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1. Introduction

Screening and diagnostic tests are familiar and ever-evolving tools of modern medicine. Popu-

lations of healthy individuals characterized as at-risk are commonly screened for diseases such

as cancer and heart disease. Early detection by screening is considered essential to alleviate dis-

ease burden, and considerable resources have been devoted to developing new screening tests.

New diagnostic tests that are less invasive, less expensive, and more accurate than existing

procedures are sought for diagnosis of many conditions. Technologies that measure gene and

protein expression, as well as new imaging procedures all hold promise in this regard. Prior to

wide-spread application, however, rigorous evaluation of test accuracy and of factors that effect

it is compulsory.

Inherent in the analysis of screening and diagnostic tests are costs and benefits, both mon-

etary and non-monetary, associated with true positive and false positive diagnoses. Consider

a continuous test result Y for which Y > c indicates a positive test result, and D and D de-

note diseased and non-diseased states, respectively. The true positive rate at a threshold c,

TPR(c), is defined as P (Y > c | D) ≡ SD(c). The corresponding false positive rate, FPR(c),

is P (Y > c | D) ≡ SD(c). Costs and benefits are associated with any given {FPR(c), TPR(c)}
pair. The Receiver-Operating Characteristic (ROC) curve plots {FPR(c), TPR(c)} for all pos-

sible thresholds c, and provides a visual description of the trade-offs between TPRs and FPRs

as one changes the threshold stringency (Figure 1). We can write the ROC curve as a function

of t = SD(c) as follows: ROC(t) = SD{S−1
D

(t)}. An uninformative test is represented by a

straight line from the (0, 0) vertex to (1, 1), while a curve pulled closer towards the (0, 1) vertex

indicates a better performing test.

Frequently, the best threshold is not known when a test is under evaluation, and it may

vary depending on the setting in which the test is implemented. A summary measure that

aggregates performance information across a range of possible thresholds is desirable. The area
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under the ROC curve (AUC), defined as
∫ 1

0
ROC(t)dt, summarizes across all thresholds, and is

the most commonly used measure of diagnostic accuracy for quantitative tests. However, the

AUC summarizes test performance over regions of the ROC space in which one would never

operate, i.e., for {FPR(c), TPR(c)} values of no practical interest. In population screening,

large monetary costs result from high false positive rates; hence the region of the curve corre-

sponding to low false positive rates is of primary interest. In diagnostic testing, it is critical to

maintain a high TPR in order not to miss detecting subjects with disease. In this case, interest

is in the region of the ROC curve corresponding only to acceptable high TPRs. In this paper,

we consider a summary index for the ROC curve restricted to a clinically relevant range of false

positive rates. The partial AUC is

AUC(t0, t1) =

∫ t1

t0

ROC(t)dt, (1)

where the interval (t0, t1) denotes the false positive rates of interest. The analogue that restricts

to a range of true positive rates will also be discussed. Selecting the interval (t0, t1) is an

important practical issue. The choice depends on the particular setting and should depend on

the costs of a false positive diagnosis as well as the benefits of a true positive. Baker (2000)

develops a “utility” function to specify a target partial ROC region. Obuchowski (1997) uses

decision analysis to associate patient outcome with desirable diagnostic accuracy values. Such

methods could be adapted, for example, to determine a maximum allowable false positive rate

or the lowest desirable true positive rate. This is a complex area requiring input from health

services and economic specialists.

Although the partial AUC has been proposed before (McClish, 1989; Thompson and Zuc-

chini, 1989; Jiang et al., 1989) and has gained popularity, particularly in screening research

(Baker and Pinsky, 2001), little attention has been devoted to statistical inference about it.

We provide a probabilistic interpretation for the partial AUC that gives rise to a novel non-

parametric estimator. Through simulation studies, the estimator is compared with the existing
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estimators that are all based on parametric assumptions. We show that the increased robust-

ness of the non-parametric estimator is gained at the expense of a moderate loss in efficiency.

Next, we present a regression framework for evaluating covariate effects on the partial AUC.

The approach extends a method developed recently for regression analysis of the full AUC

(Dodd and Pepe, 2003). Since the partial AUC has more appeal in many practical settings,

this represents an important generalization.

The work is motivated by a study of prostate-specific antigen (PSA), a serum biomarker.

PSA is a screening tool for prostate cancer that has been the focus of much research. Important

questions to consider when evaluating this biomarker are: Which form of PSA is best (total or

ratio of free to total PSA)? and, by how long does this test advance the lead time, or time prior

to clinical diagnosis of disease? In this paper, we show that a parsimonious regression model of

the partial AUC with PSA type and lead time as covariates assists with this type of evaluation.

2. Partial AUC

The partial AUC is simply the area under the ROC curve between t0 and t1 (Figure 1). With an

uninformative test, TPR(c) = FPR(c) for all c, and the partial AUC is the area of a trapezoid

equal to 1
2
(t1 + t0)(t1 − t0). For a perfect test, ROC(t) = 1 for all t ∈ (0, 1), and the partial

AUC is the area of the rectangle with height 1 and base t1 − t0.

INSERT FIGURE 1 ABOUT HERE.

2.1 Interpretations of the Partial AUC

Assume Y D and Y D are continuous random variables with survivor functions SD and SD,

respectively. Let F = 1− S. The partial AUC is the joint probability that Y D > Y D and that

Y D falls within the range of clinically relevant quantiles. To see this observe that:
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AUC(t0, t1) =

∫ t1

t0

ROC(t)dt

=

∫ t1

t0

SD(S−1
D

(t))dt

=

∫ S−1

D
(t0)

S−1

D
(t1)

SD(y)dFD(y)

=

∫ S−1

D
(t0)

S−1

D
(t1)

SD(y)fD(y)dy

= P
[
Y D > Y D, Y D ∈ {S−1

D
(t1), S

−1
D

(t0)}
]

(2)

To simplify notation let q0 = S−1
D

(t0) and q1 = S−1
D

(t1). The partial AUC can also be written

as a weighted conditional expectation AUC(t0, t1) = (t1 − t0)P
{
Y D > Y D|Y D ∈ (q1, q0)

}
.

A second interpretation arises from the concept of placement values (Pepe, 2003). Hanley

and Hajian-Tilaki (1997) showed a connection between average placement values and the full

AUC. We extend their result to the partial AUC here, as it provides an interesting interpretation

of the partial AUC as well as a simpler estimator:

P
{
Y D > Y D, Y D ∈ (q1, q0)|Y D = yD

}
= P

{
Y D > yD, yD ∈ (q1, q0)

}
= I

{
yD ∈ (q1, q0)

}
P

(
Y D > yD

)
= I

{
yD ∈ (q1, q0)

}
SD(yD)

≡ P lD(yD) (3)

We refer to P lD(yD) as a restricted placement value (with respect to the distribution of results

from the diseased population). Note that a full placement value is defined as in (3) except there

is no restriction to Y D ∈ (q0, q1). The term SD(yD) is the placement of a given non-diseased test

result, Y D = yD, in the survivor function of results of diseased. For a good test, the non-diseased

observations fall in the lower tail of the distribution of diseased. Hence, larger placement values

indicate a better test. The restricted placement is weighted so that only those values that fall
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within the relevant quantiles are considered. Note that E{P lD(Y D)} = AUC(t0, t1). Thus, the

partial AUC can be thought of as an average of restricted placement values. It is straightforward

to show that the partial AUC is also the expected restricted placement value which conditions

on observations from the diseased population.

One may wish to rescale the partial AUC, especially in regression analysis (see Section 6).

We define the partial AUC odds as:

AUC(t0, t1)

(t1 − t0) − AUC(t0, t1)
=

P{Y D > Y D|Y D ∈ (q1, q0)}(t1 − t0)[
1 − P{Y D > Y D|Y D ∈ (q1, q0)}

]
(t1 − t0)

=
P{Y D > Y D|Y D ∈ (q1, q0)}
P{Y D < Y D|Y D ∈ (q1, q0)}

. (4)

This is the ratio of the probability of a correct ordering of a randomly selected diseased

and non-diseased test result to the probability of an incorrect ordering, with both probabilities

conditional on the test result of non-diseased arising from the region of interest. These odds

have value of t1+t0
2−(t1+t0)

when a test is uninformative and of infinity for a perfect test.

2.2 Restricting the True Positive Range

The partial AUC just described restricts the ROC region of interest to false positive rates

that take values in (t0, t1). In some settings, one may wish to restrict to a range of true positive

rates (Jiang et al., 1996). By transforming the ROC curve to a plot of {SD(c), 1 − SD(c)},
interpretations of a partial AUC corresponding to true positive rates in an interval are easily

obtained. The curve is no longer the classic ROC curve. It is simply a 270◦ rotation of Figure 1.

We refer to this curve as the Specificity-ROC curve (ROCspe) since specificity is plotted on the

y-axis. For u = SD(c), this curve is described by ROCspe(u) = 1−SD{S−1
D (u)} = FD{S−1

D (u)}.
The partial AUC for a range of true positives, denoted AUCTP (u0, u1), is defined as:∫ u1

u0

ROCspe(u)du =

∫ S−1
D (u1)

S−1
D (u0)

{1 − SD(y)} dSD(y)

= P
[
Y D > Y D, Y D ∈ {S−1

D (u1), S
−1
D (u0)}

]
. (5)
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Note that
∫ 1

0
SD(y)dSD(y) =

∫ 1

0
{1 − SD(y)}SD(y). Therefore, the two representations give

the same full AUC. However, the quantiles that define the partial AUC are {S−1
D

(t1), S
−1
D

(t0)},
and are derived from the non-diseased distribution for the classic ROC curve. For the case

just presented the quantiles are {S−1
D (u1), S

−1
D (u0)}, and arise from the distribution of tests of

diseased subjects. With this exception, the interpretations are the same. Thus, we focus on

the classic ROC curve, recognizing that methods developed here easily extend to the case in

which restriction of true positive rates is required.

3. Estimators

3.1 Parametric Estimators

Before proposing our non-parametric estimator, we briefly describe existing estimators. Mc-

Clish (1989) describes what we refer to as the normal distributions partial AUC estimator

(NDE), which assumes that the test results for diseased and non-diseased populations follow

normal distributions with different means and variances. Maximum likelihood estimates of

these parameters provide the ROC curve estimate, and numerical integration of it gives the

partial AUC estimator: ÂUC(t0, t1) =
∫ t1

t0
Φ

{
â + b̂Φ−1(t)

}
dt. Here â = (µ̂D − µ̂D)/σ̂D and

b̂ = σ̂D/σ̂D, where µ and σ2 denote mean and variance, respectively.

Another approach is to parameterize the ROC curve directly. The most common form is the

binormal ROC curve, ROC(t) = Φ {a + bΦ−1(t)}, for which the partial AUC is given by the

same formula above. However, because this approach does not parameterize the distributions

of test results, but only the ROC curve that describes the relationship between their distribu-

tions, it stipulates far weaker assumptions. Two methods have been proposed for estimating

parameters a and b of the binormal ROC curve (Pepe, 2000; Metz, Herman, and Shen, 1998).

Both methods are distribution free in that they are functions only of the ranks of the data.
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3.2 Proposed Non-Parametric Estimator

Denote V q0,q1

ij = I{Y D
i > Y D

j , Y D
j ∈ (q1, q0)}, and observe that E

(
V q0,q1

ij

)
= P{Y D > Y D,

Y D ∈ (q1, q0)} = AUC(t0, t1), according to the interpretation of equation (1). This suggests

the following method of moments estimator:

ÂUC(t0, t1) =
1

nDnD

∑
ij

V q0,q1

ij . (6)

In some circumstances the quantiles (q0, q1) will be known. In others, they will not, in which

case, empirical quantile estimates are substituted. If the empirical quantile value does not

coincide precisely with the desired value, as may happen with small sample sizes, values are

linearly interpolated. Observe that, when t0 = 0 and t1 = 1, ÂUC(t0, t1) = 1
nDnD

∑
ij I(Y D

i >

Y D
j ). Hence, for the full AUC the estimator reduces to the Mann-Whitney U-statistic, the

classic non-parametric AUC estimator. Further, note that this results in the same value as the

area calculated from the empirical ROC curve using the trapezoidal rule when there are no ties

in the data.

The same estimator is derived by consideration of empirical restricted placement values. Let

Ŝ denote an empirical survivor function and write the empirical placement value corresponding

to an observation from a disease-free subject, Y D, as:

P̂ l
D
(Y D

j ) = I
{
Y D

j ∈ (q1, q0)
}

ŜD(Y D
j )

= I
{
Y D

j ∈ (q1, q0)
} 1

nD

nD∑
i

I(Y D
i > Y D

j ). (7)

The sample average is

1

nD

nD∑
j

P̂ l
D
(Y D

j ) =
1

nDnD

nD∑
j

nD∑
i

I
{

Y D
i > Y D

j , Y D
j ∈ (q1, q0)

}
.

Thus, the non-parametric estimator is an average of partial AUC placement values within the

disease reference distribution. Likewise, the estimator can be written as the average of the
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placement values within the non-diseased reference distribution. This generalizes the corre-

sponding results for the full AUC given in DeLong, DeLong and Clarke-Pearson (1988) and

Hanley and Hajian-Tilaki (1997). Calculations using placement values are considerably faster

computationally, and are used in the simulations described next.

Asymptotic distribution theory is non-standard because the binary indicators, V q0,q1

ij , are

cross-correlated. It can be shown that the projection 1
nDnD

∑
ij P lD(Y D

i )+P lD(Y D
j ) is asymp-

totically equivalent to (6). Since this projection is a sum of independent terms, standard theory

provides consistency and asymptotic normality results. For complete details, refer to Dodd

(2001). We recommend using the bootstrap to obtain variance estimates.

4. Simulations

4.1 Small Sample Performance of the Estimator

Three different ROC models were simulated to evaluate performance of the proposed method

of inference. The models simulated are a normal distributions model, a proportional hazards

ROC model, and an extreme value ROC model. The proportional hazards ROC model assumes

that the hazard function for the disease test result distribution is proportional to that of the

non-disease distribution. If the ratio of hazards is r, then ROC(t) = tr. The extreme value

ROC model involves two parameters (e, f), and is of the form ROC(t) = exp[−1
e

exp{−fΦ−1(t)}]
(Cai and Pepe, 2003). Briefly, extensive simulations of these models described in Dodd(2001)

showed that the non-parametric method produced estimates with little bias and that confidence

intervals using the bootstrap standard error estimator and normal quantiles provided good

coverage probability.

We present results for the normal distributions model here. This assumes Y D ∼ N(1.5, 1.44)

and Y D ∼ N(0, 1) (see Figure 1). Partial AUCs are considered for (t0, t1) = {(0, 0.1), (0, 0.2),

(0.1, 0.2), (0.1, 0.3)} when quantiles are both known and estimated empirically. Sample sizes

were generated with both equal and unequal numbers in each group, such that (nD, nD)=
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{(50, 50), (50, 100), (50, 200), (100, 100), (100, 200), (100, 300)}. All resulted in estimates with

little bias. The largest amount of bias (4.3%) occurs for a sample size of 50 per group for

(t0, t1) = (0, 0.1) when empirical quantiles are used. Bias becomes negligible as sample size

increases and as more of the curve is integrated.

Bootstrapped standard errors, computed with 200 bootstrap samples, overestimate the truth

somewhat when the quantiles are estimated. In the case when quantiles are known, the boot-

strapped standard error estimator is reasonably unbiased. Consequently, confidence interval

coverage tends to be above the nominal level with estimated quantile values, but close to the

nominal level with the known threshold. Surprisingly, when empirical quantiles are substi-

tuted, there is an increase in efficiency relative to the case when the true quantile is used. The

true standard errors associated with ÂUC{t0(q̂), t1(q̂)} are consistently smaller than those for

ÂUC{t0(q), t1(q)}. The reason for this is unclear to us, but it is a real phenomenon observed

throughout our simulation studies.

4.2 Robustness

To investigate if the non-parametric estimator gains robustness over other estimators, we

considered settings where the ROC curve deviated from the classic binormal form. We gen-

erate an ROC model in which test results arise from mixtures of distributions. Assume

that Y D ∼ N(0, 1), but that Y D is a mixture of two normal distributions, fZ1 and fZ2 ,

with Z1 ∼ N(µD,1, σ
2
D,1) and Z2 ∼ N(µD,2, σ

2
D,2), such that the probability density of Y D

is p fZ1(y) + (1 − p) fZ2(y), for a mixing proportion p ∈ (0, 1). The resulting ROC curves are

simply mixtures of ROC curves weighted by the appropriate mixing probabilities and can be

expressed as ROC(t) = pΦ(a1 + b1Φ
−1(t)) + (1 − p)Φ(a2 + b2Φ

−1(t)), where ai =
µD,i−µD,i

σD,i
and

bi =
σD,i

σD,i
for i = 1, 2. We set µD1 = 5, σ2

D1 = 1.2, µD2 = 0, σ2
D2 = 1, and p = 0.3. The true

ROC curve is the solid line shown in Figure 2. We use t0 = 0 and three separate maximum

false positive rates, t1 = 0.05, 0.1, 1.0. Very low false positive rates such as t1 = 0.05 have been
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advocated in settings such as cancer screening (Baker and Pinsky, 2001).

INSERT FIGURE 2 ABOUT HERE

Estimates of ROC curves from the normal distributions estimator (NDE), the Pepe estimator

(PPE) and the Metz estimator (MZE) are also given in Figure 2. Recall that the normal

distributions estimator assumes that test results are normally distributed in diseased and non-

diseased populations, and, using sample means and variances, the ROC curve is calculated as

R̂OC(t) = Φ{â + b̂Φ−1(t)} with â =
µD−µD

σD
and b̂ =

σD

σD
. Clearly, all of these curves fail to

accurately represent the true curve which is not of the binormal form. They parameterize the

ROC curve incorrectly, and hence, produce biased partial AUC estimates (Table 2). The largest

bias was observed with the normal distributions estimator. In contrast to this estimator and

those of Pepe and Metz, the non-parametric estimators produce estimates with very small bias.

Observe that the amount of bias decreases for both the Metz and the Pepe estimators as more

of the curve is integrated. This is consistent with results showing that the binormal model

estimators produce AUC estimates which are robust to departures from this model (Hanley,

1996).

Additionally, note that the non-parametric methods model and estimate the ROC over the

entire (0,1) range and then integrate the relevant portion to determine the partial AUC. On

the other hand, the proposed method directly estimates the partial AUC over the false positive

rate range of interest. A more robust approach might be to model over (t0, t1), which can be

accomodated by the Pepe approach. When the estimates are computed restricting to (0, 0.05)

and (0, 0.2), however, there is still bias with the Pepe method. The mean estimates restricting

to the corresponding intervals are ÂUC(0, 0.05) = 0.013 (-18% bias) and ÂUC(0, 0.2) = 0.044

(-40% bias).
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4.3 Efficiency

We compare the efficiency of the methods for estimating the partial AUC under the normal

distributions model. In this setting, the normal distributions estimator is more efficient than the

others as it is the maximum likelihood estimator and makes use of the information that the data

are normally distributed. The results presented in Figure 3 indicate that the non-parametric

estimator with known quantile, NPE(q), is the least efficient of the methods. In agreement

with Table 1, we observe that the non-parametric estimator is more efficient when the quantile

is estimated than when the known value is used. The distribution-free binormal estimators are

more efficient than the non-parametric estimator but have reduced efficiency relative to the

approach that models the test results. Although very similar, the Pepe estimator appears to

be slightly more efficient than the Metz estimator.

The efficiency of all methods approaches that of the normal distributions estimator as t → 1.

Recall that when t = 1, the non-parametric estimator is the Mann-Whitney U-statistic. The

normal distributions estimator is simply a transformation of the standardized differences in

means, i.e., of the Z-statistic. Hence, the comparison of the variance of the non-parametric

estimator with the variance of the normal distributions estimator is akin to the comparison

of the efficiency of the Mann-Whitney U-statistic to that of the Z-statistic. It is well known

that the asymptotic relative efficiency of the Mann-Whitney U-statistic to the t-statistic is

0.95 Lehmann (1997). Thus, it is no surprise that, in this study, the relative efficiency is 0.94

at t = 1.

INSERT FIGURE 3 ABOUT HERE

4.4 Recommendations

The normal distributions estimator, while most efficient, produces unacceptably biased es-

timates. Estimators that parameterize the ROC curve are similarly not robust. The non-

parametric estimator provides substantially more robust estimation. The added robustness is
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at the expense of moderate losses in efficiency. Hence, we recommend use of the non-parametric

estimator. Indeed, for partial areas with t > 0.1, it has similar efficiency to the Pepe and Metz

methods.

5. Regression Analysis

Accuracy may depend on information other than the test result itself. For example, accuracy

may depend on how close in time a subject is to clinical diagnosis. Patient characteristics

such as age or family history of disease may also be relevant determinants of accuracy. This

information may guide decisions about which populations are most likely to benefit from testing

or for which populations test innovations are needed. We extend regression methodology we

previously developed for the AUC to a regression methodology for the partial AUC summary

index of test accuracy. For a more extensive discussion of modelling approaches for the AUC

and details about fitting, refer to Dodd and Pepe (2003). Here, we elaborate only on aspects

unique to the partial AUC.

5.1 Models

To assess the effect of covariates on test accuracy, we propose the following partial AUC

regression models. Consider a vector of covariates X. Define the covariate-specific partial AUC

as AUCX(t0, t1) = P (Y D > Y D, Y D ∈ (q0, q1)|X). For a specified link function g, the general

model is given by:

AUCX(t0, t1) = g(XTβ) (8)

Possible link functions include the logit or probit forms. However, since AUC(t0, t1) has an

upper bound of (t1 − t0), a generalization of the logit that incorporates this constraint is

appropriate:g−1(u, t0, t1) = log u
(t1−t0)−u

. When this link is used an interpretation that cor-

responds to the partial AUC odds defined earlier follows. Consider the model:

log

{
AUCX(t0, t1)

(t1 − t0) − AUCX(t0, t1)

}
= β0 + β1X. (9)
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It follows that eβ1 is a ratio of partial AUC odds for X + 1 to X. When eβ1 > 1, the partial

AUC odds are an increasing function of X, and accuracy increases with X. If eβ1 < 1, the

partial AUC odds are a decreasing function of X. Refer to Dodd and Pepe (2003) for details

about model specification.

5.2 Estimating Function

Consider the indicators V
(q0,q1)
ij as defined in (6), but now we condition on the covariates

X. They have mean E
{

V
(q0,q1)
ij | X

}
= AUCX(t0, t1), which suggests that binary regression

methods can be used to estimate partial AUC model parameters with the following estimating

equation:

VnD,nD
(β) =

nD∑
i

nD∑
j

∂θX

∂β
ν−1(θX)

{
V

(q0,q1)
ij − θX

}
= 0. (10)

Here, θX = AUCX(t0, t1), ν−1(θX) is the variance of V (q0,q1), and ∂θX

∂β
is a (p × 1) vector of the

partial derivatives of θX with respect to the model parameters β. This resembles the classic

estimating equation for binary regression. However, the binary indicators are cross-correlated,

in the sense that, for a given i the set of binary variables {Vij, j = 1, ..., nD} are correlated

because they are a function of Y D
i . Consistency and asymptotic normality for parameter es-

timates from a similar estimating equation is developed in Dodd and Pepe (2003). The same

theory applies here, at least when the quantiles (q0, q1) are known. See Dodd (2001) for full

exposition.

5.3 Comparing two tests

The proposed estimating equation gives rise to a standard approach when a model to

compare two tests is of interest. Consider the following model: log[AUCX(t0, t1)/{t1 − t0 −
AUCX(t0, t1)}] = β0 + β1X, where X is an indicator of test type. The score-like test of β1 = 0,

based on the estimating equation in (10), reduces to ÂUCX=1(t0, t1) − ÂUCX=0(t0, t1), where

ÂUC(t0, t1) is defined as in (6). This statistic is a member of the family of statistics proposed
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by Wieand et al. (1989) that takes integrated differences in weighted ROC curves to compare

two tests. The Wieand et al. approach does not require bootstrapping for inference as does

ours when the quantiles, q0 and q1, are unknown. The current approach, on the other hand,

provides a more general regression framework.

5.4 Implementation

To obtain parameter estimates, algorithms developed for binary regression are used. First,

however, the quantiles (q0, q1) must be specified. If known, they are simply substituted into (10).

If quantiles are unknown and do not depend on covariates, they can be estimated empirically

from the non-disease data at hand. If the unknown quantiles depend on covariates, a quantile

regression model may be specified. Then, the binary indicators based on pairs of diseased

and non-diseased observations are computed. When covariates are categorical and there are

sufficient observations of diseased and non-diseased within each category, all possible pairs

of diseased and non-diseased within a given category are created. That is, the nk
D and nk

D

observations corresponding to the category or level of covariate k are selected and we calculate

V
(q0,q1)
ij at each X for k = 1, ..., K. Note that the estimating function is modified to indicate the

sum over k. When covariates are continuous, pairing of diseased and non-diseased observations

(Y D
i , Y D

j ) may be undertaken for all possible pairs, although we prefer to pair those observations

only with covariate values near one another. Finally, if covariates are unique to the diseased

group, as with the “time prior to diagnosis” covariate in the PSA example that follows, the

covariate does not restrict the pairing. Pairing is based only on covariates common to D and

D. We refer to the paper on AUC regression by Dodd and Pepe (2003) for a detailed discussion

of pairing in the presence of covariates. The same considerations are relevant here.

Logistic or probit regression estimation routines in standard statistical packages can be used

to solve the estimating equations. Note that standard errors reported from these packages will

not be valid, even with a robust sandwich variance estimator because of the crossed-correlation
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structure. We use the bootstrap to calculate the standard errors for parameter estimates.

Bootstrap samples are taken by sampling subjects as the primary unit.

6. Prostate-Specific Antigen Analysis

The data analyzed here are taken from a retrospective sampling of stored serum from the α-

Tocopherol and β-Carotene Study (ATBC), described by Heinonen et al. (1998). Although

the primary goal of this study was to evaluate the effect of dietary supplementation of α-

Tocopherol and β-Carotene on lung cancer risk, the development of prostate cancer was also

recorded. Additionally, serum samples were collected and stored at baseline and three years

later. For those 240 subjects who were diagnosed with prostate cancer during the eight-year

follow-up period, their serum samples were retrospectively evaluated for pre-diagnostic levels of

prostate-specific antigen. Age-matched serum samples for 237 non-prostate diagnosed subjects

were selected for comparative purposes. Two ways of quantifying PSA were considered, the

total PSA in serum (denoted by Total) and the ratio of free to total PSA in serum (denoted by

Ratio). Etzioni et al. (1999) previously compared these two measures using a different dataset.

In addition to comparing Total with Ratio PSA, we examine the effect of time from serum

sampling to clinical diagnosis on accuracy. One would expect that PSA levels taken close to

the time of clinical time of diagnosis would be more predictive. Let test denote an indicator

that takes a value of one for total PSA and zero for PSA ratio. The term time denotes years

prior to clinical diagnosis at which PSA was measured, so that ‘−7’ indicates ‘7 years before

diagnosis’ and ‘0’ indicates sampling concurrent with diagnosis.

Studies of the false positive rates of PSA at the standard threshold of 4.0 ng/mL vary widely,

with values ranging from 0.10 to 0.70 reported in the literature (Tanguay et al., 2002; Barry,

2001). We consider the following partial AUC regression model from t0 = 0 to the midpoint of
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reported false positive rates, i.e., t1 = 0.4:

log
AUC(0, 0.4)

0.4 − AUC(0, 0.4)
= β0 + β1test + β2time + β3test ∗ time. (11)

The “time” covariate is irrelevant in the disease-free group, hence 1 − tth1 empirical quantile

within each test type was substituted for q1. Refer to Table 3 for parameter estimates. Bootstrap

sampling was conducted with 200 replicates using case-control sampling with subjects as the

primary unit. In accordance with Etzioni’s results, Total PSA appears to be the better marker

for prostate cancer. At time = 0, the partial AUC odds ratio is 2.67 which is almost statistically

significant at 5% (p = 0.07). As expected, PSA accuracy improves when subjects are measured

at times closer to clinical diagnosis of prostate cancer. Although this is true for both measures,

the interaction term indicates that the time effect is different for the two measures. There is

a 17% greater increase in partial AUC odds for each year for total PSA relative to ratio PSA.

For total PSA, the partial AUC odds increase by about 23% for year closer to diagnosis, while,

for ratio the partial AUC odds only increase by 5% for each year. Stated another way, the

relative performance of the measures changes with time. The relative odds, estimated as 2.67

at diagnosis, is 1.4 at four years prior to diagnosis (Figure 4). Figure 4 also plots the fitted

model. Empirical partial AUCs are averaged within a time window, where intervals are selected

so that there were sufficient observations per window, while avoiding wide time intervals. The

model appears to give a reasonable fit, as the fitted and empirical lines are fairly close.

INSERT FIGURE 4 ABOUT HERE

7. Discussion

The partial AUC summarizes test accuracy over a clinically relevant region of the ROC curve.

This summary measure can be interpreted as a joint probability that Y D > Y D and that Y D lies

within the quantiles corresponding to the relevant false positive region. Similarly, the measure

can be thought of as the expected restricted placement value. These related interpretations
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give rise to a new, non-parametric partial AUC estimator that is more robust than existing

estimators, and loses only moderate efficiency relative to them. Simulation studies demonstrate

reasonable performance of the approach under a range of models. Interestingly, the estimator is

more efficient when estimated quantiles are substituted, as opposed to using their true values.

When true quantiles are known, one may prefer to estimate them for a gain in efficiency.

We extend the approach to making inference about partial AUC regression models. One

could also use the Derived Variables approach, as proposed by Thompson and Zucchini (1989) or

modify the Jackknifed-AUC approach of Dorfman et al. (1992) for regression modelling. These

methods have been shown to be less efficient in previous studies ( Dodd and Pepe (2003)).

Further, they are not sufficiently flexible for the range of models of scientific relevance. For

example, neither of these methods could be applied to the PSA analysis presented because

the time prior to diagnosis covariate is continuous, and these other methods are restricted to

discrete covariate types.

Lastly, we emphasize that, although the partial AUC estimator is a more clinically relevant

summary measure of accuracy, the choice of the appropriate restricted region may be arguable.

More research is necessary to provide guidance for determining the relevant region. Such a

method would inevitably depend on information about the costs and benefits associated with

true and false positive diagnoses.
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Figure 1. Illustration of an ROC curve and its partial AUC (t0 = 0.1, t1 = 0.3)
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Figure 2. Estimates of the ROC based on data from the mixture model. Shown are curves
that use the average parameter estimates. NDE: Normal Distributions Estimator. PPE: Pepe
Estimator. MZE: Metz Estimator.
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Figure 3. Efficiency of Estimators Relative to the maximum likelihood Normal Distributions
Estimator. Shown are results with sample sizes of 200 per group and 2,000 replicates per
scenario.
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Figure 4. AUC(0, 0.4) Model Fit. Solid lines represent fitted model. Dotted lines represent
empirical values averaged over a time window.
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Table 1: Bias and Coverage Probability of the Non-Parametric Method with known and estimated
quantiles.

ÂUC{t0(q̂), t1(q̂)} ÂUC{t0(q), t1(q)}
Bias ŜE(SE) CP Bias ŜE(SE) CP×100 ×100

AUC(0,0.1)= 0.042
nD nD

50 50 4.30% 0.109(0.101) 0.96 1.90% 0.200(0.192) 0.90
50 100 2.60% 0.085(0.087) 0.94 <0.01% 0.152(0.146) 0.93
50 200 1.60% 0.073(0.069) 0.95 0.30% 0.114(0.112) 0.94
100 100 1.50% 0.075(0.072) 0.95 -0.20% 0.138(0.139) 0.94
100 200 0.20% 0.06(0.061) 0.94 0.60% 0.102(0.103) 0.95
100 300 0.40% 0.054(0.056) 0.95 0.50% 0.091(0.088) 0.94
AUC(0,0.2)= 0.107
nD nD

50 50 1.50% 0.185(0.172) 0.97 1.60% 0.347(0.338) 0.92
50 100 1.20% 0.152(0.155) 0.94 1.80% 0.269(0.252) 0.92
50 200 0.90% 0.135(0.129) 0.96 0.30% 0.194(0.197) 0.95
100 100 0.80% 0.128(0.127) 0.94 -1.40% 0.224(0.237) 0.96
100 200 0.00% 0.107(0.109) 0.94 -0.20% 0.178(0.178) 0.95
100 300 -0.10% 0.099(0.102) 0.95 -0.40% 0.155(0.153) 0.94
AUC(0.1,0.2)= 0.065
nD nD

50 50 -0.30% 0.136(0.086) 1 1.40% 0.284(0.280) 0.92
50 100 0.40% 0.094(0.080) 0.98 3.00% 0.217(0.203) 0.92
50 200 0.50% 0.076(0.069) 0.96 0.30% 0.148(0.152) 0.95
100 100 0.30% 0.082(0.065) 0.99 -2.10% 0.191(0.197) 0.95
100 200 -0.20% 0.061(0.055) 0.96 -0.80% 0.147(0.144) 0.94
100 300 -0.30% 0.055(0.053) 0.96 -0.90% 0.121(0.120) 0.95
AUC(0.1,0.3)=0.140
nD nD

50 50 -0.30% 0.194(0.151) 0.99 1.40% 0.416(0.414) 0.95
50 100 0.10% 0.151(0.142) 0.96 1.90% 0.301(0.305) 0.94
50 200 0.30% 0.133(0.127) 0.95 0.20% 0.227(0.232) 0.95
100 100 0.30% 0.126(0.114) 0.97 -2.10% 0.281(0.293) 0.95
100 200 -0.10% 0.103(0.099) 0.95 0.40% 0.218(0.216) 0.95
100 300 -0.30% 0.096(0.096) 0.94 -0.70% 0.17(0.183) 0.96

ŜE is bootstrapped standard error (×100) from 500 bootstrap samples, SE is true standard error
(×100), and CP is coverage probability for 95% confidence intervals using ŜE with a normal quantile.
Results represent 1000 realizations of normal distributions model.
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Table 2: Bias in Partial AUC estimates from ROC Mixture Model. Shown are results with 200
samples per group and 1,000 simulations of the model.

Method Estimate Percent Bias
AUC(0, 0.05) = 0.0158

Non-Parametric Estimator (q̂) 0.0160 1
Non-Parametric Estimator (q) 0.0157 <1
Pepe Estimator 0.003 -81
Metz Estimator 0.012 22
Normal Distributions Estimator 0.023 46

AUC(0, 0.2) = 0.074
Non-Parametric Estimator (q̂) 0.075 1
Non-Parametric Estimator (q̂) 0.074 < 1
Pepe Estimator 0.043 -41
Metz Estimator 0.078 5
Normal Distributions Estimator 0.110 49

AUC(0, 1) = 0.649
Non-Parametric Estimator 0.651 <1
Pepe Estimator 0.634 -2
Metz Estimator 0.675 4
Normal Distributions Estimator 0.709 9

Table 3: PSA Partial AUC Regression Model Parameter Estimates

Coefficient Estimate Std. Err. 95% CI AUC(0,0.4)
Odds Ratio

Intercept 0.99 0.29 (0.43, 1.55) 2.70
PSA Measure 0.98 0.54 (-0.09,2.04) 2.67
(1 for Total, 0 for Ratio)
Time prior to 0.05 0.05 (-0.04,0.14) 1.05
diagnosis (per year)
Test/Time
Interaction 0.16 0.08 (0.01, 0.31) 1.17
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