Lawrence Berkeley National Laboratory Recent Work

Title
PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY; VIBRATIONAL EXCITATIQN OF H2 BY He

Permalink

https://escholarship.org/uc/item/524531w7

Authors

Miller, W.H.
Raczkowski, A.W.

Publication Date

1973-04-01

Presented at the General Discussion on Molecular Beam Scattering, London, England, April 16-18, 1973

PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY; VIBRATIONAL EXCITATION OF H_{2} BY He
W. H. Miller and A. W. Raczkowski

April 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Círculating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

PARTIAL AVERAGING IN CLASSICAL S-MATRIX THEORY; VIBRATIONAL EXCITATION OF H_{2} BY He

W. H. Miller and A. W. Raczkowski

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry; University of California, Berkeley, California 94720

ABSTRACT

Within the framework of a general semiclassical theory that combines exact classical dynamics and quantum superposition it is shown how a certain averaging procedure allows one to treat some degrees of freedom in a strictly classical sense while others are quantized semiclassically. This enormously simplifies the application of the theory to three-dimensional collision systems and also leads to an interesting formal structure in the theory: the quantum-1ike degrees of freedom are quantized semiclassically via use of double-ended boundary conditions, while the unquantized classical-like degrees of freedom enter only through a phase space average over their initial coordinates and momenta. Preliminary results for vibrational excitation of H_{2} by He are presented and compared with available quantum mechanical calculations.

I. INTRODUCTION.

The last several years have seen an increasing use of classical trajectory calculations in describing inelastic and reactive molecular collisions ${ }^{1,2}$. The advantage of classical approaches is that the equations of motion can always be solved (at least numerically) without the necessity of introducing any dynamical approximations, whereas this is generally not the case for a quantum description. The shortcoming of a classical theory is, of course, that real molecules obey quantum rather than classical mechanics.

The object of our research in recent years has been to show how exact classical dynamics (i.e., numerically computed trajectories) can be used as input to a general semiclassical theory,4. The principal physical idea is a natural extension of the Ford and Wheeler ${ }^{5}$ treatment of potentlal scattering,
namely that one uses a quantum mechanical formulation of the scattering problem (so as to incorporate quantum superposition of probability amplitudes), but evaluates the dynamical parameters of the theory within the classical limit. For a collision between species which possess internal degrees of freedom the result of this semiclassical theory is a prescription for how one uses classical mechanics to construct the classical-limit of S-matrix elements, the "classical S-matrix", which are simply the probability amplitudes for transitions between specific quantum states of the collision partners. In a number of examples ${ }^{3}$ it has been seen that this combination of "classical dynamics plus quantum superposition" accurately describes the quantum effects in molecular collisions.

One of the most practically important aspects of classical S-matrix theory is the ability to analytically continue classical mechanics in such a way as to describe classically forbidden processes, i.e., those which do not take place via ordinary classical dynamics; Section II discussesi such processes in detail. This paper describes a feature of the theory that is particularly useful when some of the internal degrees of freedom are very classical-like, but others are highly quantized. This is common in an atom-diatom collision, for example, where there are typically a large number of rotational states that are strongly coupled and may thus be treated by strictly classical methods, but only a few vibrational states are involved so that this degree of freedom is highly quantum-like. The 'partial averaging' approach allows one to use a strictly classical Monte. Carlo treatment of the classical-1ike degrees of freedom while the quantum-1ike degrees of freedom are quantized semiclassically all without introducing any dynamical approximations into the theory. PreIminary results for vibrational excitation of H_{2} by lle are presented in Section III.
II. SUMMARY OF THE THEORY.
A. Classically Allowed Transitions.

All formuke in this paper will be written explicitly for non-reactive collisions of atom A and diatomic molecule $B C$. The cross section for collisional excitation of $B C$ from initial vibration-rotationstate (n_{1}, j_{1}) to final state $\left(n_{2}, j_{2}\right)$, summed and averaged over the m-components of the rotational states of $B C$, is given by
$\sigma_{n_{2} j_{2}}+n_{1} j_{1}\left(E_{1}\right)=\frac{\pi}{k_{1}^{2}\left(2 j_{1}+1\right)} \sum_{J}(2 J+1) \sum_{\ell_{2}, \ell_{1}}\left|S_{n_{2} j_{2} \ell_{2}, n_{1} j_{1} \ell_{1}}(J, E)\right|^{2}$
where $S_{n_{2} j_{2} \ell_{2}, n_{1} j_{1}{ }_{1}}(J, E)$ is the S-matrix element for the $A+B C$ collision system; E_{1} is the initial collision energy, $\mathrm{k}_{1}{ }^{2}=2 \mu \mathrm{E}_{1} / \mathrm{K}^{2}$, E is the total energy, J is the total angular momentum, and ℓ is the orbital angular momentum for relative motion of A and $B C$.

The classical limit of a particular S-matrix element is given by

$$
\begin{equation*}
s_{n_{2} j_{2} \ell_{2}, n_{1} j_{1} \ell_{1}}(J, E)=\left[(2 \pi)^{3} \frac{\partial\left(n_{2} j_{2}^{\ell}{ }_{2}\right)}{\partial\left(q_{n_{1}}^{q_{j}} q_{1} \ell_{1}\right)}\right]^{-1 / 2} \times \exp \left[i \phi\left(n_{2} j_{2}^{\ell}{ }_{2}, n_{1} j_{1} \ell_{1}\right)\right] \tag{2.2}
\end{equation*}
$$

where $\phi\left(n_{2} j_{2}^{\ell} l_{2}, n_{1} j_{1} \ell_{1}\right)$ is the classical action along the classical trajectory that is determined by the indicated double-ended boundary conditions (unjts are used such that $\hbar=1$); specifically,

$$
\begin{align*}
\phi\left(n_{2} j_{2}^{\ell} \ell_{2}, n_{1} j_{1} \ell_{1}\right) & =\int_{-\infty}^{\infty} d t\left[-R(t) \frac{d P(t)}{d t}-q_{n}(t) \frac{d n(t)}{d t}-q_{j}(t) \frac{d j(t)}{d t}\right. \\
& \left.-q_{\ell}(t) \frac{d \ell(t)}{d t}\right] \tag{2.3}
\end{align*}
$$

where (R, P) are the translational coordinates and momenta for radial motion of
A and $B C$, and $\left(q_{n}, n\right)\left(q_{j}, j\right),\left(q_{l}, \ell\right)$ are the action angle variables for these degrees of freedom; the initial and final values, $\left(n_{1} j_{1} l_{1}\right)$ and ($\left.n_{2} j_{2} l_{2}\right)$, are required semiclassically to be integers. The pre-exponential factor in Equation (2) is the Jacobian relating the final values ($n_{2} j_{2} l_{2}$) to the conjugate initial values $\left(q_{n_{1}}, q_{j_{1}}, q_{l_{1}}\right)$ which lead to these specific final values; i.e., with ($n_{1} j_{1} l_{1}$) fixed, one varies $\left(q_{n_{1}} q_{j_{1}} q_{\ell}\right)$ to cause $\left(n_{2} j_{2}{ }_{2}\right)$ to take on their desired final integer values.

Typically, however, there is more than one classical trajectory that satisfies these double-ended boundary conditions; Equation (2) is then a sum of similar terms, one for each such trajectory. In forming the square modulus of the S-matrix element as it appears in Equation (1) interference terms thus result. In the co-linear $A+B C$ collision these interference effects are quite prominent (and are accurately described by classical S-matrix theory), but it has been noted that the sums that occur in Equation (1) diminish their effect for a three dimensional $A+B C$ system; i.e., the interference terms are quenched.

If the interference terms are neglected, then it is easy to see that Equations (1) and (2) give

$$
\begin{equation*}
\sigma_{n_{2} j_{2}}+n_{1} j_{1}\left(E_{1}\right)=\frac{\pi}{k_{1}^{2}\left(2 j_{1}+1\right)} \int d J(2 J+1) \int d \ell_{2} \int d \ell_{1}(2 \pi)^{-3}\left|\frac{\partial\left(n_{2} j_{2} \ell_{2}\right)}{\partial\left(q_{n_{1}} q_{j} q_{1}{ }_{\ell}\right)}\right|^{-1} \tag{2.4}
\end{equation*}
$$

where it is assumed that enough integer values of J, ℓ_{1}, and ℓ_{2} contribute to justify replacing the sums over them by integrals. If many integer values of ${ }^{n} 2$ and j_{2} are accessible from the initial state $n_{1} j_{1}$, then it is also convenient to average Equation (4) over a quantum number increment about n_{2} and f_{2} :

$$
\begin{align*}
\sigma_{n_{2} j_{2}}+n_{1} j_{1} & \simeq \frac{\pi}{k_{1}{ }^{2}\left(2 j_{1}+1\right)} \int_{0}^{\infty} d J(2 J+1) \int d \ell_{1} \int d \ell_{2} \int d n_{2} \int d j_{2} \\
& \times(2 \pi)^{-3}\left|\frac{\partial\left(n_{2} j_{2 \ell}\right)}{\partial\left(q_{n_{1}} q_{j_{1}} q_{\ell}\right)}\right|^{-1} \tag{2.5}
\end{align*}
$$

where the limits of the j_{2} and n_{2} integral are the integers plus and minus $1 / 2$. In Equation (5) one can now change integration variables from ($n_{2}{ }_{2}{ }_{2}$) to $\left(q_{n_{1}} q_{j_{1}} q_{l}\right)$; this eliminates the Jacobian from the integrand, giving

$$
\begin{align*}
\sigma_{n_{2} j_{2}}+n_{1} j_{1} & =\frac{\pi}{k_{1}^{2}\left(2 j_{1}+1\right)} \int_{0}^{\infty} d J(2 J+1) \int_{\left|J-j_{1}\right|}^{\left(J l_{1}\right)} \int d\left(q_{n_{1}} / 2 \pi\right) \int d\left(q_{j_{1}} / 2 \pi\right) \\
& \int d\left(q_{l_{1}} / 2 \pi\right) \tag{2,6}
\end{align*}
$$

where the limits of the integral over $q_{n_{1}}, q_{j_{1}}$, and $q_{\ell_{1}}$ are values such that the final values of n and j are in the increment $\left(n_{2}+1 / 2, n_{2}-1 / 2\right)$ and $\left(j_{2}+1 / 2, j_{2}-1 / 2\right)$, respectively.

The simplest way to evaluate Equation (2.6) is to sweep $q_{n_{1}}, q_{j_{1}}$, and $q_{\ell_{1}}$ through their complete domains $(0,2 \pi)$, putting the outcome of each trajectory into a quantum number 'box' labeled by the closest integer value of the final values of n and j; this is essentially what is done in a standard MonteCarlo calculation for this type of quantity. If interference effects are neglected, therefore, classical s-matrix theory for classically allowed processes reduces to standard Monte-Carlo methods.

As an aside regarding the above strictly classical expression, it is actually more consistent if one also averages the cross section over a quantum number width of the initial quantum numbers n_{1} and f_{1}; this gives

$$
\begin{aligned}
\sigma_{n_{2} j_{2}}+n_{1} j_{1} & =\frac{\pi}{k_{1}^{2}\left(2 j_{1}+1\right)} \int d J(2 J+1) \int d \ell_{1} \int d\left(q_{\ell_{1}} / 2 \pi\right) \int d j_{1} \int d\left(q_{j_{1}} / 2 \pi\right) \\
& \times \int d_{n_{1}} \int d\left(q_{n_{1}} / 2 \pi\right)(1)
\end{aligned}
$$

the form of a complete phase space average over initial conditions; the limits of the n_{1} and j_{1} integrals are the initial integer values $p l u s$ and minus $1 / 2$. This latter expression, which treats initial and final states on an equal footing, satisfies microscopic reversibility.
B. Classically Forbidden Transitions.

In some cases there may be no classical trajectories (at the given energy) that connect the specific initial and final states ($n_{1} j_{1}$) and ($n_{2} j_{2}$); the transition is then said to be classically forbidden which in practice simply means that the process is 'weak', i.e., has a small transition probability. Vibrationally inelastic transitions in low energy collisions of light diatomics with atoms are usually such processes. Other important examples of classically forbidden processes are tunneling in reactive systems that have activation barriers and electronic transitions between different adiabatic electronic states.

Although there are no ordinary classical trajectories that contribute to these processes, it is in general possible to analytically continue classical mechanics and find complex-valued trajectories that do so. This can actually be accomplished by integrating the quations of motion with complex initial conditions and with a complex time variable. Along such complex-valued trajectories
the action integral ϕ is complex, so that the S-matrix element in Equation (2.2) has an exponential damping factor, $\exp (-\operatorname{Im} \phi)$; classically forbidden processes are thus a generalization of the cencept of tunneling in onedimensional systems.

Just as for classically allowed processes, there may be several different
classical trajectories (complex-valued ones) that contribute to the specific

S-matrix element in Equation (2.2); because of the sums that apper in Equation (2.1), however, it is still reasonable in most cases to disregard interference between these different trajectories. Furthermore, even though the $n_{1} j_{1}+n_{2} \boldsymbol{j}_{2}$ transitions is classically forbidden for $n_{1} \frac{\dot{D}_{2}}{2}$, it will typically be true that many different j_{2} values have comparable probability. In such cases it is thus possible to average over a quantum number width of j_{2} as in Section IIA (replacing sums by integrals) but not for n_{2}.

Changing from integration over final values to integration over initial values as in Section IIA, thus gives

$$
\begin{align*}
\sigma_{n_{2} j_{2}}+n_{1} j_{1}\left(E_{1}\right)= & \left.\frac{\pi}{k_{1}{ }^{2}\left(2 j_{1}+1\right)} \int_{0}^{\infty} d J(2 J+1) \right\rvert\, J+j_{1} d l_{1} \int d\left(q_{j_{1}}(2 \pi) \int d\left(q_{l} / 2 \pi\right)\right. \\
& \times p_{n_{2}}+n_{1}\left(q_{j_{1}} q_{l_{1}} j_{1} \ell_{1} ; J E\right) \tag{2.7}
\end{align*}
$$

where
$p_{n_{2}} \not n_{1}\left(q_{j_{1}} q_{l_{1}} j_{1} \ell_{1} ; J E\right) \equiv 2 \pi\left|\frac{\partial n_{2}}{\partial q_{n_{1}}}\right|^{-1} \exp [-2 I n \phi]$
$P_{n_{2}} \leftarrow n_{1}$ is essentially a one dimensional-like vibrational transition probability that depends parametrically on the initial conditions of the other degrees of freedom and is calculated by holding the initial conditions ($\ell_{1} j_{1}, q_{\ell_{1}} q_{j_{1}}$) constant while $q_{n_{1}}$ is varied to make n_{2} equal to the desired integer value. The important practical advantage in this 'partial averaging' scheme is that one must deal with double-ended boundary conditions (through a root search procedure) only for the vibrational degree of freedom, the one that is being quantized semiclassically, with the orbital and rotational degrees of freedom
entering only through a phase space average over their initial conditions. The four dimensional integral in Equation (2.7) can now be evaluated by Monte Carlo methods. Furthermore, one can obtain all partial cross sections i.e., the distribution in final rotational quantum number j_{2} and/or the distribution in scattering angle (the differential cross section) - In the usual Monte Carlo fashion by assigning the numerical value of the integrand in Equation (2.7) to the appropriate 'box' labeled by j_{2} and scattering angle. In summary, the only approximations involved in Equations (2.7) and (2.8) beyond classical S-matrix theory itself are (1) neglect of interference between different trajectories that lead to the same final values of ℓ_{2} and j_{2}, and (2) replacement of sums over integer values of ℓ_{2} and j_{2} by integrals. As has been noted, the interference terms would essentially average to zero even if they were included, and one only needs a few integer values of ℓ_{2} and j_{2} to justify replacing the sums by integrals. The important practical advantage of this partial averaging approach is that double-ended boundary conditions (and the related root search) are required only for the quantized degrees of freedom (i.e., vibration), while the other (unquantized) degrees of freedom enter only through a phase space avcrage over their initial conditions.
III. RESULTS FOR $\mathrm{He}+\mathrm{H}_{2}$ COILISIONS.

Calculations based on Equations (2.7) and (2.8) are being carried out for the $\mathrm{He}+\mathrm{H}_{2}$ collision system and its isotopic variants. The interaction potential is that of Gordon and Secrest ${ }^{6}$, and the H_{2} potential is the accurate fit of Waech and Bernstein ${ }^{7}$ to the Kolos-Wolniewicz potential.

Figure 1 shows our preliminary results for the total $0 \rightarrow 1$ vibrationally inclastic cross section as a function of the initial collision energy; i.e., the quantity shown is

$$
\begin{equation*}
\sigma_{1}+00\left(E_{1}\right)=\sum_{j_{2}} \sigma_{1 j_{2}}+00\left(E_{1}\right) \tag{3.1}
\end{equation*}
$$

Although these results are not final, they should be the correct semiclassical values to within at least a factor of 2 . At 5 eV collision energy the $0 \rightarrow 1$ transition is still classically forbidden; i.e., with $E_{1}=5 e V, n_{1}=j_{1}=0$, there are no values of $J, \ell_{1}, q_{\ell_{1}}, q_{j_{1}}$ for which a real-valued classical trajectory leads to $\mathrm{n}_{2}=1$.

Fremerey and Toennies ${ }^{8}$ have recently carried out coupled channel (i.e., quantum mechanical) calculations for this system and find a value of $\sim 1.0 \times$ $10^{-4} \AA^{2}$ for the total $0 \rightarrow 1$ cross section at $E_{0}=1.09 \mathrm{eV}$. Within the uncertainty in our preliminary semiclassical results, therefore, there is excellent agreement with this quantum mechanical value.

Figure 2 shows the quantity $\sigma_{1 j_{2}} \varangle 00$ as a function of j_{2} at $E_{0}=3 \mathrm{eV}$ collision energy; i.e., this is the distribution in final rotational state that accompanies vibrational excitation from the ground state. Although $\mathbf{j}_{2}=0$ is the single most probable final rotational state, there is a significant amount of rotational excitation which accompanies the $0 \rightarrow 1$ vibrational excitation.

Further calculations for this system are in progress and more details of the calculational procedure will be presented in a later report.

This work has been supported by the National Science Foundation and the U. S. Atomic Energy Commission. Appreciation is also expressed to Dr. C. Sloan for helpful discussions.

References

1. D. L. Bunker, Methods in Computational Physics 10 , 287 (1971).
2. J. C. Polanyi, Accts. Chem. Res. 5, 161 (1972).
3. (a) W. H. Miller, J. Chem. Phys. 53, 1949 (1970); (b) ibid. 53, 3578 (1970); (c) Chem. Phys. Lett. 7, 431 (1970); (d) J. Chem. Phys. $\underset{\sim}{54}, 5386$ (1971); (e) C. C. Rankin and W. H. Miller, J. Chem. Phys. 55, 3150 (1971); (f) W. H. Miller and T. F. George, ibid. $\underset{\sim}{56}$, 5668 (1972); (g) T. F. George and W. H. Miller, ibid. $\underset{\sim}{56}$, 5722 (1972); $\underset{\sim}{57}, 2458$ (1972); (h) J. D. Doll and W. H. Miller, 1 bid. 57, 0000 (1972).
4. See also the related sequence of papers by Marcus et al., (a) R. A. Marcus, Chem. Phys. Lett. 7, 525 (1970); (b) R. A. Marcus, J. Chem. Phys. 54,3965 (1971); (c) J. N. L. Connor and R. A. Marcus, ibid. 55, 5636 (1971); (d) W. H. Wong and R. A. Marcus, ibid. $5 \underset{\sim}{2}, 5663$ (1971); (e) R. A. Marcus, 1bid $5 \underset{\sim}{56}, 311$ (1972); (f) R. A.Marcus, ibid. 56,3548 (1972); (g) J. Stine and R. A. Marcus, Chem. Phys. Lett. 15, 536 (1972); (h) R. A. Marcus, J. Chem. Phys. 57 , 4903 (1972).
5. K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259, 287 (1959).
6. M. D. Gordon and D. Secrest, J. Chem. Phys. 52, 120 (1970).
\%. T. G. Waech and R. B. Bernstein, J. Chem. Phys. $\underset{\sim}{46,} 4905$ (1967).
7. H. Fremerey and J. P. Toennies, private communication.

FIGURE CAPTIONS

1. The cross section for excitation of H_{2} (by collision with He) from its ground state $\left(n_{1}=f_{1}=0\right)$ to its first excited vibrational state ($n_{2}=1$), summed over all final rotational states. as a function of initial collision energy; the quantity shown is defined by Equations (3.1) and (2.1). The arrow indicates the energetic threshold for this transition.
2. The distribution in final rotational states j_{2} that accompany the $0 \rightarrow 1$ vibtational excitation in $\mathrm{He}+\mathrm{H}_{2}$ collisions, $\sigma_{1 \mathrm{j}_{2}}+00$, as defined by Equation (2.1). The initial collision energy is 3 eV .

Fig. 2

LEGAL NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

