustment are large, suggesting that plants vary employment with a non-marginal adjustment

only in the presence of substantial shocks to expected output. However, differences at the aggregate level
are too small to discriminate between models, as is the case when they are compared using 4-digit SIC data.

Thus, lumpy adjustment behavior at the microeconomic level is obscured by aggregation. From this and

similar evidence, Hamermesh and Pfann (1996, page 1274) conclude that “observing smooth adjustment

based on data describing industries or higher aggregates over time is uninformative about firms’ structures

of adjustment costs and in no way disproves the existence of lumpy costs.”
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hazard at the level of the individual production unit and the extent of that unit’s gap be-

tween current employment and a measure of desired employment, these authors show that

the adjustment hazard depends on the size of this discrepancy. They suggest that indi-

vidual units may face differential adjustment costs, so that the distribution of adjustment

costs governs the adjustment hazard.

Stylized fact 5: Aggregate shocks are much more important in accounting for aggregate

responses than are shifts in cost distributions. The empirical analysis of Caballero, Engel

and Haltiwanger (1997) also suggests that changes in the distribution of adjustment costs

are not central in explaining stylized fact 3. Rather, aggregate shocks induce changes

in hazards that are important for aggregates because they produce movements along the

micro-distribution of employment imbalances.

4 Generalized partial adjustment

A number of recent theoretical and empirical studies — notably those of Caballero

and Engel (1993) and Caballero, Engel and Haltiwanger (1997) — have argued for a richer

vision of the adjustment process that can generate the stylized facts discussed above. The

framework we develop exemplifies such a model. In particular, it delivers the implication

that, while individual establishments’ employment adjustments are discrete, (fact 1), their

asynchronous timing implies a smooth aggregate employment series similar to that implied

by the traditional partial adjustment model, (fact 2). Moreover, an individual production

unit’s probability of adjustment depends on a measure of the ‘gap’ between its current

employment and a notion of desired employment, (fact 4), and the model can produce

substantial responses of employment to aggregate shocks without relying on any shifts

in the distribution of adjustment costs, (fact 5). At the same time, it can be readily

incorporated into a general equilibrium model, so that the relationship between adjustment

hazards and macroeconomic conditions can be studied.

We assume a large and fixed number of units, each making discrete choices about their

employment adjustment over time. Production at the plant level is constant returns in

labor and a fixed input, which we normalize to 1, f(nt, 1, zt).
9 Any unit that does not

adjust its workforce sees it decay at rate d,

nt = (1− d)nt−1 + et, (3)

9The presence of the fixed input allows determination of the employment choice at the production unit.
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where et is the number of hires. We begin by assuming that the opportunity to adjust

employment arrives exogenously according to a probabilistic mechanism specified below.

This assumption will be relaxed to allow consistency with stylized fact 3 in section 5.

To capture the observation that a production unit may have a greater likelihood of

adjusting employment when there has been a longer interval since its last adjustment,

we allow the adjustment probability to depend on the length of time since the unit last

changed employment, which we index by j. That is, if a production unit has not adjusted

its employment for j − 1 periods, then the conditional probability of its being allowed to
adjust its employment in the jth period is αj . For now, we assume that these adjustment

probabilities depend only upon time since last adjustment and are a fixed vector α =

[α1, α2, · · ·αJ−1, 1] over time. We further assume that αj−1 < αj for all j = 1, 2, ..., J ,

where J represents the maximum interval before a production unit will be allowed to adjust

its employment with probability 1: αJ = 1.

Let njt represent the current labor stock of a production unit that last adjusted its

employment j periods ago.10 We use the notation Vj(njt, zt, wt) to denote the value of

a production unit that last adjusted j periods ago, entering the current period with a

workforce of njt, that is not currently able to adjust its employment, and use V0(zt, wt) to

denote the value of a production unit currently able to adjust. For a unit that is currently

readjusting its stock of labor,

V0(zt, wt) = max
n0t

µ
f(nt, zt)− wtn0t + βE

h
α1V0(zt+1, wt+1) (4)

+(1− α1)V1((1− d)n0t, zt+1, wt+1) | zt, wt

i¶
,

where n0t is freely chosen, and (zt, wt) follows a joint Markov process.
11 The right-hand

side of the Bellman equation involves three expressions. First, there is the flow of current

profit. Second, there is the discounted value of being a unit that adjusts next period, which

occurs with probability α1. Third, there is the value of being a unit that does not adjust

next period, an outcome that occurs with probability (1− α1).

For units not currently able to adjust their workforce, there are no decisions in this

simple model, although there would be in more elaborate settings allowing adjustments

on other margins, such as in hours-per-worker. Their labor evolves according to njt =

10Except where necessary for clarity, we supress commas in subscripts throughout this text.
11As n0t is our model’s counterpart to target employment in the traditional model, we occasionally refer

to it as n∗ when making comparisons below.
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(1− d)nj−1,t−1, and their value functions obey the functional equation

Vj(njt, zt, wt) = f(njt, zt)− wtnjt + βE
h
αj+1V0(zt+1, wt+1) (5)

+(1− αj+1)Vj+1((1− d)njt, zt+1, wt+1) | zt, wt

i
.

Adjusting production units choose employment so as to maximize the right-hand side

of (4), which results in an efficiency condition of the following form:

D1f(n0t, zt)− wt + βE
h
(1− α1) (1− d)D1V1

³
(1− d)n0t, zt+1, wt+1

´¯̄
¯ zt, wt

i
= 0.

A notable feature of this condition is that the optimal employment decision on the part of

the adjusting production unit is independent of the length of time since it last adjusted and

the size of its workforce at the start of the period, since neither j nor njt enters into the

efficiency condition. This justifies our writing V0 above in the restricted form that omits

these factors. Working with the value function (5) above, we can determine the marginal

value of additional workers:

D1Vj(njt, zt, wt) = D1f(njt, zt)−wt

+βE
h
(1− αj+1) (1− d)D1Vj+1

³
(1− d)njt, zt+1, wt+1

´¯̄
¯ zt, wt

i
.

These derivatives may be used iteratively to simplify the efficiency condition and derive an

alternative implicit expression for the optimal workforce chosen by an adjusting production

unit. In particular, n∗t solves

D1f(n0t, zt)− wt +E
J−1X

j=1

h
[β(1− d)]jϕj

³
D1f((1− d)jn0t, zt+j)−wt+j

´¯̄
¯ zt, wt

i
= 0, (6)

where ϕj gives the adjusting unit’s probability of remaining in the nonadjustment state for

j consecutive periods:

ϕj ≡
jY

k=1

(1− αk), j = 1, . . . , J − 1. (7)

In the special case of a Cobb-Douglas production function, y = znγ , the condition in (6)

may be explicitly solved for adjusting units’ optimal labor demand as:

n0t =



E
PJ−1

j=0

h
γβj(1− d)γjϕjzt+j

¯̄
zt, wt

i

E
PJ−1

j=0

h
βj(1− d)jϕjwt+j

¯̄
zt, wt

i




1

1−γ

,
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which depends positively on current and expected future productivity and negatively on

current and expected future wages. Since this forward-looking labor demand is similar to

the behavior of target employment in the standard partial adjustment model of section 2,

we sometimes refer to it in this manner. However, it is worth stressing that the economic

reasons for this are somewhat different. In the standard model, the firm’s labor demand is

forward-looking because current adjustments affect the future costs that a firm encounters

when it adjusts. Here, by contrast, labor demand is forward-looking because a current

adjustor is aware that it may not be able to adjust its employment again in the near

future.

The condition in (6) also implies that our generalized adjustment model has a hedging

property arising because of forecasted future labor force departures. In particular, if wages

and productivities are expected to be constant over time, then an establishment will de-

mand more employment than it would in a frictionless environment. Suppressing changes

in wages and productivities in (6), the target employment level solving (6) is a constant

n∗(α, z, w). Let ns represent the static optimum satisfying D1f(n
s, z)−w = 0 that would

be chosen if the unit could adjust its employment in every period with certainty. Given

concavity of f , it follows that [D1f((1− d)jn0, z)−w] < [D1f((1− d)j+1n0, z)−w]. This

implies the summation in (6) evaluated at n0 = ns is strictly positive. Moreover, as both

this sum and its preceding expression, D1f(n0, z) − w, are decreasing in n0, the dynamic

optimum, n∗, must exceed the static optimum, ns.

Production units hire more labor than they currently need in an effort to hedge against

the possibility that they may be unable to hire in the immediate future. Further, n∗ will be

larger the higher is this probability of future nonadjustment; for instance, given d and α
2

· · ·αJ−1 , a reduced probability of adjustment in the first period after an adjustment, (lower

α1) yields higher values for ϕ1, . . . , ϕJ−1 and thus a higher value for the summation at any

n0. The higher is the probability of being unable to restock employment, the stronger is

the hedging motive.

5 Endogenizing adjustment

We now endogenize the timing of individual production units’ adjustment by intro-

ducing fixed costs of adjustment that are stochastic across production units, an approach

adopted by Caballero and Engel (1999) in their study of manufacturing investment.12

12The generalized adjustment model developed here has been used in several general equilibrium applica-

tions. Dotsey, King and Wolman (1999) study the dynamics of price adjustment, while Thomas (2002) and

9



Within each date, any individual production unit faces a random cost ξ that it must pay

in order to adjust its employment. This cost is drawn from a time-invariant distribution

over [0, B] that is summarized by the CDF G(ξ) and associated PDF g(ξ).

In addition to endogenizing adjustment timing, we also illustrate that it is straightfor-

ward to incorporate the generalized partial adjustment approach into a general equilibrium

setting, which we do now by imposing two restrictions on the prices faced by establishments

within each date. First, asset-market clearing will require that all establishments discount

their future profit flows by households’ marginal rate of substitution between current and

future consumption denoted here by β pt+1
pt
. Equivalently, establishments value their cur-

rent output by pt, the current marginal utility of consumption, and discount their future

values by the household subjective discount factor β. Next, the equilibrium wage, wt, will

equal households’ marginal rate of substitution between current leisure and consumption,
D2u(c,1−N)
D1u(c,1−N) . Provided that these restrictions are satisfied, the role of households in the

economy is effectively subsumed, and equilibrium allocations are retrieved as the aggregate

of establishments’ decisions.13

At the start of each date t, any establishment may be identified as a member of a par-

ticular time-since-adjustment group, j, where j indicates the numbers of periods that have

elapsed since the last active employment adjustment. Given its current cost draw ξ, and

given its start of period employment, njt, and St, the aggregate state of the economy de-

termining prices and expectations, such an establishment will adjust its employment if its

fixed cost does not exceed the value of the adjustment, that is, if V0(St)−Vj(njt, St) ≥ ξ.14

Because there is a large number of production units within each different time-since-

adjustment group, each group is characterized by a marginal plant that finds it just worth-

while to adjust. This marginal plant is associated with a cost ξjt such that

ξjt = V0(St)− Vj(njt, St). (8)

All production units in the jth time-since-adjustment group with adjustment costs at or

Khan and Thomas (2003a) investigate investment dynamics and Khan and Thomas (2003b) use a similar

approach to study (S,s) inventory accumulation. In this study, we use linear approximation methods in the

tradition of Sargent (1978) to explore the general equilibrium dynamics, as do Dotsey, King and Wolman

(1999) and Thomas (2002).
13See Khan and Thomas (2003a) for further explanation.
14As will be made explicit below, St includes two endogenous vectors that together identify the start-of-

period distribution of plants over employments, alongside exogenous aggregate productivity, zt. We assume

z follows a Markov process that is taken as given by all agents, as is the evolution of the endogenous

aggregate state, A, according to a mapping A0 = Ψ(A, z) that, in equilibrium, results from the aggregation

of individual actions.
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below the threshold in (8) will choose to adjust. As a result, the fraction of plants adjusting

out of any particular group j, j = 1, . . . , J − 1, is given by

αjt = G(ξjt). (9)

From (8), note that these adjustment fractions are functions of the plant-level state vector,

(njt, St). We assume that the stochastic processes for productivity, wages and interest rates

are such that, given the function f and the discount factor β, B < V0(St)− VJ(nJt, St) for

all values of the vector (nJt, St). This assumption, which follows naturally from B < ∞,
given bounded processes zt, wt and pt, assures us that αJ = 1.

Having described the determination of endogenous adjustment probabilities, we must

restate the plant’s optimization problems to introduce adjustment costs and time-varying

adjustment probabilities determined by (8) - (9). With state-dependent probability αj+1,t+1,

a production unit entering period t+ 1 in group j + 1 will adjust at that date. The coun-

terpart to (4), the value of a plant that is currently adjusting its labor, is:

V0(St) = max
n0t

µ
f(n0t, zt)−wtn0t + βE

"
pt+1
pt

h
α1,t+1V0

³
St+1

´
(10)

−ξ1,t+1 + (1− α1,t+1)V1

³
(1− d)n0t, St+1

´i
| St

#¶
,

where ξ1,t+1 reflects the expected fixed cost that the plant will pay at date t+1, conditional

on its undertaking an employment adjustment, ξ1,t+1 =
R G−1(α1,t+1)
0 xg(dx). Similarly, the

value of a plant that last adjusted j periods ago, the counterpart to equation 5, is

Vj(njt, St) = f(njt, zt)− wtnjt + βE

"
pt+1
pt

h
αj+1,t+1V0

³
St+1

´
(11)

−ξj+1,t+1 + (1− αj+1,t+1)Vj+1

³
(1− d)njt, St+1

´i
| St

#
.

Adjusting plants exit the jth group for the adjustment group and choose an optimal

employment level n0t (n
∗
t ) satisfying the marginal profit condition below, which generalizes

(6) to reflect optimal adjustment probabilities:

D1f(n0t, zt)−wt+E
J−1X

j=1

hpt+j
pt
[β(1−d)]jϕj,t+j [D1f((1−d)jn0t, zt+j)−wt+j ] | St

i
= 0. (12)
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Here, as in (7), ϕj,t+j is the probability the unit will make no further adjustment in the

next j periods. That is, for j = 1, ..., J − 1,

ϕj,t+j ≡
jY

k=1

³
1− αk,t+k

´
=

jY

k=1

³
1−G(ξk,t+k)

´
.

In practice, it is convenient to break the large forward-looking condition determining target

employment into J first-order stochastic difference equations as follow.

D1f(n0t, zt)− wt + β(1− d)E
hpt+1

pt
Ω1,t+1 | St

i
= 0, (13)

where, for j = 1, ..., J − 1,

Ωjt ≡ (1− αjt)

µ
D1f(njt, zt)−wt + β(1− d)E

hpt+1
pt
Ωj+1,t+1 | St

i¶
. (14)

5.1 Partial adjustment of market labor demand

The probabilistic approach to microeconomic employment adjustment that we have

constructed is consistent with the empirical evidence on rising employment adjustment

hazards. Moreover, the framework allows us to aggregate individual plants’ labor demand

and derive a simple expression for market labor demand. Since the economy is populated

by a large number of production units, we can describe the distribution of plants in any

date t using the vector θt = [θ1t, ..., θJt], with each θjt representing the fraction of units

that begin the period having last adjusted j periods prior to the current date.15 Letting

ω0t ≡
PJ

j=1 θjtαjt denote total adjusting units in any date t, the elements of this vector

are as follow.16

θ1t = ω0,t−1 (15)

15More precisely, the distribution at the start of any date t is completely summarized by the vector θt

together with a vector of previous target employment levels [n∗t−1, ..., n
∗
t−J ] from which the current support

is trivially retrieved. Note that the time-since-adjustment approach to tracking the plant distribution

pursued here allows us to capture the time-varying distribution of establishments over employment levels

using a linear systems solution approach. We could instead directly track the measure associated with each

possible employment level. However, in that case, we would need to include employments that at times

have zero population, necessitating a nonlinear solution method as, for instance, in the investment study

of Khan and Thomas (2003a).

16Given a fixed measure of production units, this overall adjustment rate is ω0t = 1−
J−1

j=1

ω0,t−jϕjt.
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θjt = (1− αj−1,t−1) θj−1,t−1 for j = 2, ..., J . (16)

Market labor demand may then be represented as a moving average of the employment

actions of production units, with lag weights determined by adjustment fractions across

time-since-adjustment groups:

Nt = n∗t

JX

j=1

θjtαjt +
J−1X

j=1

θjt (1− αjt) d
jn∗t−j . (17)

Here, n∗t is the target value of employment that solves (12); in the case of Cobb-Douglas

production, this is n∗t =


E J−1

j=0

h
γβj(1−d)γjϕj,t+jzt+j|zt,wt

i

E J−1
j=0

h
βj(1−d)jϕj,t+jwt+j|zt,wt

i



1

1−γ

.

This is the third result of our generalized partial adjustment model. The market’s

dynamic demand for labor describes aggregate employment as a weighted average of past

target employments, as in the traditional partial adjustment model (1). Consequently,

while the underlying production unit level demands are adjusted discretely and occasion-

ally, the market demands vary smoothly in every time period. Further, since each target

employment, n∗t−j , j = 1, . . . , J − 1, involves expectations of future wages and productivi-
ties, so does market labor demand.

While equation (17) shows that our generalized partial adjustment model has a rep-

resentation similar to the traditional partial adjustment model, there are important dif-

ferences that eliminate exact aggregate equivalence. In particular, the lag weights here

vary over time, because they are composite functions of the adjustment rates αj , which

themselves are functions of plant and aggregate state variables, as consistent with stylized

fact 3. Thus, in contrast to the traditional model, our economywide rate of adjustment

responds to changes in aggregate conditions, including changes in economic policy.

5.2 Planning representation

The generalized partial adjustment model described above may be derived as the

solution to a single dynamic optimization problem, which makes the link to the standard

model of section 2 more direct. We briefly outline this reformulation to illustrate the

tractability of the approach and thus its suitability for applications.17 While we rely on the

17Here, we have chosen to begin our discussion with a description of decentralized actions and now follow

with a planning representation. The reverse ordering would have been equally straightforward, which

13



equivalence between a social planning and competitive equilibrium solution in this section,

as in Lucas and Prescott (1971), it is important to stress that the generalized partial

adjustment approach can also be applied to settings in which competitive equilibrium is

not optimal.18

The aggregate representation consolidates the ownership of all plants, differentiated

by their time since last adjustment, j = 1, . . . , J , into a single entity, a planner acting

to maximize the expected discounted lifetime utility of a representative household. Using

the notation θt ≡ [θ1t, ..., θJt], nt ≡ [n1t, ..., nJt], and αt ≡ [α1t, ..., αJt] to describe the

economywide distribution of plants, employment, and adjustment fractions across groups,

the planner’s total available output is:

Yt = f(n0t, zt)
JX

j=1

θjtαjt +
J−1X

j=1

θjt(1− αjt)f(njt, zt). (18)

Total employment is an analogous sum of the employments of adjusting and non-adjusting

establishments,

ND
t = n0t

JX

j=1

θjtαjt +
J−1X

j=1

θjt(1− αjt)njt. (19)

Finally, economywide adjustment costs are

Qt =
JX

j=1

θjtΓ(αjt), (20)

where Γ(α) =
R G−1(α))
0 xg(dx) is the total volume of costs averaged across plants in a group

if fraction α of that group adjusts.

Given the current distribution of plants over time-since-last-adjustment groups, the

associated employment levels, and aggregate productivity, the planner chooses fractions

of plants adjusting (αjt)
J−1
j=1 and optimal employment for those that are adjusting their

workers, n0t, which together determine the next period distribution of plants, θt+1 and the

household’s current consumption and work hours. The planner’s problem is:

emphasizes the flexibility of the approach. The representation is selected according to its convenience in

application.
18 In its application to the analysis of price adjustment by Dotsey, King and Wolman (1999), for example,

the presence of monopolistic competition means that equilibrium is not optimal.
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W (θt,nt, zt) = max
Λt

u(ct, 1−Nt) + βEW (θt+1,nt+1, zt+1 | θt,nt, zt) (21)

+λt[Yt −Qt − ct]

+wtλt[Nt −ND
t ],

+s0tλt

h JX

j=1

θjtαjt − θ1,t+1

i

+
J−1X

j=1

sjtλt

h
θjt(1− αjt)− θj+1,t+1

i

subject to nj+1,t+1 = (1 − d)njt, for j = 0, . . . , J − 1, and subject to (18)-(20), where
Λt =

h
ct, Nt, n0t, {αjt}

J−1
j=1 , {θj+1,t+1}

J−1
j=0

i
.

The solution to this problem will satisfy the constraints above with equality and a series

of efficiency conditions that follow. First, the standard conditions apply to the choice of

household consumption and labor supply,

λt = D1u(ct, 1−Nt)

wtλt = D2u(ct, 1−Nt).

From these two equations, it is clear that the output price, pt, and the real wage, wt, faced

by establishments in the decentralized economy examined above must correspond to the

multipliers λt and wt, respectively, if the competitive allocation is to match that obtained

here.

Note that the multipliers sjt attached to the distributional constraints in (21) represent

date t post-production valuations of establishments that will enter the next date in plant

group j + 1. To clarify the equivalence between the planning allocation and that in the

decentralized economy, we define the pre-production valuations of establishments as:

vjt ≡ f(njt, zt)− wtnjt + sjt, for j = 0, ..., J − 1,
and we use these, rather than the original multipliers, in representing the optimal adjust-

ment fractions. Efficiency with respect to the choice of αjt requires that the solution to

this problem satisfy

G−1(αjt) = v0t − vjt,

so that it is just worthwhile to relocate the marginal plant with cost ξjt into the adjustment

group, and plants with costs greater than this threshold are not adjusted. This determines
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αjt, j = 1, . . . , J − 1, and is equivalent to (8) provided the multipliers vjt attain the same
value as before. That this is the case may be seen from the efficiency conditions with

respect to θj+1,t+1, j = 0, . . . , J − 1, which imply that the value associated with a plant
with employment level njt satisfies

vjt = f(njt, zt)− wtnjt + βE
hλt+1

λt

³
αj+1,t+1v0,t+1 − Γ(αj+1,t+1)

+ (1− αj+1,t+1) vj+1,t+1

´
| θt,nt, zt

i
.

These expressions are equivalent to the plant Bellman equations of section 5, since the

expected adjustment cost conditional on adjustment in (11) is equal to Γ (αj+1,t+1), the

average cost paid by adjusting plants, by definition of Γ (·). Finally, the efficiency condition

with respect to the choice of n0t may be expressed as (13)-(14), provided pt = λt at every

date. Therefore, the solution to the planning problem, given the aggregate state (θt,nt, zt),

is the same as in the decentralized economy of the previous section.

5.3 Numerical examples: The five stylized facts

We use a series of numerical examples to illustrate several interesting properties of the

model developed above, and to contrast its dynamics to those of the traditional model.

We begin with an examination of the model assuming that prices, wages and interest rates

are exogenously fixed, as is commonly the case in analyses using the traditional partial

adjustment model. Our examples involve functional forms and parameter values that are

standard; production at the plant level is described by a Cobb-Douglas production function

f(n, z) = znν with ν = 0.66. Total factor productivity has a mean of 1 and follows a first-

order autoregressive process with a one-period autocorrelation of 0.9225, roughly consistent

with the annual properties of the Solow Residual. The plant’s discount factor is β = 0.939,

which corresponds to an annual interest rate of 0.065. These values will be familiar to

quantitative researchers; see, for example, King and Rebelo (1999).

The remaining parameter values are chosen arbitrarily; however, extensive sensitivity

analysis has confirmed that the properties of the model we have developed are not qualita-

tively sensitive to variation in these parameters. First, we assume that the distribution of

adjustment costs is uniform with an upper support of 0.008. This yields a distribution of

employment across plants that is suitable for illustrating the generalized partial adjustment

model’s properties. Next, for the traditional model, we assume the quadratic cost para-

meter is B = 4. This choice facilitates comparison, as it yields a dynamic response that
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is relatively close to our generalized partial adjustment model with adjustment rates held

constant. Finally, we assume a separation rate of d = 0.06 and a wage rate of w = 1.14.

Before proceeding further, note that we have developed a model that is designed to

be consistent with stylized facts 1 and 5 of section 3. Specifically, due to fixed costs of

adjustment, labor changes at the plant level are discrete and occasional in the model.

Moreover, since the distribution of adjustment costs is assumed to be constant over time,

it cannot be the source of aggregate fluctuations. Such fluctuations must arise through

aggregate shocks as suggested by previous empirical work.

Our first figure showing the stationary distribution of plants illustrates the model’s

ability to reproduce stylized fact 4: adjustment probabilities depend on plants’ gaps be-

tween actual and target employment. In figure 1, we see that adjustment fractions are

an increasing function of the time since last adjustment, as the cost of non-adjustment

rises with the level of disequilibrium, while the distribution of adjustment costs is identical

across groups. Thus, in the second panel of the figure, the distribution function of plants

across groups is necessarily downward sloping, given the law of motion for θ in (16).

Figure 2 illustrates stylized fact 2; aggregate employment is characterized by smooth

and gradual adjustment. Panels (a) and (b) show percentage deviations in market em-

ployment and output from their steady state values, in response to a persistent rise in

aggregate productivity, for the three models discussed above. PA corresponds to the tradi-

tional partial adjustment model of section 2, where staggered aggregate adjustment arises

from the presence of quadratic adjustment costs, while TD represents the response for the

generalized model with a fixed vector of time-dependent adjustment fractions. Finally, SD

denotes the response in the generalized state-dependent partial adjustment model. There,

fixed costs of adjustment dissuade some production units from responding immediately to

the rise in productivity. This protracts the aggregate response in employment, and hence

output, so that both TD and SD share the hump-shaped features that distinguish the

traditional partial adjustment model. This hump-shaped response in employment, most

pronounced for the SD model, is absent in a frictionless model of employment adjustment.

There, without adjustment costs, the shape of the employment response is identical to the

monotonic response of the auto-correlated productivity shock.

The TD model, with an upward sloping but time-invariant adjustment hazard, matches

the traditional partial adjustment model closely. Only at the earliest date of the response

does the traditional model move more gradually, due to the rising marginal cost of ag-

gregate employment changes. The size of this initial difference in employment response is

nonetheless only about two-thirds of 1 percent. This is in part because plants in the time-
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dependent adjustment model are not permitted to alter the timing of their employment

adjustments in response to shocks, so that all rises in aggregate employment must come

from changes in intensive margin adjustment decisions. Moreover, the onset of diminishing

returns at the level of the production unit restrains the rise in the employment levels chosen

by its current adjustors.

While the state-dependent adjustment model shares similar qualitative features with

the other staggered adjustment models, the ability of establishments to alter the timing of

their employment adjustments at relatively low cost produces two potentially important

changes in the market response. First, because aggregate employment is increased through

changes in both intensive and extensive margin adjustment, SD produces a substantially

larger rise in employment, and hence output, at the dates of highest productivity. It is

precisely this ‘time-varying elasticity’ of aggregate employment demand with respect to

aggregate shocks that distinguishes the SD model, allowing for sharper changes in market

employment, relative to the traditional model. The empirical work of Caballero and Engel

(1992, 1993) finds that such properties are important in explaining the dynamics of ag-

gregate employment demand during episodes involving unusually large shocks, such as the

recession of 1974-1975 and the subsequent expansion. Second, the model has the ability

to produce more complicated cyclical adjustment patterns; in each panel, the SD response

oscillates above and below the traditional model’s response. As neither of these features in

present when adjustment rates are held fixed, it is apparent that they arise due to changes

in adjustment timing at the micro-level.

Figure 3 verifies the importance of the time-varying plant distribution by displaying

the SD responses in each of the two margins through which aggregate employment is

raised. Panel (a) depicts percent changes in extensive margin adjustment through changes

in the fraction of production units adjusting, ω0t =
JP

j=1
θjtαjt, while panel (b) displays

intensive margin changes through the employment levels chosen by current adjustors, n0t.

Given the persistent nature of the productivity shock, the rewards to early adjustment are

expected to be large, thus raising the threshold costs above which adjustment is rejected

within each time-since-adjustment group. As a result, adjustment fractions rise across

groups, and the number of adjustors in the economy rises 25 percent above its steady state

value. This illustrates that stylized fact 3 is met by our generalized partial adjustment

model: adjustment rates vary with aggregate conditions. Note that, in contrast to the

large change in adjustment rates, the percent rise in target employment per adjusting unit

is considerably smaller. Large increases in employment are not worthwhile given decreasing
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returns in establishment-level production. Thus, in this example, changes in the number

of adjusting plants are more important than changes in the employment chosen by such

plants in determining movements in aggregate employment. Furthermore, the latter is

responsible for the cyclical pattern seen in figure 2 for the aggregate series.

Comparing panels (a) and (b) of figure 3, note that, while the target employment

response monotonically declines, the number of adjustors oscillates in its return to steady

state. The large rise in the number of adjustors at the impact of the shock results in a

large shift in the distribution of production units away from higher time-since-adjustment

groups and into group 1 starting the next period. Given rising adjustment hazards, only

a small fraction of these extra members find it worthwhile to adjust again, so many of the

initial surge in adjustors begin the subsequent date in group 2. In this way, the effects

of early rises in adjustment rates filter out through subsequent distributions, reducing

total adjustment toward trend, and then below it once a disproportionate fraction of the

population finds its way into time-since-adjustment groups associated with low adjustment

fractions. Eventually, the mass of early adjustors works its way sufficiently far out the

distribution, where adjustment rates are relatively high, so that total adjustment returns

above trend. This pattern is repeated in a dampened fashion until the distribution resettles.

Figure 4 aggregates the effects of changes in intensive margin versus extensive mar-

gin adjustment to provide a decomposition of the market employment response into two

underlying components: “nj effects” associated with changes in employment levels across

groups (due to changes in target employments) and “ωj effects” arising from changes in

the distribution of plants across these groups at the time of production, ωjt ≡ (1−αjt)θjt,

j = 1, ..., J , (due to changes in the fractions adjusting from each group). Specifically, at

each date, the percentage deviation from steady state in aggregate employment is given by

bnt =



J−1X

j=0

³ωjnj

n

´
bnjt


+



J−1X

j=0

³ωjnj

n

´
bωjt


 ,

where each
¡ωjnj

n

¢
reflects the percentage contribution of the jth group to aggregate em-

ployment in steady state, and each bnjt and bωjt represent percent deviations from trend in

the group j employment and population levels, respectively, at the time of production in

date t. At the onset of the shock, rises in employment associated with current adjustors,

n0t, contribute less than half of the percentage rise in the aggregate series. The remain-

der is due to a rise in the adjustment group, ω0, associated with this high target and

corresponding reductions in the populations of groups associated with lower employment

levels, ωj , j = 1, . . . , J . In the following date, adjusting plants again select a high target
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employment level, and this is compounded by a rise in the employment held by members

of group 1, a consequence of the high employment choice of the previous period. These

effects of raised targets continue to feed through the distribution, raising the employment

levels associated with each subsequent group, for a number of periods. As a result, the nj

component of aggregate employment exhibits the smooth humped shape associated with

partial-adjustment. The aggregate series inherits this shape to an extent, but it is both

more pronounced in its rise and less smooth in its return to trend, due to the ωj effects

arising from changes in membership across groups. High adjustment fractions amplify the

aggregate response initially; however, by date 3, when the number of adjustors begins to

fall below trend, an increasing fraction of production units operates with relatively low

employment levels. This dampens the rise in the aggregate series, and speeds its initial

rate of decline, relative to that of the nj component. Further, just as the disruption in the

population distribution produced oscillations in the total adjustors series of figure 3, it also

causes overshooting in the ωj component’s convergence and thereby generates the cyclical

features evident in the aggregate series.

5.4 General equilibrium effects

One of the key features of our approach is that discrete micro-level adjustment dy-

namics can be readily introduced into a general equilibrium setting. So far, we have used

the dynamic model to study the influence of variations in productivity on aggregate labor

demand and the adjustment decisions of individual units, holding fixed the real wage rate

and the real interest rate. A general equilibrium model allows changes in productivity to

affect the wage and interest rates, so that its dynamics are more complicated. For example,

when a rise in productivity increases labor demand, this will bring about some increase

in the wage rate in order to clear the labor market. This wage change has implications

for both the level of labor that adjusting establishments select, (the target solving (12),)

and the fractions of establishments that choose to adjust from each current employment,

(the adjustment fractions solving (8)-(9)). Our equilibrium analysis is designed to be very

simple, but it illustrates some important points. Here, we assume a particular functional

form for the representative household’s preferences, so as to generate restrictions on the

behavior of the wage rate and the interest rate.19

19 In particular, maintaining the functional forms and parameter values assumed above, we assume that

the representative household’s momentary utility function is U (C,N) = log C − χN1+γ

1+γ
, where χ = 2.55

and γ = 0.50. This specification implies that there is a steady-state level of labor of n = 0.20 and a

general equilibrium labor supply elasticity of γ−1 = 2 with respect to the real wage rate. Higher values of
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Figure 5 compares the dynamic general equilibrium response to an aggregate productiv-

ity shock within the state-dependent generalized adjustment model to the response arising

without market-clearing variations in wages and interest rates. Quantitatively, as might be

expected, equilibrium price movements sharply dampen the response in employment, and

hence output, to a persistent change in productivity. However, in contrast to the invest-

ment analysis of Thomas (2002), equilibrium does not eliminate the influence of costly and

discrete adjustment. In particular, the level of employment continues to display a hump

in the dynamic response due to these costs, which is also an implication of the standard

partial adjustment model discussed in section 2 above.

There are also qualitative changes in both the extensive and intensive margins of em-

ployment adjustment with equilibrium movements in wages and interest rates. First, the

previous nonmonotonicity in the fraction of units adjusting essentially disappears. This is

because equilibrium price changes offset much of the large rise in target employment that

would otherwise occur at the impact of the shock. With the rise in target employment

dampened, establishments have less incentive to pay fixed costs to move up the timing

of their employment adjustments. Thus, equilibrium reduces the jump in the total frac-

tion adjusting, thereby reducing the disruptions to current and future plant distributions

that cause these oscillations. Second, the smooth mean reversion in target employment

becomes less regular. Nonetheless, target employment continues to be monotonic, and it is

the changes in adjustment timing that lead to the hump-shaped aspects of the aggregate

quantity responses. More establishments do choose to adjust employment when there is a

favorable productivity shock, but they do not all adjust immediately.

6 Persistent idiosyncratic shocks

To this point, plants have been differentiated by only two features of their circum-

stances: (i) they have different realizations of adjustment costs, and hence (ii) they enter

the period with different values of the endogenous state variable njt. However, there is

ample evidence that establishments are affected by additional persistent plant-level states,

such as stochastic variations in productivity. In this section, we show how our equilibrium

generalized partial adjustment model is tractably extended to allow for persistent produc-

tivity shocks to establishments. The methods, however, can be applied to other persistent

exogenous micro states, such as variations in product demand for monopolistic competitors

γ would imply sharper differences between the equilibrium and fixed price models, as these would raise the

responsiveness of the wage to changes in employment demand.
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or shifts in the distribution of adjustment costs.

We assume that the plant-specific productivity shocks follow anM -state Markov process;

a ∈ {a1, . . . , aM} with transition probabilities given by the time-invariant matrix Φ; specif-
ically, the probability of transiting from state al to state am is given by φ(l,m), for

l = 1, ...,M and m = 1, ...,M . We begin by defining some notation that will describe

the distribution of establishments over employment and productivity at each date, then

show how the aggregation is handled, and next proceed to outline the associated plan-

ning problem. For brevity, we omit the corresponding decentralized representation of the

economy, although the mapping should be transparent by comparison to the sections above.

At the start of date t, any establishment is identified by its current productivity draw, a,

and its current employment level. We continue to assume that, when not actively adjusted,

a plant’s employment declines at rate d across dates, and active adjustments to its stock

incur a fixed cost, ξ, drawn from the time-invariant distribution G(ξ) with associated PDF

g(ξ). Given the effect of current plant-specific productivity draws on adjustment decisions

and on the target employments selected by current adjustors, (and hence on future distrib-

utions), the economy’s aggregate state, S, will now includeM2+M time-since-adjustment

vectors that together describe the current start-of-period distribution of establishments

over labor and productivity. We preserve the ability to solve this economy linearly by

tracking the distribution of plants according to their membership in groups identified by

(i) time-since-last adjustment, (ii) productivity draw at the date of last adjustment, and

(iii) current productivity draw. As before, employment selected by adjusting establish-

ments does not depend upon the current stock; however, it does depend upon current

productivity.

To study the evolution of plant-level conditions, for each h and each l, we define θjt(h, l)

as the start-of-date measure of plants that last adjusted j periods in the past to a target

employment consistent with ah, (their productivity at the time of the adjustment), and

that have current productivity level al. Let αjt(h, l) denote the corresponding fractions

of each of these groups undertaking active employment adjustment within the current

period. While adjustment fractions reach 1 within some finite number of periods, the full

adjustment horizons for plants now depend upon the productivity they had when they last

actively changed their employment and on their current productivity. Let J(h, l) denote the

full adjustment horizon associated with plants associated with productivity ah at the time

of last adjustment and current productivity al.
20 Because establishments transit across

20As with J in the model above, the horizons here, J(h, l), are endogenous variables recovered in the

solution for the economy’s steady state. One cost of pursuing a linear systems solution for the dynamics
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current productivities from date to date, each vector θt(h, l) = [θjt(h, l)] will have length

Jh ≡ max{J(h, 1), ...J(h,M)}. Finally, each of these vectors is associated with the vector

of start-of-date employment levels nt(h) = [njt(h)] of length Jh.
21

6.1 Aggregation

The evolution of the plant distribution may be summarized as follows. First, there

are M2 equations representing the fractions of establishments that are current adjustors,

and hence will begin the next period with time-since-last adjustment 1. One such equation

holds for each current productivity, l = 1, ...,M , and for each next-period productivity,m =

1, ...,M . Each represents the fraction of all establishments that have current productivity

al and adjust from their start of period employment level to the associated target n0t(l),

and that will then enter next period identified by (n1t(l), am).

θ1,t+1(l,m) = φ(l,m)
MX

h=1

³ JhX

j=1

θjt(h, l)αjt(h, l)
´

(22)

Next, there are M2 sets of equations describing the non-adjusting population. Each set

is identified by a particular (past, current) productivity combination, and each contains

Jh − 1 separate equations, one for each possible time-since-last-adjustment. Specifically,
each equation isolates the fraction of all plants that had productivity ah, h ∈ {1, ...,M},

at the time of their last adjustment j periods in the past, do not adjust this period, (hence

produce with employment njt(h)), and then draw productivity am, m ∈ {1, ...,M}, at

the start of the next period. These are the plants that will enter the next date having

labor associated with productivity ah from j + 1 periods in the past and having current

productivity am.

θj+1,t+1(h,m) =
MX

l=1

θjt(h, l)[1− αjt(h, l)]φ(l,m) for j = 1, ..., Jh − 1 (23)

is that we must assume that the economy stays sufficiently local to the steady state that these horizons are
impervious to aggregate shocks. To know whether this assumption is reasonable in a given application,

one must verify that all endogenous adjustment fractions remain strictly in the (0, 1) interval at every date

over long simulations.
21For example, in the case of a 2-state Markov shock, the start-of-date plant distribution over employment

and productivities is completely summarized by four θ vectors and two n vectors. Using the notation

outlined above, these are: θt(1, 1) and θt(1, 2), each of length J1 ≡ max{J(1, 1), J(1, 2)}; θt(2, 1) and

θt(2, 2), each of length J2 ≡ max{J(2, 1), J(2, 2)}; nt(1) of length J1; nt(2) of length J2.
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Finally, there are M sets of equations describing future employments of those that had

productivity ah, h ∈ {1, ...,M}, at the time of their last adjustment:

nj+1,t+1(h) = (1− d)njt(h) for j = 0, ..., Jh − 1. (24)

Equations (25)- (28) describe aggregate output gross of adjustment costs, aggregate

labor demand and total adjustment costs in the economy. Aggregate output is total pro-

duction by all establishments with current productivity {al}
M
l=1 that adjust to the optimal

employment consistent with their productivity, together with the output of all nonadjus-

tors (of each current productivity al) that last adjusted to an employment consistent with

productivity {ah}
M
h=1:

Yt =
MX

l=1

h
f
³
n0t(l), al, zt

´ MX

h=1

J(h,l)X

j=1

θjt(h, l)αjt(h, l)
i

(25)

+
MX

l=1

MX

h=1

hJ(h,l)−1X

j=1

f
³
njt(h), al, zt

´
θjt(h, l)[1− αjt(h, l)]

i
.

Total employment demand is an analogous sum of the employments of adjusting and non-

adjusting establishments:

ND
t =

MX

l=1

h
n0t(l)

MX

h=1

J(h,l)X

j=1

θjt(h, l)αjt(h, l)
i

(26)

+
MX

l=1

MX

h=1

hJ(h,l)−1X

j=1

njt(h)θjt(h, l)[1− αjt(h, l)]
i
.

Finally, economywide adjustment costs are the total of those paid by establishments of each

time-since-adjustment age that last adjusted to an employment consistent with productiv-

ity ah and now have productivity al, again summing across past and current productivity

levels:

Qt =
MX

l=1

MX

h=1

hJ(h,l)X

j=1

θjt(h, l)Γ
³
αjt(h, l)

´
, (27)

where each Γ(α) in (27) represents the average adjustment cost paid per member in a given

group, conditional on adjustment fraction α from that group,

Γ(α) ≡
Z G−1(α)

0
xg(x). (28)
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6.2 Planning problem

The planning problem for the generalized partial adjustment model with persistent

plant-specific productivities is listed below. Here, the aggregate state vector includes the

M2 + M vectors that together describe the current distribution of establishments over

employment and productivity, alongside current exogenous aggregate productivity, z:

St ≡
h
[θt(h, l)]

M
h,l=1, [nt(h)]

M
h=1, zt

i
.

W (St) = max
Λt

u(ct, 1−Nt) + βEW (St+1|St) (29)

+λt[Yt −Qt − ct] + wtλt[Nt −ND
t ],

subject to (22)-(28), where

Λt =

(
ct, Nt, [n0t(l)]

M
l=1,

h
[αjt(h, l)]

J(h,l)−1
j=1

iM
h,l=1

,
h
[θj+1,t+1(h, l)]

J(h,l)−1
j=0

iM
h,l=1

)
.

The solution to this problem satisfies (22)-(28) and the constraints in (29) with equality, as

well as a series of efficiency conditions that, after some algebra, may be written as follow.

First, aggregate consumption and labor supply satisfy

λt = D1u(ct, 1−Nt)

wtλt = D2u(ct, 1−Nt).

Next, we describe the conditions determining target employments. For each plant-

specific productivity level al, define ω0t(l) to be the total establishments that currently

have this productivity and adjust their employment;

ω0t(l) ≡
MX

h=1

J(h,l)X

j=1

θjt(h, l)αjt(h, l), for l = 1, ...,M .

The conditions identifying the optimal employment levels for each of these groups of ad-

justing establishments may then be written recursively as below in the
MP
h=1

Jh equations of

(30)-(31). For l = 1, ...,M :

h
D1f

³
n0t(l), al, zt

´
−wt

i
+ β(1− d)E

µ
λt+1
λt

Ω1,t+1(l)

ω0t(l)
| St

¶
= 0, (30)

where, for each h = 1, ...,M,
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Ωjt(h) ≡
MX

l=1

θjt(h, l)[1− αjt(h, l)]
h
D1f

³
(1− d)jn0t(h), al, zt

´
−wt

i
(31)

+β(1− d)E

µ
λt+1
λt

Ωj+1,t+1(h) | St

¶
, for j = 1, ..., Jh − 1.

Note that these conditions closely parallel that in the model without plant-level productiv-

ity shocks. As there, the marginal effects of a single plant’s current employment choice on

its production and wage payments continue for so long as it does not re-adjust its employ-

ment. The second term in (30) reflects the probability-weighted sum of future effects for

any single member of the ω0t(l) group of adjusting plants. Any such plant may enter date

t+1 with productivity a1 and produce without readjusting its employment with probabil-

ity
θ1,t+1(l,1)

ω0t(l)
[1−α1,t+1(l, 1)]; with probability

θ1,t+1(l,2)
ω0t(l)

[1−α1,t+1(l, 2)], the plant may have

productivity a2 and not adjust employment next period, and so forth. The collections of

equations in (31) summarize the resulting marginal effects from t + 1 and forward until

date t + Jl, the date by which this currently adjusting plant will with certainty re-adjust

its employment if it has not already done so.

The conditions determining optimal adjustment fractions from within each group of

plants are listed below. In each case, the adjusting fraction equates the marginal cost

paid to adjust the last plant from a given group to the net value of moving that plant

into the adjustment group associated with its current productivity. For each group of

establishments that had productivity ah at the time of last adjustment, h ∈ {1, ...,M},

and now have productivity al, l ∈ {1, ...,M}, the optimal adjustment fractions from each

time-since-last-adjustment subgroup will satisfy:

ξ
³
αjt(h, l)

´
= v0t(l)− vjt(h, l) for j = 1, ..., J(h, l)− 1 (32)

where ξ(α) ≡ G−1(α). For example, αjt(1, 2), the fraction adjusted from the plant group

identified by (njt(1), a2), equates the associated marginal adjustment cost to the difference

between v0t(2), the value of a plant of type (n0t(2), a2) at the time of production, and

vjt(1, 2), that of a type (njt(1), a2) plant at production time. Together, (32) determines

all
MP
h=1

MP
l=1

[J(h, l)− 1] adjustment fractions, given the production-time values of each plant
type below.

The values associated with members of each different plant group are expressed recur-

sively as follow. First, the value of any adjusting plant with current productivity al is, for
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each l = 1, ...,M :

v0t(l) =
h
f
³
n0t(l), al, zt

´
− wtn0t(l)

i
+ βE

"
λt+1
λt

MX

m=1

φ(l,m)

µ
α1,t+1(l,m)v0,t+1(m)

+[1− α1,t+1(l,m)]v1,t+1(l,m)− Γ
³
α1,t+1(l,m)

´¶
| St

#
.

This includes the plant’s current profit flows associated with having (n0t(l), al) at produc-

tion time, plus its discounted probability-weighted continuation value. At date t + 1, the

plant will draw productivity a1 with probability φ(l, 1). In this case, its expected fixed cost

payment will be the conditional average adjustment cost paid by any member of its group,

Γ
³
α1,t+1(l, 1)

´
, and it will adjust employment to n0,t+1(1) with probability α1,t+1(l, 1), or

not adjust with probability [1 − α1,t+1(l, 1)]. Alternatively, the plant will have produc-

tivity a2 with probability φ(l, 2), in which case its expected fixed cost payment will be

Γ
³
α1,t+1(l, 2)

´
, and it will adjust its employment to n0,t+1(2) with probability α1,t+1(l, 2),

or not with probability [1− α1,t+1(l, 2)], and so forth.

Finally, we have remaining
MP
h=1

MP
l=1

[J(h, l) − 1] equations that identify the values asso-
ciated each group of nonadjusting plants in the economy. For each (h, l) past and current

productivity combination, for each j = 1, ..., J(h, l)− 1, the value of a nonadjusting plant
identified by (njt(h), al) at production time in date t is:

vjt(h, l) =
h
f
³
njt(h), al, zt

´
− wtnjt(h)

i
+ βE

"
λt+1
λt

MX

m=1

φ(l,m)

µ
αj+1,t+1(h,m)v0,t+1(m)

+[1− αj+1,t+1(h,m)]vj+1,t+1(h,m)− Γ
³
αj+1,t+1(h,m)

´¶
| St

#
.

Given the current aggregate state, St, and the values of J(h, l), the evolution of this

economy with persistent plant-specific productivity shocks is fully described by a system

of X first-order stochastic difference equations, where

X = 7 + 2
MX

h=1

MX

l=1

J(h, l) + (M + 2)
MX

h=1

Jh −M2.

Thus, the economy’s aggregate dynamics may be solved as a local appropriation around
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the steady state using standard linear systems methods.22 In solving for the steady-state,

we add to this system the solution for the additional endogenous variables defining the

nonadjustment horizons,
h
[J(h, l)]Ml=1

iM
h=1
.

7 Concluding remarks

Using a time-invariant distribution of adjustment costs that are random across pro-

duction units at a point in time, and over time for any unit, we have developed a new

variety of partial adjustment model for labor demand. Our generalized partial adjustment

model is consistent with 5 stylized facts: (1) employment adjustment at the establishment

is discrete and occasional, (2) aggregate employment is smooth and gradual, (3) individual

plants’ probabilities of adjustment, their adjustment rates, vary over time in response to

aggregate conditions, (4) these adjustment probabilities are functions of the difference be-

tween plants’ actual and target employment and (5) movements in aggregate employment

are largely driven by movements in aggregate factors, not by changes in plant-level factors.

The last stylized fact has motivated the focus in our numerical examples on cases where

idiosyncratic uncertainty at the plant level that is transitory and there are no additional

sources of plant-specific heterogeneity. Existing empirical research suggests that such fac-

tors are of secondary importance in explaining movements in aggregate employment. A

benefit to our abstraction is that we are able to develop a generalized (S, s) model of

establishment-level labor adjustment that rationalizes existing empirical work that has

heretofore assumed state-dependent adjustment hazards. Moreover, we have shown that

our method allows convenient aggregation of the discrete adjustment actions of a hetero-

geneous distribution of production units into a smooth planning problem.

Using our generalized partial adjustment model, we have analyzed the dynamics of

employment under two alternative assumptions about the wage rate and interest rate, two

prices that are central to an establishment’s adjustment decision. We began by assuming

that both prices were fixed, while productivity fluctuated exogenously. Next we considered

a simple general equilibrium formulation in which these prices were endogenously deter-

mined, and hence varied with changes in productivity. The dynamics under these two

formulations are quite different, but the differences are understandable consequences of

variations in wages and interest rates. Previous research in this area has been conducted

22For example, suppose that a took on one of only M = 2 possible states, and suppose that the highest

possible adjustment cost draw was sufficiently low such that none of the resulting four J(h, l) nonadjustment
horizons exceeded 4 periods. Then the maximum size of the resulting linear system would be 163 equations.
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almost exclusively under the assumption of exogenous prices, given the complications pre-

sented by nontrivial heterogeneity in production. An important contribution of the current

model lies in its ability to limit such complications, thereby allowing straightforward aggre-

gation, and hence the natural extension to general equilibrium. Moreover, while we have

selected to abstract from additional sources of plant-level heterogeneity in the numerical

examples here, we have shown how the addition of persistent plant-specific shocks is a

straightforward extension to our current framework. We therefore view it as a tractable

basis for future research into the dynamics of factor adjustment.

29



References

[1] Caballero, Ricardo J. and Eduardo M. R. A. Engel [1992], “Beyond the Partial-

Adjustment Model,” American Economic Review 82, 360-384.

[2] Caballero, Ricardo J. and Eduardo M. R. A. Engel [1993], “Microeconomic Adjustment

Hazards and Aggregate Dynamics,” Quarterly Journal of Economics 82, 359-383.

[3] Caballero, Ricardo J. and Eduardo M. R. A. Engel [1999], “Explaining Investment

Dynamics in U.S. Manufacturing: A Generalized (S, s) Approach,” Econometrica 67,

783-826.

[4] Caballero, Ricardo J.; Eduardo M. R. A. Engel; and John C. Haltiwanger [1997], “Ag-

gregate Employment Dynamics: Building From Microeconomic Evidence,” American

Economic Review 87, 115-137.

[5] Dotsey, Michael; Robert G. King; and Alexander L. Wolman, [1999], “State Dependent

Pricing and the General Equilibrium Dynamics of Money and Output,” Quarterly

Journal of Economics 14, 655-690.

[6] Hamermesh, Daniel S. [1989], “Labor Demand and the Structure of Adjustment

Costs,” American Economic Review 79, 674-689.

[7] Hamermesh, Daniel S. and Gerard A. Pfann [1996], “Adjustment Costs in Factor

Demand,” Journal of Economic Literature 34, 1264-1292.

[8] Khan, Aubhik and Julia K. Thomas [2003a], “Nonconvex factor adjustments in equi-

librium business cycle models: do nonlinearities matter?” Journal of Monetary Eco-

nomics 50, 331-360.

[9] Khan, Aubhik and Julia K. Thomas [2003b], “Inventories and the Business Cycle: An

Equilibrium Analysis of (S,s) Policies” NBER working paper w10078.

[10] King, Robert G. and Sergio T. Rebelo [1999], “Resuscitating Real Business Cycles,”

chapter 14 in M. Woodford and J. Taylor (eds.) Handbook of Macroeconomics IB

Elsevier Science.

[11] Kollintzas, Tryphon E. [1985], “The Symmetric Linear Rational Expectations Model,”

Econometrica 53, 963-976.

30



[12] Lucas, Robert E. Jr. and Edward C. Prescott [1971], “Investment Under Uncertainty,”

Econometrica 39, 659-681.

[13] Mortensen, Dale T. [1973], “Generalized Costs of Adjustment and Dynamic Factor

Demand Theory,” Econometrica 41, 657-665.

[14] Parente, Stephen L. and Edward C. Prescott [1994] “Barriers to Technology Adoption

and Development,” Journal of Political Economy 102, 298-321.

[15] Sargent, Thomas J. [1978], “Estimation of Dynamic Labor Demand Schedules under

Rational Expectations,” Journal of Political Economy 86, 1009-1044.

[16] Thomas, Julia K. [2002], “Is Lumpy Investment Relevant for the Business Cycle?”

Journal of Political Economy 110, 508-534.

31



1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Figure 1a: Steady State Adjustment Fractions

α
j

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25
Figure 1b: Steady State Distribution

time since adjustment

θ
j



0 2 4 6 8 10
0

1

2

3
Figure 2a: Market Employment

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n

0 2 4 6 8 10
1

1.5

2

2.5

3

date

Figure 2b: Market Output

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n

PA
TD
SD

PA
TD
SD



1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Figure 3a: Total Adjustors

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n

1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

Figure 3b: Target Employment

date

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n



1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3
Figure 4: Decomposition of Market Employment

p
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 

date

total
n

j
 effects

ω
j
 effects



1 3 5 7 9 11
0

1

2

3 Employment

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n

1 3 5 7 9 11
-10

0

10

20

30 Total Adjustors

1 3 5 7 9 11
0.5

1

1.5

2

2.5

3 Output

date

p
e

rc
e

n
t 

d
e

v
ia

ti
o

n

1 3 5 7 9 11
0

1

2

3 Target Employment

date

GE
Fixed Prices

GE
Fixed Prices

GE
Fixed Prices

GE
Fixed Prices

Figure 5: Effects of Equilibrium 




