Lawrence Berkeley National Laboratory
Recent Work

Title
PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY:; VIBRATIONAL EXCITATIQN OF H2 BY He

Permalink
https://escholarship.org/uc/item/524531w7|

Authors

Miller, W.H.
Raczkowski, A.W.

Publication Date
1973-04-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/524531w7
https://escholarship.org
http://www.cdlib.org/

Preaented at the General Discussion on Molecular 1L,BL-1427
Beam Scattering, London, England, f‘,a,...

April 16-18, 1973

PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY;
VIBRATIONAL EXCITATION OoF HZ BY He

[ E'E AR ‘(.l"
P » e LR
et LADQRA i

w. H. Miller and A. W. Raczkowski P

s 1 LY
LA aEn T ST i1

April 1973

Prepared for the U. S. Atomic Energy Commission

under Contract W-7405—ENG—48

TWO-WEEK LOAN COPY

Thif is a Library Circulating Cbpy
tFohlch may be borrowed for two weeks

or a personal retention copy, call |
.Tech. Info. Division, Ext. 5545

P
Ly 1-T1d1




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency. thereof or the Regents of the
University of California. '



~iii-

LBL-1427

PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY;

'BY He

VIBRATIONAL EXCITATION OF H2

- W. H. Miller and A. W. Raczkowski

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and
Department of Chemistry; University of California,
B Berkeley, California 94720



1=

_ ~ ABSTRACT
| | N

Within thezframework of a géneral“seﬁiclassiéa1 théory that‘COmbines
exact classical d&namiés and quantum superpositidn it is shown héwva certain
averaging procedure allows one to tfeat.séme'degrees of freedom in a strictly
‘classical sense while others are quantized semiclassically. This enormously
simplifies the_application of the theory to three-dimensional collision
systems and also leads té'an intereéting formalvstructuré in the theofy: the
quantumflike degrees of freedom are quantized semiclaSsically via use of
dQuble—ended bopndéry conditions,‘while the unquantized classical—like degrees_
of freedom enter only through a phase space average over their initial
’coordinates anﬁ momenta. Preliminary results for vibrational excitatidn_of

H

2 by He are ptesented and compared with available quantum mechanical

calculations.

I. INTRODUCTION.

The last several years have seen an increasing use of classicalytréjectory
célculations in describing inelastic and reactive molecular collisionsl’>u
The advantége of classical approaches is that the equétions of motion cdh
alvays be solved (at least numerically) without the necessity of introducing
any dynamical approximations, whereas this is generally not the case for a
'quantﬁm description. Ihe‘shortcoming.of a‘classicél theory is,YOf‘course,‘
vthat realimolecules obey quantﬁm rather than classical mechanics.

'Thé object of our research in recent yéars has been to show how exact
" classical dynamicé (i.e., ﬁumerically combuted trajectories) can_be used as
1nputvto a general'sémiclassical theor§’?' The principal physical‘ideavis a

natural extension of the Ford and Wheeler5 treatment of potential scattering,



o

namely ;hat one uses a quantum mechanical formulation of the éc?ttering
problem (so aé-to incorporate quantum sﬁperposifiop 6f probability amp1itudes))
but evaluates thevdynamiéal parameters of ﬁhe theory within the classiéal
limit. For a collision between spécies which ' possess internal degrees of
freedom the result of this-Semiplassical theory is a prescription for how
one uses claséical‘mechanics.tb construct the classical-limit of S-matrix
elements, the "classical S-matrix", which are simply the probabili;yuampli-
'tudes for transitions betWeenlspecific quantumnm stateé of the collision
partners; In a nﬁmber'of examples3lit has been seen that this éombination
of "classical dynamics plus quantum superpbsitiou“ accurately'describéSfthe
quantum effgcts in molecular collisions. : .‘ i

Ohe of the most practically importént aspects of.cléss;cal S-matrix
theory 1s the ability to analytically continue claésical.mechahics in such a

way as to describe classically forbidden. processes, i.é., those which do not

take place yia:ordinary classical dynamics; Section II discdssesisuch prdcesses
in detail. This paper describes a feature of the theory that is particnlarly
. useful when some of fhe internal degfees of fréedom are very classical-like,
but others are highly quantized. This is common in an atom—diatom collision,
for exampie, whererthcre are typicaliy a large number of rotational states

that are strongly coupled and may thus be.treatcd by strictly classical mathods,
but only a few vibrational states are involved so that this degree of freedom
is highly qﬁantum—like. The 'partial averaging' approach éllows one to use a
strictly classical Monte. Carlo treatment of the claséical—like degrees of
freedom wﬁile the-quantuh—like degrees of freedom arc quantized semiclassically -
all without introducing any dynamical approximations into the theory. Pre-

liminary results for vibrational excitation of H2 by lle are presehted in Section III.



II. SUMMARY OF THE THEORY

A. Classically Allowed Transitions.

All formuhe in this paper will be written explicitly for non-reactive
collisi&ns of atom A and diatomlc molecule BC. The cross section for colli-
sional excitation of BC from initial vibrathn-rotationstate &ﬁjjl) to final
state (nz,jz),iéuﬁmed‘and_averaged‘oVér‘the m—comﬁonents of the rotational

states of BC, is given by

. w CL - .
o . (E) = . Y @+1) ) s (3, E)l C(2.1)
oy e mdy Y w2025, +1) T PN TP DL T 121
| | S T S | . 2°"1
where S ‘ . J,E) is,the S-matrix element for thé A + BC collision
nylafyamirdy |

systen; Ei is the initial collision energy, k12 = 2uE1/ﬁ2, E is the total
energy, J is the total angular momentum, and £ is the dtbital angular momentum
for relative motion of A ahd BC.

The classical limit of a particular S-matrix element is given by
-1/2

3(n.j.2.) : '
3 gty ] X expliglngd tym 3yt (2.2)

(3,E) = [(2 )” :
2 _ ?(qﬁlqjlqgl)

S
"3t
-where ¢(n2j 22,n131 ) is the classical action along the cla051cal tragcctory
that is determlned by the indicated doub1e~ended boundary conditions (unitv
are used such that fi = 1); upecifically'

$lnyiptyinydity) = / dt[ R dp(tz T 9®) d:ft) (a4 (¢) ~1$51

qz(t) ﬂé%gl] : ‘ ‘ : ‘ | | 2.3)

where (R,P) are the translational coordinates and momenta for radial motion of
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A and BC, aan(qn,n) (qj;j), (qz,Z) are the actionvangle variables for these
. T ) 1 ) . ‘
degrees of freedom; the initial and final values, (nljlll) and (nzjzlz))are
. required semiciassically to be integers. The pre-exponential factor in

Equation (2) is the Jacobian relating the final values (nzjzzz) to the con-

jugate initial values (qn ,qj »dg ) which lead to these specific final values;

1

i.e., with (nljlll) fixed, one varies (qh ql,) to cause (nZJZQZ) to take on

q.
1"

their desired final integer wvalues. !
: : | .

Typically, howe?er, there is more‘than dne classical trajectory that
satisfies these double-ended boundary conditions; Equation (2) is then a sum
of similar terms, one for each such trajectory. 1In formiﬁg the square modulus
of the S-matrix element as it appears in Equation (1) interference terms thus
result, in the co~linear A + BC collision these interference effects are
quite Proﬁinent (and are accurately described by clésSical S-matrix theory),
but it has béeﬁinoted that the sums thgt occur in Equation (1) diminish their
effect for a three dimensional A + BC system; i.e., the interference terms are
quenched. - -

If the interference terms are ncglected; then it is easy to sece that

Equations (1) and (2) give

, -1
-3 2(ny3p))

(E) = — Jar2s + 1) fas, [az; (20) St T (2.6
- - oy

where it 1s assumed that enough integer values of J, 21’ and 22 contribute
to justify replacing the sums over them by integrals. If many integer values

of n, and j2 are accessible from the initial staten then it is also

131

convenient to average Equation (4) over a quantum number increment about n,

and j2:
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o | 8 —s——~——— [d3 (23 +1) [d&, [d%, [dn, [d]
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where the limits of the jz‘and n, integral are the integers plus and minus 1/2.
In'Equation (5) one can now change integration variables from (nzjzké) to

(qn qj,q2 ); this eliminates the Jacobian from the integrand, giving
1171 . . . ‘ :

| . @ @+3) |
Oy eng, =2 —~ [ay(y+1) [ "ar [dq /2m)  [d(q, /2m)
32 " M1 k3, +1) o |3 - 3, 1 N
. , I _ - 1
S ]d(qzl/ZW) = "i_. .;i‘: . | : o v (2.6)

where the limits'df the integral over q s qj , and qzi are values such that
: S ; ' 1 Y1 1 S

the final values of n and j are in the increment (n2 +:1/2, n, - 1/2) and

(j2,+'1/2,-j2 - 1/2),‘resp¢ctively.

The simplest way to evaluate Equation (2.6) is to sweep q, > qj , and

. S : ' : _ 1 1 .

9y through their complete domains (0, 2m), putting the outcome of each trajec-
1 : . . s .

tory into a quantum number ‘'box' labeled by the closest integer value of the
final values of n and j; this is‘essentiélly what is done in a standard Monte-

Carlo calculation for this type of quantity. If interference effeéts are

. neglected, therefore, classical S-matrix theory. for classically allowed

processes reduces to standard Monte-Carlo methods.

As an aside regarding'the'above‘étrictly classicél-expression, it is

actually more consistent if one also averages the cross section over a quantum

number width of the initial quantum numbers ny

and jl; this gives
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m

(o]

nyj, +m

. - fd3 (23 + 1) [dr. [d(q, /2m) [dj. [d(q, /2m)
1ot e T S T R

x [dn, jdgqnl/2n) a o,

thé.form:of,a complete phase space average.over initial conditions; the limits
of the ny and jl integrals are the initial integer values plus and minus 1/2.
This latter expression, which treats initial Qnd final states oqian equal
footing, satisfies microécopic reve;sibility.

B. Classically Forbidden Transitions. -

In some cases there may be no classical trajectories (at the given -
energy) that connect the specific initial and final states (nljl) and (n2j2);

the transition is then said to be classicallzrfgrbidden.whiéh'in practice simply

means that the process is 'weak', i.e., has a small transition probability.
Vibrationally.inelastic transitions in low enéfgy’COIIisions of 1light diatomics
with atoms are ‘usually such processes. Other important e#amples of classically
forbidden processes are tunneling in reactive systems that ha§e activation
barriers and electronic transitioné_between different adiabatic electroﬁic
states. U

| Although there-ére no ordinary classical trajectories that contribute to
these processes, it is in general possible to analytically continue classical
mechanics and find complex-valued trajectories that do so. This can actually
be accomplished Ey integrating the quations of motion with complex initial

conditions and with a complex time variable. Along such complex-valued

trajectories
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the action integral ¢ is complex, so that the S-matrix elemeht 1n Equation
(2.2) ﬁas an exppnential damping factor, exp(-Im¢)§ classically forbidd;n
processes are ;hﬁsba generalizationqu the céncebt'of tUnneiing in one;
dimensidna1 systems. | |

Just as for classically allowed processes, thére may be several different

classical trajectories (complex-valued ones) that contribute to the specific
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S-matrix element in Equation (2 2); because of the sums that apper in Equation
(2. 1) however, it is still reasonable in most cases to: disregaro interference
between these'different trajectories. Fnrthernore even though the nlj “nzééjjf
tranSitions isvclaSSieal}y forbidden.for nl#nz, it will typically be true that many
drfferent j2 Qalues have comparabie probability. 1In such cases it is thus
poasibie to average over a quantumvnumber width of jz'as in Section IIAt
| (replacing sums by integralsj-but not_for n,. | | |
| Changing=from inteération-over'final_valuee to integrationiover initialhief;;: o

values as in Section ITA, thus gives

| | - _
0“232 . nljl-(El.) '='k 2(2; - 1) £ dJ (23 + 1)lJ {j ldR, jd(q (21r) fd(qz /21r)
| A J1_ ° o 1
xP (q q, 3;%,338) , - o - (2.7)
n, < mn, "7, 21 171 B |
vhere
v (q; qp 3,2 JE) = 2n 1 exp[-2Im¢p] . S ' - (2.8)
ny <« n1 J1 "1 171° 99, l ' o
| 1
Poen 1is eSsentialiy a one dimensional-like vibrationai transition‘probability
2 1

that depends parametr:cally on the 1n1t1a1 conditions of the other degrees of
._freedom'and_ia ealculateo by ho;ding the inltlalﬁcondltlons (QlJl,qzlqjl)
constant while_qnl‘is varied to make n, equal to'tbe deSireq integer value.

- The important nractical advantage in this 'partial aVeraging' scheme is that
one nust deal withvddublc—endediooundar; conditions (through,a root search

procedure) only'for the vibrational degree of freedom, the one that is being

quantized semiclassically, with the orbital and rotational degrees of freedom
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entering only through a phase space average over their initial condi;ions.
| The four dimensional integral in Equation (2.7)‘éan now be evaluated by
Monte Cario_me;hods.' Furthermore, one can 6btaih all partial cross sections -
i.e., thg distribution in final rotational quantum number.j2 and/or the
: distributiéﬁ in scattering angle (thé different;al cross section) -~ in the
usual Monte,Carib fashion by assigning the numerical value of the integrand
in Equation (2.7)>to the appropriate 'box' labeled by Py and scattering angle,.
In summary, the only_aﬁproximations involved in Equations'(2.7) and (2.8)
beyond classical S-matrix_theory itself‘are (1) neglect of interference between
different trajepfories that lead to the same final values of 22 and jz, and
(2) replacement of sums over integer values of 22‘and j2 by integrals., As has
been noted, the interference terms would essentially average to zero even if
they were included, and one only needs a few integer values of 22 and.j2 to
justify replacing the sums Sy integrals. The important practical advantage of .
this partial averéging approach is .that double-ended boundary conditions (and
the related root_search) are required only for 'the qﬁantized degrees of freedom
(1.e., vibration), while the other (unquantized) degrees of freedom enter only
thrxough a phase space average over their initial conditions.

IIX. "RESULTS FOR He + H2 COLLISIONS.

Calcuiations based on Equations (2.7) and (2.8) afe being carried out for
the He + Hz-collision system and ité isotopic variants. The int?raction
potential is that of Gordon and Secrest6, andvthe H2 potential is the aécurate"
fit of waech.and Berhstein7 to the Kolos-Wolniewicz potential.

Figure 1 shows our preliminary reéuits for the total O + 1 vibrationally

inelastic cross section as a function of the initial collision energy; i.e.,

the quéntity shown 1s



o « 00 = 1 94 +00(E1) S G
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Although these results are not final, they should be the correct semiclassical
values to within at least a factor of 2, At 5 eV collision energy the 0 -+ 1
transition is still classically forbidden; i.e., with_El = Svev;-nl = jl = 0,

there are no values of J, % ~for which a real—Valued classical

s 99 » 4
S ) P74
" trajectory leads to n,

-1
Fremeréy and Toenhies8 have recently carried out coupled channel (i.e.,

quantum mechanical) célculations fdr this system and find a value of ~ 1.0 Xx
-4 22 for the total O - 1 cross section at E = 1;69 eV. Within the'uncef-
tainty in our preliminary scmiclaséical results,,thereféfe, there is cﬁcellent
agrcémcnt with this quantum mechanical value;

Figule 2 shows the quautlty o, as a function"of-j2 at-E = 3 eV

1j2 <« 00
collision energy; i. e., this is the distribution in final rotational state

- that accompanies vibratlonal excitation from the-ground state, -Although

52 = 0 is the single most probéble final ;ofationai.state; there is a signifi-
cant’aumunt df.rotational'excitétibn which acc0mpaniés the 0 > 1 vibrational
excitation. A

| Further caléulatloné for this system are in progress and more details of
tho Cﬂ]cu]alionai proceduze will be presented in a later GCOr( |

| This woxk hug,bcen supported by the National %cionce Founddtjon and thn

U, S. Atomic Energy Commission, Appreciation is also expressed to Dr. C,_Sloan.

~for helpful discussions.
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- FIGURE ‘CAPTIONS

The cross section for éxcitation of Hzi(by'cbllision with He) from its

‘ground state (n1“=vjl,= 0) to 1ts first excited vibrational state‘(n2 = 1),

sunmed over all finallrotétional states. as a function of initial collision

energy; the quantity shown is defined by Equations (3.1) and (2.1). The

- arrow Indicates the energetic threshold for this transition.

The distribution in final rotational states j2 that accompany the 0 + 1

Yibtational excitation in He + H2 cqllisions, oljz < 00* 258 defingd by

Equation (2.1). ‘The initial collision energy is 3 eV,
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(31 11D ‘1 =20) 2H+ O <—
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Fig. 2
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