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Abstract
Recent achievements in experimental and computational methods have opened
up the possibility of measuring and inverting the diffraction pattern from a
single-crystalline particle on the nanometre scale. In this paper, a theoretical
approach to the scattering of purely coherent and partially coherent x-ray
radiation by such particles is discussed in detail. Test calculations based on the
iterative algorithms proposed initially by Gerchberg and Saxton and generalized
by Fienup are applied to reconstruct the shape of the scattering crystals. It is
demonstrated that partially coherent radiation produces a small area of high
intensity in the reconstructed image of the particle.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Even in the early years of x-ray studies [1–4] it was already understood that the diffraction
pattern from small perfect crystals is directly connected with the shape of these crystals
through Fourier transformation. Of course, in a real diffraction experiment on a ‘powder’
sample, where many particles with different shapes and orientations are illuminated by an
incoherent beam, only an averaged shape of these particles can be obtained. For example, the
simple Scherrer formula is the exact result for particles of spherical shape [3]. Until recently, it
has not been possible to obtain the diffraction pattern from just one particle, let alone to invert
the intensity data (with the loss of all phase information) into a real image of a particle shape.

New developments in experimental and computational methods have opened up the
possibility of solving this problem. Current advances in experimental facilities (ESRF, APS,
SPRING-8) provide high-energy, high-brightness x-ray beams with high degrees of coherence.
The coherence lengths achievable with these synchrotron radiation sources are in the range of
a few microns. Illuminating a particle of nanometre scale with such a highly coherent beam
has allowed the observation of continuous interference diffraction patterns using modern 2D
CCD detectors [5]. The diffraction from such nanocrystals is no longer comprised of sharp
Bragg peaks, but is now a complicated intensity distribution centred at each reciprocal-lattice
1 On leave from: Institute of Crystallography, RAS, Leninsky Prospekt 59, 117333 Moscow, Russia.
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point. This continuous function can be measured on an arbitrarily fine scale in the vicinity of
one of the Bragg peaks.

During the last few decades a number of efforts have been made to evolve theoretical
and computational methods in optics and electron microscopy for inverting images from the
scattered object to real space in the case where they are connected simply by the Fourier
transform (FT). Various iterative procedures were proposed first by Gerchberg and Saxton [6]
and then developed further by Fienup [7]. The basic idea of these methods is the following.
Measured amplitudes and random phases are inverse Fourier transformed to obtain an initial
estimate of the real-space structure of a complex-valued object. This is then updated by
applying an appropriate real-space constraint and back-transformed. The type of constraint
can vary depending on what supplementary information is available about an object. Typically,
for a complex-valued object it is desirable to have real-space amplitude information [8, 9] and
conversely, if we are seeking the amplitudes, its phases have to be known. This requirement
also follows from the need to make a change in real space every cycle; otherwise the inverse FT
simply reverses the forward FT. However, in some situations this information is not enough for
obtaining a unique solution in reasonable computation time. As was shown in recent studies
[10–12], an oversampling of diffraction data—more than twice the Nyquist frequency—was
found to increase the convergence of this iteration procedure.

In most of the previous tests and applications of the iterative algorithms it was tacitly
assumed that the incoming radiation is purely coherent. This assumption immediately led to
a simple connection between the object shape and its scattered intensity via the FT. However,
in a real experimental situation with modern synchrotron sources providing high degrees of
coherence, this condition can be violated. In a number of recent papers, the influence of partial
coherence of x-ray radiation on diffraction patterns was studied theoretically [13, 14] and
experimentally [15]. The purpose of our study presented in this work is to investigate the effects
of the partial coherence of the incoming radiation on the reconstructed image of the object.

The paper is organized as follows. Section 2 recalls the important aspects of the diffraction
theory on small strained particles with coherent illumination. Section 3 gives a general
formalism of scattering of partially coherent radiation by the same particles. Section 4 treats
the influence of this partially coherent radiation on the reconstructed shape of small crystal
objects.

2. Diffraction from a small particle with coherent illumination

It is well known (see for example [16, 17]) that the scattering amplitude A(q) of coherent
monochromatic radiation from an infinite crystal in the kinematical approximation is equal to

A(q) =
∫
ρ(r)e−iq·r dr (1)

where ρ(r) is an electron density at the point r, q = kf − ki is the momentum transfer, ki and
kf are the incident and scattered wave vectors (|ki | = |kf | = 2π/λ, λ is the wavelength), the
notation a · b is used for a scalar product of two vectors a and b and the integration extends
over the whole volume of the crystal. The electron density can be put in the form of a sum of
terms corresponding to individual atoms:

ρ(r) =
N∑
n=1

S∑
j=1

ρnj (r − Rnj − u(Rnj ))

where Rnj = Rn + rj ,Rn is the position of the nth unit cell in a perfect lattice, rj is the
coordinate of atom j in this unit cell and u(Rnj ) is the displacement from this ideal lattice
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point. Substituting this expression for the electron density into (1) and changing variables in
each term, the scattering amplitude can be written as an infinite sum over the unit cells:

A(q) =
N∑
n=1

Fn(q)e−iq·u(Rn)e−iq·Rn (2)

where

Fn(q) =
S∑
j=1

fnj (q)e−iq·rj

is the structure amplitude of the nth cell and

fnj (q) =
∫
ρnj (r′)e−iq·r′

dr′

is the atomic scattering factor of an atom j in the unit cell n. Here we are assuming that all atoms
in the unit cell are displaced uniformly: u(Rnj ) ≡ u(Rn + rj ) = u(Rn). It is important to note
here that equation (2) is also valid for the more general case allowing different displacements
of atoms in different unit cells but with another definition of structure amplitude Fn(q) [18].
In general the structure factor Fn(q) is a complex function.

Now we will consider the scattering of x-rays by a crystal with finite size. Introducing
the finite dimensions leads to ‘spreading’ of the δ-type intensity distributions characterizing
an infinite crystal. The scattering amplitude A(q), equation (2), can now be conveniently
calculated by means of the approach originally proposed by von Laue [1], which reduces the
sum over the points of the ideal lattice within the volume of the finite crystal to an integral
over all space. According to this approach (see also [16, 18]), equation (2) can be equivalently
rewritten in the form

A(q) = F(q)
∫
ρ∞(r)S(r)e−iq·r dr (3)

where it is assumed that the structure factors of the different cells are identical (Fn(q) = F(q))
and integration is carried out over the whole space. In this equation

ρ∞(r) =
∞∑
n=1

δ(r − Rn)

is a periodic function with summation over n carried out over all points of an infinite ideal
lattice. In the integral (3), this function is multiplied by a complex function

S(r) = s(r) exp(−iq · u(r))

with an amplitude s(r) equal to unity inside the volume of the crystal and zero outside (the
so-called Ewald function [4]) and the phase φ(r) = q · u(r). What is important to note here is
that we do not have any restrictions on the shape of the crystal and deformation field.

From the theory of the Fourier transformations, the integral in (3) can be calculated in the
form of a convolution of the Fourier integrals of the factors:

A(q) = F(q)
(2π)3

∫
ρ∞(q′)S(q − q′) dq′ (4)

where S(q′) is the Fourier integral of S(r):

S(q′) =
∫
S(r)e−iq′·r dr =

∫
s(r)e−iq·u(r)e−iq′ ·r dr (5)

and the integration over dq′ and that over dr are carried out over the whole space. If the particle
is unstrained, u(r) ≡ 0 and we have for the FT (5)

s(q) =
∫
s(r)e−iq·r dr. (6)
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It can easily be shown that for an ideal crystal lattice the Fourier integral of the function
ρ∞(r) reduces to the sum of δ-functions

ρ∞(q) =
∫
ρ∞(r)e−iq·r dr = [(2π)3/v]

∑
n

δ(q − hn)

where v is the volume of the unit cell, hn = 2πHn, the Hn being the reciprocal-lattice vectors,
and the summation is carried out over all the reciprocal-lattice points. Taking all of this into
account, we obtain for the amplitude (4)

A(q) = F(q)
v

∑
n

An(q − hn) (7)

with An(q − hn) = S(q − hn). From this expression we can see that the scattering amplitude
is directly connected with the FT of the complex ‘shape’ function S(r), and its phase for the
fixed reciprocal-lattice point h is a sum of phases of the structure factor F(h) and the function
S(q).

For a crystal of microscopic dimensions, the function S(q) has appreciable values only
for small q , much smaller than the reciprocal-lattice parameters. Thus according to (7) and
neglecting the small cross-terms, the intensity of the scattering by crystals of finite dimensions
will be determined by a sum over reciprocal-lattice points:

I (q) = |A(q)|2 = |F(q)|2
v2

∑
n

|An(q − hn)|2. (8)

In the vicinity of the reciprocal point hn = h, q � h and we have for the intensity distribution

I (Q) = |F(h)|2
v2

|Ah(Q)|2 (9)

where Q = q − h and

Ah(Q) =
∫
s(r)e−ih·u(r)e−iQ·r dr. (10)

Some general properties of this distribution should be outlined. For any arbitrary form of
the crystal, the intensity distribution (8) as a function of q is a periodic function. For the special
case of unstrained particles (u(r) ≡ 0), the intensity distribution is locally centrosymmetric
around every hn and has the same shape for every reciprocal-lattice point hn. It takes its
maximum value of |F(hn)|2V 2/v2 if the scattering vector is exactly equal to q = hn and
this point is the centre of symmetry of the intensity distribution I (q) (since according to (6),
s(−q) = s∗(q)). This reproducibility of the distribution is a characteristic of the broadening
effect associated with the finite size of the crystal; effects associated with strain u(r) lead to
different distributions near different reciprocal-lattice points. The possibilities of mapping
this strain field directly from the intensity measurements during coherent illumination of the
particles in 1D, 2D and 3D cases are discussed in recent papers [19, 20].

Equation (8) corresponds to the situation where one particle is illuminated by a coherent
beam. In the case where two or more crystallites are located at some distance apart and are
illuminated by the same coherent beam, interference terms will appear in the expression for
the intensity (8). An especially interesting intensity distribution can be obtained in the case
where a small particle is separated sufficiently from a big one and illuminated by the same
coherent beam. This is similar to the principles of Fourier holography, where the object can
be found as one term in the autocorrelation [21].
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As follows from the previous analysis, the simplest picture of identical repeated
distributions with dimensions of the order of the reciprocal dimensions of the crystal arises
in unstrained crystals of any arbitrary shape. The detailed 3D shape of this distribution is
determined by the Fourier components of the function (10) with u(r) = 0 (in this case,
Ah(Q) ≡ s(Q) from equation (6)). Calculations of s(Q) for crystals of different shapes, in
particular for polyhedra with arbitrary crystallographic boundaries, are given in [1, 2, 22]. The
shapes of the intensity patterns detected by a 2D detector (such as a CCD camera) depend also
on the Bragg angle and on the departure from the exact Bragg condition (the detector plane is
always perpendicular to the kf -vector). If the z-axis in reciprocal space is directed along the
kf -vector and the detector itself is exactly at a Bragg point, then we have from (6)–(10) the
following distribution of the amplitude:

A(Qx,Qy) = F(h)
v

∫
sz(x, y)e−iQxx−iQyy dx dy (11)

where sz(x, y) = ∫
dz s(x, y, z). So the inverse FT of the amplitude distribution (11) at the

Bragg point gives the projection of the crystal shape on the (x, y) plane. In figure 1, calculations

Figure 1. Projection of the different crystal shapes on the plane perpendicular to kf and the
corresponding diffraction pattern calculated at the exact Bragg position.
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Figure 2. The cross-section of the reciprocal space of the diffraction pattern produced from the
crystal shape shown in the insets of figure 1 for different qz-values: qz = 0, qz = 0.357 qD ,
qz = 0.476 qD , qz = 1.19 qD . Here qD corresponds to the fringe spacing: qD ∼ 2π/D. The
intensity in the figure is rescaled for clarity.

of the amplitude (11) for different crystal shapes are presented. Cuts of the reciprocal space
for values of Qz other than Qz = 0 can also be calculated using the 2D FT (11) with the
change of the real function sz(x, y) to a complex-valued function:

sz(x, y,Qz) =
∫

dz s(x, y, z) exp(iQzz).

Examples of such calculations for different values of Qz and one of the crystal shapes from
figure 1 are presented in figure 2.

As was proposed by von Laue [1], applying Green’s theorem to (6) the volume integral
can be transformed to an integral with the integration taken over the external surface of the
crystal:

s(q) = i

q2

∫
S

(q · n)e−iq·r dσ (12)

where the unit vector n is an outward normal to the crystal surface. The maximum of this
distribution for the flat surface is along directions normal to the surface and gives the origin of
the crystal truncation rod distribution [23] or asymptotic Bragg diffraction [24] widely studied
in diffraction from surfaces. In the case of the crystal with a centre of symmetry and with a
pair of identical opposite faces, we have from (12)

s(q) = 2
(q · n)
q2

∫
S

sin(q · r) dσ. (13)
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If the distance between faces is equal to D, then for the direction of q perpendicular to the
faces, we obtain for this distribution

s(q) = 2

q
S sin(qD/2). (14)

As follows from this result, in the case of two opposite faces and coherent illumination we
immediately obtain an interference pattern for the intensity distribution rather than the smooth
q−1-decrease of amplitude for one surface. The integral width of this intensity distribution in
reciprocal space is equal to δq = 2π/D. This leads to a rod-like shape intensity distribution
for crystals shaped like a compressed disc. Such behaviour was for example observed in [25],
where thin films (with thickness 2000 Å) of the binary alloy Cu3Au were illuminated by a
coherent x-ray beam. Due to its antiphase domain structure the superstructure Bragg diffraction
from these films produces a speckle image on the CCD detector. As was demonstrated in
[25], these speckles are highly elongated in reciprocal space along the normal to the surface
of the Cu3Au film due to the small thickness of the film. In the case of a flat surface, the same
Green’s theorem can be applied once more to equation (12), transforming the surface integral
to an integral around the boundary of the face S and producing additional fringes for a pair of
opposite flat edges.

In conclusion, we can see that any pair of opposite faces and corresponding edges of an
unstrained crystal in a coherent beam will produce an interference pattern with the maximum
distribution along the normal to the face and perpendicular to the opposite surface edges (see
figure 1).

3. Partially coherent radiation

In the previous section the case of totally coherent incident radiation was considered. Now
we will assume that the incoming beam is partially coherent. The general properties of
partially coherent radiation are discussed in detail in a number of textbooks [26–28]. The
comprehensive theory of scattering of a partially coherent x-ray wave-field in both Fresnel
and Fraunhofer limits was given by Sinha, Tolan and Gibaud [13]. We will reformulate this
general results for the special case of scattering of partially coherent x-ray radiation by small
crystalline particles. The whole problem will be divided into two parts. In the first part we
consider scattering of radiation with an arbitrary state of coherence by a small crystal particle
and in the second the special form of the incoherent source with Gaussian distribution of the
intensity will be considered.

We will take the incident radiation in the form of a quasimonochromatic wave with only
one polarization state of the electric field:

Ein(r, t) = Ain(r, t)eiki ·r−iω̄t (15)

where |k| = 2π/λ̄ and λ̄, ω̄ are the average wavelength and frequency of the beam. The
amplitude Ain(r, t) is a slowly varying function with spatial variations much bigger than the
wavelength λ̄ and timescales much larger than 1/ω̄. Then, according to the standard Huygens–
Fresnel principle [26], in the limits of kinematical scattering, the amplitude of the wave-field
Eout (v, t), after scattering from the sample to position v on the detector (figure 3(a)), can be
written as2

Eout (v, t) =
∫

dr ρ(r)
Ain(r, t − τr )

lr
eiki ·r−iω̄(t−τr ) (16)

2 In this expression and below, we will omit all inessential integral prefactors.
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Figure 3. Definition of the notation used for the scattering geometry in the calculation of the
scattering of the partial coherent radiation. (a) The x-ray beam is scattered by a small crystal
particle and the intensity is measured at a distance L2 from the sample by a 2D detector (CCD
camera). (b) A synchrotron source produces an incoherent beam at the distance L1 from the sample.

where lr is the distance between points r and v with the origins at the sample centre and in the
detector plane respectively, τr = lr/c is the time delay for the radiation propagation between
the same points and c is the speed of light. In this expression for the scattered wave-field we
have neglected absorption in a small sample and set the obliquity factor as χ ≈ 1.

We will define the amplitude of scattering A(v, t) in the usual way:

Eout(v, t) = A(v, t)
(
eikL2/L2

)
e−iω̄t .

Then assuming that the distance from the object to the detector L2 � D, where D is a typical
size of an object, we would have the usual expansion in the limits of the paraxial approximation
for the distance lr between points r and v:

lr � L2 − nf · r + (v − r)2/(2L2)

where nf = kf /|kf |. Here we also assumed that the detector plane is perpendicular to kf .
Substituting this expansion into equation (16) we obtain for the scattering amplitude

A(v, t) =
∫

dr ρ(r)Ain(r, t − τr)PL2(v − r)e−iq·r (17)

where PL2(v − r) is the Green’s function (or propagator) that describes the propagation of
radiation in free space. In the framework of the same theory this function is equal to

PL2(v − r) = 1

iλL2
ei(k/2L2)(v−r)2 . (18)
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We will be interested in the far-field (or Fraunhofer) limit of equation (17), where the condition
kD2/(2L2)  1 is satisfied. For a typical coherent x-ray experiment with radiation energy
Eγ � 8 keV and a detector at a distance L2 � 3 m, this condition limits the size of the
particles: D  10µm. In this limit we can neglect the (k/2L2)r2 term in the exponent (18)
and have for the propagator

PL2(v − r) −→
lim(kD2)/L2→0

(1/iλL2) exp
[
i(k/2L2)v2

]
exp(−iqv · r)

where qv = (k/L2)v. So, in the far field we obtain for the amplitude (17)

A(q′, t) =
∫

dr ρ(r)Ain(r, t − τr )e
−iq′·r (19)

where q′ = q + qv. Here we omit the phase term exp[i(k/2L2)v2] before the integral because
it will cancel while calculating intensities at the same point v in the detector plane. We would
like to note here that this expression coincides with the coherent amplitude of equation (1) in
the limit Ain(r, t − τr) → 1. Now, we will consider the case where the scattering particle is a
crystalline sample with a periodic electron density function and the amplitude Ain(r, t − τr)

is a slowly varying function of the size of the unit cell. Under these conditions, performing
the same transformations as in the previous section, we finally obtain

A(q′, t) = F(q)
v

∑
n

An(q′ − hn, t) (20)

where

An(q, t) =
∫

dr s(r)Ain(r, t − τr)e
−iq·r. (21)

Here, as before, s(r) is a shape function of the crystal and for simplicity we are assuming
that the crystal is unstrained. However, this result can be generalized also for the case of the
strained crystal by adding the exponential factor exp[−iq · u(r)] to the integral (21).

The intensity of the scattered radiation measured at the position v of the detector near one
of the Bragg points hn = h, according to (20), (21), is equal to

I (Q) = 〈A(Q, t)A∗(Q, t)〉T = |F(h)|2
v2

|Ah(Q, t)|2

= |F(h)|2
v2

∫ ∫
dr dr′ s(r)s(r′)/in(r, r′,0τ)e−iQ·(r−r′) (22)

where Q = q′ − h = qv + q − h, 0τ = (lr − lr ′)/c is a time delay and

/in(r, r′, τ ) = 〈Ain(r, t)A∗
in(r

′, t + τ )〉T (23)

is the mutual coherence function. Averaging in (22) and (23) is carried out for time T much
longer than the time of fluctuation of the x-ray field and it is assumed that the incoming
radiation is ergodic and stationary. For the case of cross-spectral pure light we can write the
mutual coherence function as a product [27, 28]:

/in(r, r′, τ ) =
√
I (r)

√
I (r′)γin(r, r′)F (τ) (24)

where I (r) = 〈|Ain(r, t)|2〉T and I (r′) = 〈|Ain(r′, t)|2〉T are the averaged intensities of the
incoming radiation at points r and r′, γin(r, r′) is a normalized mutual coherence function or
complex degree of coherence and F(τ) is the time autocorrelation function.

We will make some more simplifying assumptions so as to obtain an explicit form for the
mutual coherence function (24). We will assume that the incident radiation is coming from a
planar incoherent source with a Gaussian distribution of intensity located at a distance L1 from
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the sample (figure 3). This will be an approximation for the actual 3D electron ‘bunch’ source
from the synchrotron storage ring. We will also consider the distance L1 to be much larger
than both the size of the particle D and an average size of the source S. In the same limit of the
paraxial approximation, the complex degree of coherence γin(r, r′) can be obtained according
to the van Cittert–Zernike theorem [26, 27]:

γin(r − r′) =
(

eiψ
∫

ds I (s)e−i(k/L1)(r−r′)·s
)/(∫

ds I (s)
)

(25)

where the phase factor ψ = (k/2L1)(r
2 − r ′2), I (s) is the intensity distribution of the

incoherent source and integration is performed over the whole area of the incoherent source. It
is interesting to note here that, for an incoherent source, expression (25) is exact up to second-
order terms in s. For the typical CXD experiment on a synchrotron source with distance from
source to sampleL1 � 40 m and energyEγ � 8 keV, the far-field conditions kD2/(2L1)  1
can be easily satisfied, giving the upper limit for the size of the particle D  40µm. In this
far-field limit we can neglect in equation (25) the phase prefactor exp[iψ]. For the same model
of incoherent source and far-field limit, the intensity of incoming radiation at points r and r′

of a sample can be easily calculated as

I (r) � I (r′) = I0 = (λ/L1)
2
∫
I (s) ds.

It is usual to describe the intensity distribution of the synchrotron source by the Gaussian
function

I (sx, sy) = I0

2πσxσy
e
− 1

2

(
s2
x

/
σ 2
x−s2

y

/
σ 2
y

)
(26)

where σx and σy are the halfwidths of the intensity distribution in the x- and y-directions. Due
to the fact that (25) is a FT we also get a Gaussian form for the complex degree of coherence:

γin(r⊥ − r′
⊥) = exp

(
− (r⊥ − r′

⊥)
2

2ξ2
⊥

)
= exp

(
− (x − x ′)2

2ξ2
x

− (y − y ′)2

2ξ2
y

)
. (27)

Here r⊥ and r′
⊥ are projections of r and r′ across the beam propagation direction and

ξx,y = L1/(kσx,y ) are usually defined as the two transverse coherence lengths. For typical
parameters of the APS source [29, 30], σx � 350µm, σy � 50µm, therefore, for the distance
L1 = 40 m and radiation Eγ = 8 keV, we obtain ξx � 3µm and ξy � 20µm.

We will further assume that the time autocorrelation function F(τ) in (24) has a pure
exponential form:

F(τ) = F0 exp(−τ/τ‖) (28)

which is an exact result for a Lorentzian power spectral density of the source [28]. The
characteristic time τ‖ of the decay of the time autocorrelation function defines the longitudinal
correlation length ξ‖ = cτ‖. It can easily be shown [26–28] that the correlation length ξ‖
is determined by the bandwidth (0λ/λ) of the incoming radiation, and for an exponential
autocorrelation function F(τ) it is equal to ξ‖ = (2/π)(λ2/0λ). For a Si(111) double-crystal
monochromator with 0λ/λ � 3 × 10−4 and the wavelength λ � 1.5 Å, we get for the
longitudinal coherence length ξ‖ � 0.32µm.

In the far-field limit we have for the time autocorrelation function F(0τ)

F (0τ) = F(|r‖ − r′
‖|) = F0 exp(−|lr − lr ′ |/ξ‖) = F0 exp(−|r‖ − r′

‖|/ξ‖) (29)

where r‖ and r′
‖ are the components of r and r′ along the beam direction and we have neglected

the small perpendicular contribution.
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Substituting expressions (23)–(29) into (22) we now get for the intensity

I (Q) = |F(h)|2
v2

∫ ∫
dr dr′ s(r)s(r′)γin(r⊥ − r′

⊥)F (|r‖ − r′
‖|)e−iQ·(r−r′) (30)

where the complex degree of coherence γin(r⊥ −r′
⊥) is defined by (27) and the autocorrelation

functionF(|r‖ − r′
‖|) by (29). This expression can be further simplified by changing variables:

I (Q) = |F(h)|2
v2

∫
dr ϕ11(r)γin(r⊥)F (|r‖|)e−iQ·r (31)

where

ϕ11(r) =
∫

dr′ s(r′)s(r′ + r)

is the autocorrelation function of the shape function s(r).
In the coherent limit, the transverse and longitudinal coherence lengths ξ⊥, ξ‖ become

infinite and that simultaneously leads to the limits for the normalized complex degree of
coherence γin(r⊥) → 1 and the autocorrelation function F(|r‖|) → 1. In this case we get for
the intensity of the coherently scattered radiation

Icoh(Q) = |F(h)|2
v2

∫
dr ϕ11(r)e−iQ·r = |A(Q)|2 (32)

where

A(Q) = (F (h)/v)
∫

dr s(r)e−iQ·r

is a kinematically scattered amplitude from the crystal with shape function s(r). This result
completely coincides with the coherent limit of equations (9), (10) discussed above.

Using the properties of the Fourier transform, the intensity I (Q) in equation (31) can be
written in the form of a convolution of two functions:

I (Q) = 1

(2π)3

∫
dQ′ Icoh(Q′)/̃(Q − Q′) (33)

where Icoh(Q) is the intensity of coherently scattered radiation (32) and /̃(Q) is the Fourier

transform

/̃(Q) =
∫

dr γin(r⊥)F (|r‖|)e−iQ·r. (34)

Now we will consider the same choice of orthogonal coordinates with the z-axis along
the diffracted beam propagation direction and the x-, y-axes perpendicular to this direction as
in the previous section. In this coordinate system, for the exact Bragg position (q = h and
Q = qv) we can write the intensity distribution (31) in the detector plane as

I (qv) = |F(h)|2
v2

∫
dx ϕz11(x)γin(x)e

−iqv·x (35)

where x is a 2D vector x = (x, y) and

ϕz11(x) =
∫

dz ϕ11(r) exp(−|z|/ξ‖).
It is interesting to note that the intensity distribution (35) can also be calculated as a convolution
of the FT of ϕz11(q) and γin(q) (see equation (4)). For the case of large longitudinal length
ξ‖ � D, the function ϕz11(x) gives just the projection of the 3D autocorrelation function on
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Figure 4. The complex degree of coherence γin(x, y) (left column) used for calculations of diffrac-
tion intensity patterns (central column). Reconstructed real-space images are shown in the right col-
umn. For comparison, in the top row we show the case of coherent illumination with the coherence
lengths ξx, ξy = ∞. The values of the coherence lengths in the other rows are, from the top down:
ξx = 91 pixels, ξy = 367 pixels; ξx = 45 pixels, ξy = 183 pixels; ξx = 22 pixels, ξy = 91 pixels.

the plane x. Smaller values of ξ‖ � D reduce the real-space volume of the scattering object
along the propagating beams that contribute coherently in the diffraction pattern.

In figure 4 we present calculations of 2D diffraction patterns obtained from equation (35)
for the crystal shape of figure 1 with different values of the transverse coherence lengths ξx, ξy .
For simplicity we have assumed here that the longitudinal coherence length is big enough,
ξ‖ � D, and it will not be considered in our further study. It is readily seen from this figure
that decreasing the values of the parameters ξx, ξy leads to a decrease in the contrast of the
diffraction pattern. In the next section we will see how this will affect the reconstructed image
of the crystal.
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sk(x) F{sk(x)} Ak(q)=|Ak(q)| exp[iΦk(q)]

Satisfy Reciprocal

Space Constraints

A´k(q)=  Iexp(q) exp[iΦk(q)]F -1{A´k(q)}s´k(x)

Satisfy Object

Domain Constraints

Figure 5. A sketch of iteration procedure used in the reconstruction of the diffraction patterns.

4. Reconstruction of the shape of small crystal objects

Inverse problems arise frequently in physics, and are fundamentally important for optics and
crystallography. The magnitude of the FT of some function (in general, complex valued) is
measurable, but its phase is not. Various iterative algorithms [6, 7, 10–12, 31] have been
applied to solve this problem. Most of them are based on the idea of the Gerchberg–Saxton
(GS) algorithm [6] that was originally proposed to solve the problem of retrieving the phase
from intensity measurements made in two domains: in real (object) space and reciprocal
(experimental data) space. The generalized version of the GS algorithm—the so-called error-
reduction (ER) algorithm proposed by Fienup [7]—can be applied to a more general problem,
in which partial constraints (in the form of measured data or information known a priori),
apply in each of the two domains. One simply transforms back and forth between the two
domains, satisfying the constraints in one before returning to the other (see figure 5).

For the most general problem the ER algorithm consists of the following four steps
(figure 5). In the first step some estimate for an object sk(x) is Fourier transformed:

Ak(q) = |Ak(q)|ei4k(q) = F[sk(x)].

Here x = (x, y) and q = (qx, qy) are 2D vectors. Then changes are made in Ak(q), to satisfy
the reciprocal-space domain constraints to form A′

k(q). For the problem of one intensity
measurement in reciprocal space, this reduces to the replacement of the modulus of the
resulting computed FT by the measured Fourier modulus

A′
k(q) = √

Iexp(q)ei4k(q).

In the next step, the inverse FT of A′
k(q) is calculated:

s′k(x) = |s′k(x)|eiθ ′
k(x) = F−1[A′

k(q)].

Then the minimum changes are made in the resulting computed image s′k(x) to satisfy the
object-domain constraints to form sk+1(x), a new estimate for the object. In our case the fourth
and final step can be formulated as

sk+1(x) =
{
s ′k(x) x ∈ S

0 x /∈ S
(36)

where the support region S is defined as the region in which s′k(x) conforms with the prior
knowledge (or estimate) of the size of the object.

To avoid the stagnation problems characteristic of the ER algorithm, it was proposed
[7, 10] that the fourth step be modified in such a way that, when the constraint conditions in
the real-space domain are not satisfied, the output is pushed in the direction towards satisfying
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these conditions. This is called the hybrid input–output (HIO) algorithm. The fourth step now
looks as follows:

sk+1(x) =
{
s ′k(x) |ck(x)− s′k(x)| < ε

sk(x) + β[ck(x)− s ′k(x)] |ck − s ′k(x)| > ε
(37)

where the parameter β can take values in the range 0 � β � 1 and ε is a parameter which
allows a small tolerance around the exact constraint. In our tests we found the best values of
the parameters β and ε for convergence and fidelity to be β = 0.8–0.9 and ε = 0.01; these
are in good agreement with the previous tests of the algorithm [7, 10]. In the same tests of
the iterative algorithms, it was reported that the best strategy for achieving convergence to the
desired solution while fitting is to switch between ER and HIO algorithms.

We have gained some experience in applying these methods for reconstruction of the
crystal shape s(r). We consider that the 2D detector cuts the 3D intensity distribution in
reciprocal space perpendicular to the scattered vector kf exactly through the Bragg position.
According to (11) this 2D intensity distribution in the case of coherent illumination is directly
connected by the FT with the projection of the crystal shape on the plane perpendicular to kf .

The test crystal, shown in figure 1, was taken to have the form of a polyhedron with eight
111 facets and two additional 100 and 1̄00 facets. The origin was taken as the centre of the
symmetry of the crystal. The distance from the origin to the 111 facets was equal to 15 pixels
and that to the 100 facets was 20 pixels. This crystal shape was then rotated by 40◦ around the
x-axis and −70◦ around the y-axis and projected on the (x, y) plane as shown in figure 1. There
is uniform density in the middle of the projection and fast changes at the borders. The FFT
of this projection shape was calculated with Nx = 400 and Ny = 700 pixels to produce the
diffraction pattern shown in figure 1. This is a typical size for the FFTs used for the diffraction
images measured by CCDs in CXD experiments [5].

This diffraction pattern was inverted into a real image by applying the iteration procedure
described before. For the problem of reconstruction of the particle projection shape, it is
natural to adopt the following constraint conditions for both ER and HIO algorithms: s′k(x) is
real and positive and it lies in the estimated object size Sobject :

ck(x) =
{
c′
k = |s′k(x)| cos θ ′

k and c′′
k = 0 if x ∈ Sobject and |s′k(x)| cos θ ′

k > 0

c′
k = 0 and c′′

k = 0 if x /∈ Sobject or |s′k(x)| cos θ ′
k < 0.

(38)

Schematically, this constraint is shown on the complex ck-plane in figure 6. A good estimate
of the size of the particle in the case of coherent illumination can be obtained from the fringe
spacing of the diffraction pattern according to (14). The support region was taken in the form of
a rectangular box with lateral size 100×100 pixels which is larger than the size of the particle.
The estimated area of the object (support region) Sobject was compared with the area of the
whole image (FFT region) Simage to give the oversampling ratio σ = Simage/Sobject = 28.
In this specific case we can easily satisfy the oversampling condition [11] σ � 2, which is
important for the convergence of the iterative algorithm.

In a typical fitting, we started by generating a real-space complex-valued image s0(x)with
amplitude |s0(x)| equal to the support region and random phases θ0(x). Then we applied the
ER algorithm for 100 cycles alternating with the HIO algorithm for several tens of iterations.
This procedure of switching between the HIO and ER cycles was repeated several times. Then
calculations were repeated with another set of random phases, and after a number (10–15) of
fits, the results were sorted according to increasing value of the residuals, and the best results
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Figure 6. A schematic view of the constraint used in the reconstruction algorithm on the complex
space. The left-hand figure corresponds to the situation where the calculation is made within the
estimated object size area (the small black box in the middle). The right-hand figure corresponds
to the calculation outside this area (the grey area inside the big box).

kept. The error metric in the reciprocal domain was used to monitor the convergence of the
algorithm to the solution:

EAk =
 ∑

qx,qy

[∣∣Ak(qx, qy)∣∣ − √
Iexp(qx, qy)

]2

/  ∑
qx ,qy

Iexp(qx, qy)

 . (39)

The typical behaviour of the error metric EAk in the calculations is shown in figure 7(a).
We have found that convergence of the iteration procedure for the most successful fits was

already happening after 150 to 200 cycles with the drop of EAk to 1 × 10−30. After 200 to 250
iterations we often obtain four or five totally converged images from ten attempts with different
starting random phases. It is interesting to note that when a solution was found (usually in the
HIO mode), it was maintained in the further cycles of the algorithm; however, switching to
the ER mode would result in jumping of the error metric values EAk up to 1 × 10−7.

As is clear from our previous discussion, the main assumption of the iterative approach
described is that two domains (image and intensity) are directly connected by the FT. However,
in the real experimental situation it is difficult to calculate or measure with high accuracy the
coherency properties of the incoming x-ray beam. In this situation it is desirable to understand
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Figure 7. The behaviour of the error metric EA as a function of the number of iterations. (a)
Reconstruction from a pure coherent diffraction image and a small crystal shape. (b) The same
case as in (a) but with a twice bigger crystal shape. (c)Reconstruction from a partial coherent
diffraction image and a big crystal shape.
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Table 1. Results of reconstructions for big particle shapes. Here ξx,y are the values of the
transverse correlation length in pixels, EAmin is the best value of the error metric (39), 0EA is the
difference in this error metric between the best three fits, @x,y (BG) and @x,y (BS) are the sizes of
the background and the bright central spot in pixels.

ξx ξy EAmin 0EA/EAmin @x(BG) @y(BG) @x(BS) @y(BS)

∞ ∞ — — 107.5 127.5 90 92.5
91 367 2.12 × 10−5 0.11 107.5 127.5 72.5 75
45 183 3.71 × 10−5 0.25 112.5 127.5 42.5 72.5
22 91 1.98 × 10−5 0.535 75 125 25 60
11 45 3.9 × 10−6 0.72 45 115 15 42.5

what the effect of partial coherence on the reconstructed shape of the images would be if no
special corrections to compensate for these effects were applied to the diffraction patterns.

To test the effects of partial coherence on the reconstructed shape of the 2D objects,
we have used the simulated diffraction patterns from figure 4. Each intensity pattern was
calculated according to the theory presented in the previous section with progressively lower
values of the transverse coherence ξx, ξy . These intensity distributions were used to reconstruct
the sample shape, applying the iterative algorithms described above.

The results of these tests, shown in figure 4, led to the following observations. First, for
the same number of cycles as in the previous tests the error metricEAk never dropped below the
value of 5 × 10−6. The value of EAk was becoming even higher, 2 × 10−5, for lower values of
the coherence length. Typical behaviour of EAk is shown in figure 7(c). Another observation
was that for different fits with different choices of random phases, the variation of the error
metric EAk at the end of each fit was bigger than in the case of a purely coherent diffraction
pattern. Unlike in the coherent case, the error metric dropped mainly during ER and not HIO
cycles. The last observation is the most interesting. For big coherence lengths ξx,y � D,
the reconstructed object has a uniform distribution of intensity corresponding to the initial
projection of the crystal shape. However, when ξx,y ∼ D, the maximum intensity region was
becoming smaller as well. In the limit of ξx,y  D, the densest region had narrowed to a
single ‘hot’ spot. The hot spot in the reconstructed image became narrower as the assumed
coherence length ξx,y was reduced and the error metric became progressively worse. It is
not known why the hot spot was shifted from the centre of the real-space image. The same
behaviour was observed recently [5] in the reconstruction of experimentally measured CXD
patterns for Au particles.

Tables 1 and 2 summarize the results. The reconstructed images have been characterized
as a broad background feature (BG), roughly the size of the original object, below a narrower
bright spot (BS). In the first two columns of these tables the values of the transverse coherence
lengths ξx, ξy are given in pixels. In the next column the quantity 0EA/EA, where EA is the
best error metric (39) obtained in the reconstruction and 0EA is the difference in this error
metric between the best three fits, is given. In the next two columns the sizes of the background
(@x,y(BG)) and of the bright central spot (@x,y (BS)) in pixels are reported. It is clearly seen
from these tables that as soon as the values of the coherence lengths ξx, ξy start becoming
smaller, the size of the bright spot in the centre also starts shrinking—it is in fact of the order
of the coherence lengths. At the same time, the background level shows more stability with
the reduction of the coherence length.

The appearance of the hot spot can be understood in the following qualitative way. The
partial coherence enters equation (33) in the form of a convolution between the ideal intensity
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Table 2. Results of reconstructions for small particle shapes.

ξx ξy EAmin 0EA/EAmin @x(BG) @y(BG) @x(BS) @y(BS)

∞ ∞ — — 52.5 62.5 45 45
91 367 3.48 × 10−6 2.85 52.5 62.5 40 40
45 183 2.79 × 10−5 0.99 52.5 62.5 35 35
22 91 4.31 × 10−5 0.18 52.5 62.5 22.5 27.5
11 45 1.72 × 10−5 1.05 42.5 60 15 30

distribution Icoh(Q) (perfectly coherent) due to the shape of the object and the Fourier transform
of the mutual coherence function /̃(Q), which can be assumed to be Gaussian. A compact
object, such as a small crystal, will in general have an intensity function with sinusoidal
fringes (14). When the fringes are convolved with a Gaussian their amplitude becomes
reduced systematically and a smooth broad background appears underneath; this is just the
same as the optical diffraction case [26].

In real space, the image of the object becomes multiplied by the complex degree of
coherence as seen in equation (31). There are reasons for expecting this complex degree of
coherence to have several components arising from optical elements in the experimental set-
up. These will therefore be imaged along with the object under investigation. In the limit of
small correlation lengths ξx,y D in the expression for the scattered intensity I (qv), equation
(35), we can take the autocorrelation function ϕz11(x) out of the integral, obtaining

I (qv) ∼ ϕz11(0)
∫

dx γin(x)e−iqv·x.

It is clear that inversion of this expression just gives the complex degree of coherence γin(x)
with the typical size of the area with the maximum intensity ξx × ξy . It was just this effect
that was observed in our test calculations (see tables 1 and 2).

In this paper we have discussed coherent x-ray diffraction for strained crystals under
conditions of purely coherent illumination. We have shown how this picture needs to be
modified in the case of partially coherent incoming radiation. Different iterative algorithms
for reconstruction of this intensity distribution to real-space images were discussed. We
have demonstrated and suggested how partial coherence can produce a ‘hot’ spot on the
reconstructed image of a nanocrystal.
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