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In this article, we propose a computationally efficient approach—space (Sparse PArtial Correlation Estimation)—for selecting nonzero

partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation

matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies.

It is shown that space performs well in both nonzero partial correlation selection and the identification of hub variables, and also

outperforms two existing methods. We then apply space to a microarray breast cancer dataset and identify a set of hub genes that may

provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed

procedure is asymptotically consistent in terms of model selection and parameter estimation.
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1. INTRODUCTION

There has been a large amount of literature on covariance

selection: the identification and estimation of nonzero entries

in the inverse covariance matrix (a.k.a. concentration matrix or

precision matrix) starting from the seminal paper by Dempster

(1972). Covariance selection is very useful in elucidating

associations among a set of random variables, as it is well

known that nonzero entries of the concentration matrix corre-

spond to nonzero partial correlations. Moreover, under Gaus-

sianity, nonzero entries of the concentration matrix imply

conditional dependency between corresponding variable pairs

conditional on the rest of the variables (Edward 2000). Tradi-

tional methods do not work unless the sample size (n) is larger

than the number of variables (p) (Whittaker 1990; Edward

2000). Recently, a number of methods have been introduced to

perform covariance selection for datasets with p > n, for

example, see Meinshausen and Buhlmann (2006), Yuan and

Lin (2007), Li and Gui (2006), and Schafer and Strimmer

(2005).

In this article, we propose a novel approach using sparse

regression techniques for covariance selection. Our work is

partly motivated by the construction of genetic regulatory

networks (GRN) based on high dimensional gene expression

data. Denote the expression levels of p genes as y1, . . ., yp. A

concentration network is defined as an undirected graph, in

which the p vertices represent the p genes and an edge connects

gene i and gene j if and only if the partial correlation rij

between yi and yj is nonzero. Note that, under the assumption

that y1, . . ., yp are jointly normal, the partial correlation rij

equals to Corr(yi, yjj y�(i,j)), where y�(i,j) ¼ {yk:1 # k 6¼ i, j #

p}. Therefore, rij being nonzero is equivalent to yi and yj being

conditionally dependent given all other variables y�(i,j). The

proposed method is specifically designed for the high-dimen-

sion-low-sample-size scenario. It relies on the assumption that

the partial correlation matrix is sparse (under normality

assumption, this means that most variable pairs are condi-

tionally independent), which is reasonable for many real life

problems. For instance, it has been shown that most genetic

networks are intrinsically sparse (Gardner, di Bernardo, Lor-

enz, and Collins 2003; Jeong, Mason, Barabasi, and Oltvai

2001; Tegner, Yeung, Hasty, and Collins 2003). The proposed

method is also particularly powerful in the identification of

hubs: vertices (variables) that are connected to (have nonzero

partial correlations with) many other vertices (variables). The

existence of hubs is a well-known phenomenon for many large

networks, such as the Internet, citation networks, and protein

interaction networks (Newman 2003). In particular, it is widely

believed that genetic pathways consist of many genes with few

interactions and a few hub genes with many interactions

(Barabasi and Oltvai 2004).

Another contribution of this article is to propose a novel

algorithm active-shooting for solving penalized opti-

mization problems such as the lasso (Tibshirani 1996). This

algorithm is computationally more efficient than the original

shooting algorithm, which was first proposed by Fu (1998)

and then extended by many others including Genkin, Lewis, and

Madigan (2007) and Friedman, Hastie, Hofling, and Tibshirani

(2007a). It enables us to implement the proposed procedure

efficiently, such that we can conduct extensive simulation

studies involving;1,000 variables and hundreds of samples. To

our knowledge, this is the first set of intensive simulation studies

for covariance selection with such high dimensions.

A few methods have also been proposed recently to perform

covariance selection in the context of p � n. Similar to the

method proposed in this article, they all assume sparsity of the

partial correlation matrix. Meinshausen and Buhlmann (2006)

introduced a variable-by-variable approach for neighborhood

selection via the lasso regression. They proved that neighbor-

hoods can be consistently selected under a set of suitable

assumptions. However, as regression models are fitted for each

variable separately, this method has two major limitations.

First, it does not take into account the intrinsic symmetry of
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the problem (i.e., rij ¼ rji). This could result in loss of

efficiency, as well as contradictory neighborhoods. Secondly,

if the same penalty parameter is used for all p lasso regressions

as suggested by their article, more or less equal effort is

placed on building each neighborhood. This apparently is not

the most efficient way to address the problem, unless the

degree distribution of the network is nearly uniform. However,

most real life networks have skewed degree distributions, such

as the power-law networks. As observed by Schafer and

Strimmer (2005), the neighborhood selection approach limits

the number of edges connecting to each node. Therefore, it

is not very effective in hub detection. On the contrary, the

proposed method is based on a joint sparse regression

model, which simultaneously performs neighborhood selection

for all variables. It also preserves the symmetry of the problem

and thus utilizes data more efficiently. We show by intensive

simulation studies that our method performs better in both

model selection and hub identification. Moreover, as a joint

model is used, it is easier to incorporate prior knowledge

such as network topology into the model. This is discussed in

Section 2.1.

Besides the regression approach mentioned previously,

another class of methods employ the maximum likelihood

framework. Yuan and Lin (2007) proposed a penalized max-

imum likelihood approach that performs model selection and

estimation simultaneously and ensures the positive definiteness

of the estimated concentration matrix. However, their algo-

rithm cannot handle high dimensional data. The largest

dimension considered by them is p ¼ 10 in simulation and p ¼
5 in real data. Friedman, Hastie, and Tibshirani (2007b) pro-

posed an efficient algorithm glasso to implement this

method, such that it can be applied to problems with high

dimensions. We show by simulation studies that, the proposed

method performs better than glasso in both model selection

and hub identification. Rothman, Bickel, Levina, and Zhu

(2008) proposed another algorithm to implement the method of

Yuan and Lin (2007). The computational cost is on the same

order of glasso, but in general not as efficient as glasso. Li

and Gui (2006) introduced a threshold gradient descent regu-

larization procedure. Schafer and Strimmer (2005) proposed a

shrinkage covariance estimation procedure to overcome the ill-

conditioned problem of sample covariance matrix when p > n.

There are also a large class of methods covering the situation

where variables have a natural ordering (e.g., longitudinal data,

time series, spatial data, or spectroscopy). See Wu and Pour-

ahmadi (2003), Bickel and Levina (2008), Huang et al. (2006),

and Levina et al. 2008, which are all based on the modified

Cholesky decomposition of the concentration matrix. In this

article, we, however, focus on the general case where an

ordering of the variables is not available.

The rest of the article is organized as follows. In Section 2,

we describe the joint sparse regression model, its imple-

mentation, and the active-shooting algorithm. In Sec-

tion 3, the performance of the proposed method is illustrated

through simulation studies and compared with that of the

neighborhood selection approach and the likelihood based

approach glasso. In Section 4, the proposed method is

applied to a microarray expression dataset of n ¼ 244 breast

cancer tumor samples and p ¼ 1,217 genes. In Section 5, we

study the asymptotic properties of this procedure. A summary

of the main results are given in Section 6. Technique details are

provided in the Supplemental Material.

2. METHOD

2.1 Model

In this section, we describe a novel method for detecting

pairs of variables having nonzero partial correlations among a

large number of random variables based on iid samples. Sup-

pose that, (y1, . . ., yp)
T has a joint distribution with mean 0 and

covariance S, where S is a p by p positive definite matrix.

Denote the partial correlation between yi and yj by r
ij (1# i < j

# p). It is defined as Corr(ei, ej), where ei and ej are the pre-

diction errors of the best linear predictors of yi and yj based on

y�(i,j) ¼ {yk : 1 # k 6¼ i, j # p}, respectively. Denote the

concentration matrix S
�1 by (sij)p3p. It is known that,

rij ¼ �ððsijÞ=ð
ffiffiffiffiffiffiffiffiffiffiffi
siisjj

p
ÞÞ. Let y�i ¼ {yk:1 # k 6¼ i # p}. The

following well-known result (Lemma 1) relates the estimation

of partial correlations to a regression problem.

Lemma 1: For 1 # i # p, yi is expressed as yi ¼P
j 6¼i bijyj þ �i, such that ei is uncorrelated with y�i if and only

if bij ¼ �ðsij=siiÞ ¼ rij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsjj=siiÞ

p
. Moreover, for such defined

bij,varð�iÞ ¼ ð1=siiÞ; covð�i; �jÞ ¼ sij=ðsiisjjÞ.
Note that, under the normality assumption, rij ¼ Corr(yi,

yjjy�(i,j)) and in Lemma 1, we can replace ‘‘uncorrelated’’ with

‘‘independent.’’ Because rij ¼ signðbijÞ
ffiffiffiffiffiffiffiffiffiffiffi
bijbji

p
, the search for

nonzero partial correlations can be viewed as a model selection

problem under the regression setting. In this article, we are

mainly interested in the case where the dimension p is larger

than the sample size n. This is a typical scenario for many real

life problems. For example, high throughput genomic experi-

ments usually result in datasets of thousands of genes for tens

or at most hundreds of samples. However, many high-dimen-

sional problems are intrinsically sparse. In the case of genetic

regulatory networks, it is widely believed that most gene pairs

are not directly interacting with each other. Sparsity suggests

that even if the number of variables is much larger than the

sample size, the effective dimensionality of the problem might

still be within a tractable range. Therefore, we propose to

employ sparse regression techniques by imposing the ‘1 pen-
alty on a suitable loss function to tackle the high-dimension-

low-sample-size problem.

Suppose Yk¼ (yk1, . . ., y
k
p)
T are iid observations from (0,S),

for k ¼ 1, . . ., n. Denote the sample of the ith variable as Yi ¼
(y1i, . . ., y

n
i)
T. Based on Lemma 1, we propose the following

joint loss function

Lnðu;s;YÞ ¼
1

2

Xp

i¼1

wikYi �
X

j 6¼i

bijYjk2
 !

¼ 1

2

Xp

i¼1

wikYi �
X

j6¼i

rij

ffiffiffiffiffiffi
sjj

sii

r
Yjk2

 !

; ð1Þ

where u ¼ (r12, ���, r(p�1)p)T, s ¼ siif gpi¼1; Y ¼ Yk
� �n

k¼1
; and

w ¼ wif gpi¼1 are nonnegative weights. For example, we can

choose wi ¼ 1/var (ei) ¼ sii to weigh individual regressions in

the joint loss function according to their residual variances, as

is done in regression with heteroscedastic noise. We propose to
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estimate the partial correlations u by minimizing a penalized

loss function

Lnðu;s;YÞ ¼ Lnðu;s;YÞ þ J ðuÞ; ð2Þ
where the penalty term J (u) controls the overall sparsity of the

final estimation of u. In this article, we focus on the ‘1 penalty
(Tibshirani 1996):

J ðuÞ ¼ lkuk1 ¼ l
X

1 # i< j # p

jrijj: ð3Þ

The proposed joint method is referred to as space (Sparse

PArtial Correlation Estimation) hereafter. It is related to the

neighborhood selectionapproachbyMeinshausen andBuhlmann

(2006) (referred to as MB hereafter), where a lasso regression is

performed separately for each variable on the rest of the variables.

However, space has several important advantages.

1. In space, sparsity is used for the partial correlations u as

a whole view. However, in the neighborhood selection

approach, sparsity is imposed on each neighborhood. The

former treatment is more natural and utilizes the data

more efficiently, especially for networks with hubs. A

prominent example is the genetic regulatory network,

where master regulators are believed to exist and are of

great interest.

2. According to Lemma 1, bij and bji have the same sign.

The proposed method assures this sign consistency as it

estimates {rij} directly. However, when fitting p separate

(lasso) regressions, it is possible that signðbbijÞ is different
from signðbbjiÞ, which may lead to contradictory neigh-

borhoods.

3. Furthermore, the utility of the symmetric nature of the

problem allows us to reduce the number of unknown

parameters in the model by almost half (p(p þ 1)/2 for

space versus (p � 1)2 for MB), and thus improves the

efficiency.

4. Finally, prior knowledge of the network structure are

often available. The joint model is more flexible in

incorporating such prior knowledge. For example, we

may assign different weights wi to different nodes

according to their ‘‘importance.’’ We have already dis-

cussed the residual variance weights, where wi ¼ sii. We

can also consider the weight that is proportional to the

(estimated) degree of each variable (i.e., the estimated

number of edges connecting with each node in the net-

work). This would result in a preferential attachment

effect that explains the cumulative advantage phenomena

observed in many real life networks including GRNs

(Barabasi and Albert 1999).

These advantages help enhance the performance of space.

As illustrated by the simulation study in Section 3, the pro-

posed joint method performs better than the neighborhood

selection approach in both nonzero partial correlation selection

and hub detection.

As compared with the penalized maximum likelihood

approach glasso (Friedman et al. 2007b), the simulation

study in Section 3 shows that space also outperforms

glasso in both edge detection and hub identification under

all settings that we have considered. In addition, space has

the following advantages.

1. The complexity of glasso is O(p3), whereas as dis-

cussed in Section 2.2, the space algorithm has the

complexity of min(O(np2), O(p3)), which is much faster

than the algorithm of Yuan and Lin (2007) and in general

should also be faster than glasso when n < p, which is

the case in many real studies.

2. As discussed in Section 6, space allows for trivial

generalizations to other penalties of the form of jrijjq rather
than simply jrijj, which includes ridge and bridge (Fu 1998)
or other more complicated penalties like Smoothly Clipped

Absolute Deviation (Fan and Li 2001). The glasso algo-

rithm, on the other hand, is tied to the lasso formulation and

cannot be extended to other penalties in a natural manner.

3. In Section 5, we prove that our method consistently

identifies the correct network neighborhood when both n

and p go to ‘. As far as we are aware, no such theoretical

results have been developed for the penalized maximum

likelihood approach.

Note that, in the penalized loss function (2), s needs to be

specified.We propose to estimate u ands by a two-step iterative

procedure. Given an initial estimate s(0) ofs, u is estimated by

minimizing the penalized loss function (2), whose imple-

mentation is discussed in Section 2.2. Then given the current

estimates u(c) and s(c), s is updated based on Lemma

1: 1=bsii ¼ ð1=nÞkYi � Sj 6¼i
bbðcÞ
ij Yjk2, where bbðcÞ

ij ¼ ðrijÞðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððsjjÞðcÞ=ðsiiÞðcÞÞ

q
. We then iterate between these two steps

until convergence. Because 1/sii
# var (yi) ¼ sii, we can use

1=bsii as the initial estimate of sii, where bsii ¼
1=ðn� 1ÞSn

k¼1ðyki � �yiÞ
2
is the sample variance of yi. Our sim-

ulation study shows that it usually takes no more than three

iterations for this procedure to stabilize.

2.2 Implementation

In this section, we discuss the implementation of the space

procedure: that is, minimizing (2) under the ‘1 penalty (3). We

first reformulate the problem, such that the loss function (1)

corresponds to the ‘2 loss of a ‘‘regression problem.’’ We then

use the active-shooting algorithm proposed in Section

2.3 to solve this lasso regression problem efficiently.

Given s and positive weights w, let Y ¼ ð ~YT

1 ; . . . ;
~Y
T

p Þ
T
be a

np3 1 column vector, where ~Yi ¼
ffiffiffiffiffi
wi

p
Yi (i¼ 1, . . ., p); and let

X ¼ ð ~X ð1;2Þ; � � � ; ~X ðp�1;pÞÞ be a np by p(p � 1)/2 matrix, with

~X ði;jÞ ¼ ð0; . . . ; 0;
ffiffiffiffiffi
~s jj

~s ii

q
~Y
T

j ; 0; . . . ; 0;
ffiffiffiffiffi
~s ii

~s jj

q
~Y
T

i ; 0; . . . ; 0ÞT
[ [

ithblock jthblock

;

where ~sii ¼ sii=wi (i ¼ 1,. . ., p). Then it is easy to see that the

loss function (1) equals to ð1=2ÞkY �Xuk22, and the corre-

sponding ‘1 minimization problem is equivalent to:

minu
1
2
kY �Xuk22 þ lkuk1. Note that, the current dimension

~n ¼ np and ~p ¼ pðp� 1Þ=2 are of a much higher order than the

original n and p. This could cause serious computational

problems. Fortunately, X is a block matrix with many zero

blocks. Thus, algorithms for lasso regressions can be efficiently

implemented by taking into consideration this structure (see the

Supplemental Material for the detailed implementation). To
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further decrease the computational cost, we develop a new

algorithm active-shooting (Section 2.3) for the space

model fitting. Active-shooting is a modification of the

shooting algorithm, which was first proposed by Fu (1998)

and then extended by many others including Genkin et al.

(2007) and Friedman et al. (2007a). Active-shooting

exploits the sparse nature of sparse penalization problems in a

more efficient way, and is therefore computationally much

faster. This is crucial for applying space for large p or n. It

can be shown that the computational cost of space is min

(O(np2), O(p3)), which is the same as applying p individual

lasso regressions as in the neighborhood selection approach.

We want to point out that, the proposed method can also be

implemented by lars (Efron, Hastie, Johnstone, and Tib-

shirani 2004). However, unless the exact whole solution path is

needed, compared with shooting type algorithms, lars

is computationally less appealing (Friedman et al. 2007a).

(Remark by the authors: after this article was submitted,

recently the active-shooting idea was also proposed by

Friedman, Hastie, and Tibshirani (2008).)

Finally, note that the concentration matrix should be positive

definite. In principle, the proposed method (or more generally,

the regression based methods) does not guarantee the positive

definiteness of the resulting estimator, whereas the likelihood

based method by Yuan and Lin (2007) and Friedman et al.

(2007b) assures the positive definiteness. Whereas admitting

that this is one limitation of the proposed method, we argue

that, because we are more interested in model selection than

parameter estimation in this article, we are less concerned with

this issue. Moreover, in Section 5, we show that the proposed

estimator is consistent under a set of suitable assumptions.

Therefore, it is asymptotically positive definite. Indeed, the

space estimators are rarely nonpositive-definite under the

high dimensional sparse settings that we are interested in. More

discussions on this issue can be found in Section 3.

2.3 Active Shooting

In this section, we propose a computationally very efficient

algorithm active-shooting for solving lasso regression

problems.Active-shooting ismotivated by theshooting

algorithm (Fu 1998), which solves the lasso regression by updat-

ing each coordinate iteratively until convergence. Shooting is

computationally very competitive compared with the well known

lars procedure (Efron et al. 2004). Suppose that we want to

minimize an ‘1 penalized loss function with respect to b

f ðbÞ ¼ 1

2
kY� Xbk22 þ g

X

j

jbjj;

where Y ¼ (y1, . . ., yn)
T, X ¼ (xij)n3p ¼ (X1: . . .:Xp) and b ¼

(b1, . . ., bp)
T. The shooting algorithm proceeds as follows:

1. Initial step: for j ¼ 1, . . ., p,

b
ð0Þ
j ¼ argminbj

1
2
kY� bjXjk2 þ gjbjj

n o

¼ signðYTXjÞ ðjY
TXjj�gÞþ
XT

j Xj
;

ð4Þ

where (x)þ ¼ xI(x>0).

2. For j ¼ 1, . . ., p, update b(old) ! b(new):

b
ðnewÞ
i ¼ b

ðoldÞ
i ; i 6¼ j;

b
ðnewÞ
j ¼ argminbj

1
2
kY�

P
i 6¼j b

ðoldÞ
i Xi � bjXj k2 þ gjbjj

¼ sign
ðeðoldÞÞTXj

XT
j Xj

þ b
ðoldÞ
j

� �
ðeðoldÞÞTXj

XT
j Xj

þ b
ðoldÞ
j

���
���� g

XT
j Xj

� �

þ
;

ð5Þ
where e

(old) ¼ Y � Xb(old).

3. Repeat step 2 Until convergence.

At each updating step of the shooting algorithm, we

define the set of currently nonzero coefficients as the active set.

Because under sparse models, the active set should remain

small, we propose to first update the coefficients within the

active set until convergence is achieved before moving on to

update other coefficients. The active-shooting algo-

rithm proceeds as follows:

1. Initial step: same as the initial step of shooting.

2. Define the current active set L ¼ {k: current bk 6¼ 0}.

(2.1) For each k 2 L, update bk with all other coefficients

fixed at the current value as in Equation (5);

(2.2) Repeat (2.1) until convergence is achieved on the

active set.

3. For j ¼ 1 to p, update bj with all other coefficients fixed

at the current value as in Equation (5). If no bj changes during

this process, return the current b as the final estimate. Other-

wise, go back to step 2.

The idea of active-shooting is to focus on the set of

variables that is more likely to be in the model, and thus it

improves the computational efficiency by achieving a faster

convergence. We illustrate the improvement of the active-

shooting over theshooting algorithmbya small simulation

study of the lasso regression (generated in the same way as in

Section 5.1 of Friedman et al. (2007a)). The two algorithms result

in exact same solutions. However, as can be seen from Table 1,

active-shooting takes much fewer iterations to converge

(where one iteration is countedwhenever an attempt to update abj

is made). In particular, it takes less than 30 sec (on average) to fit

the space model by active-shooting (implemented in c

code) for cases with 1,000 variables, 200 samples and when the

resultingmodel has around 1000 nonzero partial correlations on a

serverwith dual core 3GHz processor and 4GBRAM. This great

computational advantage enables us to conduct large scale sim-

ulation studies to examine the performance of the proposed

method (Section 3).

2.4 Tuning

The choice of the tuning parameter l is of great importance.

Because the spacemethod uses a lasso criterion, methods that

Table 1. The numbers of iterations required by the shooting algorithm

and the active-shooting algorithm to achieve convergence (n ¼
100, l ¼ 2). ‘‘coef. #’’ is the number of nonzero coefficients

p coef. # shooting active-shooting

200 14 29,600 4,216

500 25 154,000 10,570

1,000 28 291,000 17,029
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have been developed for selecting the tuning parameter for

lasso can also be applied to space, such as the GCV in Tib-

shirani (1996), the CV in Fan and Li (2001), the AIC in

Buhlmann (2006), and the BIC in Zou, Hastie, and Tibshirani

(2007). Several methods have also been proposed for selecting

the tuning parameter in the setting of covariance estimation, for

example, the MSE based criterion in Schafer and Strimmer

(2005), the likelihood based method in Huang et al. (2006), and

the cross-validation and bootstrap methods in Li and Gui

(2006). In this article, we propose to use a ‘‘BIC-type’’ crite-

rion for selecting the tuning parameter mainly due to its sim-

plicity and computational easiness. For a given l, denote the

space estimator by bul ¼ brijl : 1 # i < j
�

# pg and

bsl ¼ bsii
l : 1 # i # p

� �
. The corresponding residual sum of

squares for the i-th regression: yi ¼
P

j 6¼i bijyj þ �i is

RSSiðlÞ ¼
Xn

k¼1

yki �
X

j 6¼i

brijl

ffiffiffiffiffiffi
bsjj
l

bsii
l

s

ykj

0

@

1

A
2

:

We then define a ‘‘BIC-type’’ criterion for the i-th regression as

BICiðlÞ ¼ n 3 logðRSSiðlÞÞ
þ log n 3 # j : j 6¼ i;brijl 6¼ 0

� �
: ð6Þ

Finally, we define BICðlÞ :¼
Pp

i¼1 BICiðlÞ and select l by

minimizingBIC(l). This method is referred to as space.joint

hereafter.

In Yuan and Lin (2007), a BIC criterion is proposed for the

penalized maximum likelihood approach. Namely

BICðlÞ :
¼ n 3 � log jbS�1

l j þ traceðbS�1
l SÞ

h i

þ log n 3 # ði; jÞ : 1 # i # j # p; bsij
l 6¼ 0

� �
;

ð7Þ
where S is the sample covariance matrix, and bS�1

l ¼ ðbsij
lÞ is the

estimator under l. In this article, we refer to this method as

glasso.like. For the purpose of comparison, we also con-

sider the selection of the tuning parameter for MB. Because MB

essentially performs p individual lasso regressions, the tuning

parameter can be selected for each of them separately. Specifi-

cally, we use criterion (6) (evaluated at the corresponding MB

estimators) to select the tuning parameter li for the i-th regres-

sion. We denote this method as MB.sep. Alternatively, as

suggested by Meinshausen and Buhlmann (2006), when all Yi
are standardized to have sample standard deviation one, the

same lðaÞ ¼ ffiffiffi
n

p
F

�1ð1� ða=2p2ÞÞ is applied to all regres-

sions. Here, F is the standard normal cumulative distribution

function; a is used to control the false discovery rate and is

usually taken as 0.05 or 0.1. We denote this method as

MB.alpha. These methods are examined by the simulation

studies in the next section.

3. SIMULATION

In this section, we conduct a series of simulation experiments

to examine the performance of the proposed method space and

compare it with the neighborhood selection approach MB as well

as the penalized likelihood method glasso. For all three

methods, variables are first standardized to have sample mean

zero and sample standard deviation one before model fitting. For

space, we consider three different types of weights: (1) uni-

form weights: wi ¼ 1; (2) residual variance based weights:

wi ¼ bsii; and (3) degree based weights: wi is proportional to the

estimated degree of yi (i.e., # j : brij 6¼ 0;f j 6¼ ig). The corre-

sponding methods are referred as space, space.sw and

space.dew, respectively. For all three space methods, the

initial value of sii is set to be one. Iterations are used for these

space methods as discussed in Section 2.1. For space.dew

and space.sw, the initial weights are taken to be one (i.e.,

equal weights). In each subsequent iteration, new weights are

calculated based on the estimated residual variances (for

space.sw) or the estimated degrees (for space.dew) of

the previous iteration. For all three space methods, three iter-

ations (that is updating between {sii} and {rij}) are used

because the procedure converges very fast and more iterations

result in essentially the same estimator. For glasso, the diag-

onal of the concentration matrix is not penalized.

We simulate networks consisting of disjointed modules. This

is done because many real life large networks exhibit a modular

structure comprised of many disjointed or loosely connected

components of relatively small size. For example, experiments

on model organisms like yeast or bacteria suggest that the

transcriptional regulatory networks have modular structures

(Lee et al. 2002). Each of our network modules is set to have 100

nodes and generated according to a given degree distribution,

where the degree of a node is defined as the number of edges

connecting to it. We mainly consider two different types of

degree distributions and denote their corresponding networks by

Hub network and Power-law network (details are given

later). Given an undirected network with p nodes, the initial

‘‘concentration matrix’’ ð~sijÞp 3 p is generated by

~sij ¼
1; i ¼ j;

0; i 6¼ j; i ¿ j;

;UðDÞ i 6¼ j; i; j;

8
<

: ð8Þ

where i ; j means that there is an edge between nodes i and j,

i¿ j means otherwise; and domain D = [�1, �0.5] [ [0.5, 1].

We then rescale the non-zero elements in the preceding matrix

to assure positive definiteness. Specifically, for each row, we

first sum the absolute values of the off-diagonal entries, and

then divide each off-diagonal entry by 1.5 fold of the sum. We

then average this rescaled matrix with its transpose to ensure

symmetry. Finally the diagonal entries are all set to be one.

This process results in diagonal dominance. Denote the final

matrix as A. The covariance matrix S is then determined by

Sði; jÞ ¼ A�1ði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�1ði; iÞA�1ðj; jÞ

q
:

Finally, iid samples Yk
� �n

k¼1
are generated from Normal(0, S).

Note that, S(i, i) ¼ 1, and S�1(i, i) ¼ sii
$ 1.

Hub Networks. In the first set of simulations, module

networks are generated by inserting a few hub nodes into a very

sparse graph. Specifically, each module consists of three hubs

with degrees around 15, and the other 97 nodes with degrees, at

most, four. This setting is designed to mimic the genetic reg-

ulatory networks, which usually contains a few hub genes plus
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many other genes with only a few edges. A network consisting

of five such modules is shown in Figure 1(a). In this network,

there are p ¼ 500 nodes and 568 edges. The simulated nonzero

partial correlations fall in (� 0.67, � 0.1] [ [0.1, 0.67), with

two modes around -0.28 and 0.28. Based on this network and

the partial correlation matrix, we generate 50 independent

datasets each consisting of n ¼ 250 iid samples.

We then evaluate each method at a series of different values

of the tuning parameter l. The number of total detected edges

(Nt) decreases as l increases. Figure 2(a) shows the number of

correctly detected edges (Nc) versus the number of total

detected edges (Nt) averaged across the 50 independent data-

sets for each method. We observe that all three spacemethods

(space, space.sw, and space.dew) consistently detect

more correct edges than the neighborhood selection method MB

(except for space.sw when Nt < 470) and the likelihood

based method glasso. MB performs favorably over glasso

when Nt is relatively small (say less than 530), but performs

worse than glasso when Nt is large. Overall, space.dew is

the best among all methods. Specifically, when Nt ¼ 568

(which is the number of true edges), space.dew detects 501

correct edges on average with a standard deviation 4.5 edges.

The corresponding sensitivity and specificity are both 88%.

Here, sensitivity is defined as the ratio of the number of correctly

detected edges to the total number of true edges; and specificity

is defined as the ratio of the number of correctly detected edges

to the number of total detected edges. On the other hand, MB and

glasso detect 472 and 480 correct edges on average, respec-

tively, when the number of total detected edges Nt is 568.

Figure 1. Topology of simulated networks. (a) Hub network: 500

nodes and 568 edges. 15 nodes (in black) have degrees of around 15.

(b) Power-law network: 500 nodes and 495 edges. 3 nodes (in black)

have degrees at least 20.

Figure 2. Simulation results for Hub network. (a) x-axis: the number of

total detected edges (i.e., the total number of pairs (i, j) withbrij 6¼ 0; y-axis:

the number of correctly identified edges. The vertical grey line corresponds

to the number of true edges. (b) x-axis: the number of total detected edges;

y-axis: the average rank of the estimated degrees of the 15 true hub nodes.
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In terms of hub detection, for a given Nt, a rank is assigned to

each variable yi based on its estimated degree (the larger the

estimated degree, the smaller the rank value). We then calculate

the average rank of the 15 true hub nodes for each method. The

results are shown in Figure 2(b). This average rank would

achieve the minimum value 8 (indicated by the grey horizontal

line), if the 15 true hubs have larger estimated degrees than all

other nonhub nodes. As can be seen from the figure, the

average rank curves (as a function of Nt) for the three space

methods are very close to the optimal minimum value 8 for a

large range of Nt. This suggests that these methods can suc-

cessfully identify most of the true hubs. Indeed, for

space.dew, when Nt equals to the number of true edges

(568), the top 15 nodes with the highest estimated degrees

contain at least 14 out of the 15 true hub nodes in all replicates.

On the other hand, both MB and glasso identify far fewer hub

nodes, as their corresponding average rank curves are much

higher than the grey horizontal line.

To investigate the impact of dimensionality p and sample size

n, we perform simulation studies for a larger dimension with p¼
1,000 and various sample sizes with n ¼ 200, 300, and 500. The

simulated network includes 10 disjointed modules of size 100

each and has 1,163 edges in total. Nonzero partial correlations

form a similar distribution as that of the p ¼ 500 network dis-

cussed previously. The ROC curves for space.dew, MB, and

glasso resulted from these simulations are shown in Figure 3.

When false discovery rate (FDR, defined as 1-specificity) is

controlled at 0.05, the power (¼sensitivity) for detecting cor-

rect edges is given in Table 2. From the figure and the table, we

observe that the sample size has a big impact on the perform-

ance of all methods. For p ¼ 1,000, when the sample size

increases from 200 to 300, the power of space.dew increases

more than 20%; when the sample size is 500, space.dew

achieves an impressive power of 96%. On the other hand, the

dimensionality seems to have relatively less influence. When

the total number of variables is doubled from 500 to 1,000, with

only 20% more samples (that is p ¼ 500, n ¼ 250 versus p ¼
1,000, n¼ 300), all three methods achieve similar powers. This

is presumably because the larger network (p ¼ 1,000) is sparser

than the smaller network (p ¼ 500) and also the complexity of

the modules remains unchanged. Finally, it is obvious from Figure

3 that, space.dew performs best among the three methods.

We then investigate the performance of these methods at the

selected tuning parameters (see Section 2.4 for details). For the

preceding Hub network with p ¼ 1,000 nodes and n ¼ 200,

300, 500, the results are reported in Table 3. As can be seen

from the table, BIC based approaches tend to select large

models (compared with the true model that has 1,163 edges).

Space.joint and MB.sep perform similarly in terms of

specificity, and glasso.like works considerably worse

than the other two in this regard. On the other hand,

space.joint and glasso.like performs similarly and

are better than MB.sep in terms of sensitivity. In contrast,

MB.alpha selects very small models and thus results in very

high specificity, but very low sensitivity. In terms of hub

identification, space.joint apparently performs better than

other methods (indicated by a smaller average rank over 30 true

hub nodes). Moreover, the performances of all methods

improve with sample size.

Power-Law Networks. Many real world networks have a

power-law (a.k.a scale-free) degree distribution with an esti-

mated power parameter a ¼ 2 ; 3 (Newman 2003). Thus, in

the second set of simulations, the module networks are gen-

erated according to a power-law degree distribution with the

power-law parameter a ¼ 2.3, as this value is close to the

estimated power parameters for biological networks (Newman

2003). Figure 1(b) illustrates a network formed by five such

modules with each having 100 nodes. It can be seen that there

Figure 3. Hub network: ROC curves for different samples sizes (p¼
1,000).

Table 2. Power (sensitivity) of space.dew, MB, and glasso in

identifying correct edges when FDR is controlled at 0.05.

Network p n space.dew MB glasso

Hub-network 500 250 0.844 0.784 0.655

200 0.707 0.656 0.559

Hub-network 1,000 300 0.856 0.790 0.690

500 0.963 0.894 0.826

Power-law network 500 250 0.704 0.667 0.580

Table 3. Edge detection under the selected tuning parameter l. For

average rank, the optimal value is 15.5. For MB.alpha, a ¼ 0.05

is used.

Sample

size Method

Total edge

detected Sensitivity Specificity

Average

rank

n ¼ 200 space.joint 1,357 0.821 0.703 28.6

MB.sep 1,240 0.751 0.703 57.5

MB.alpha 404 0.347 1.00 175.8

glasso.like 1,542 0.821 0.619 35.4

n ¼ 300 space.joint 1,481 0.921 0.724 18.2

MB.sep 1,456 0.867 0.692 30.4

MB.alpha 562 0.483 1.00 128.9

glasso.like 1,743 0.920 0.614 21

n ¼ 500 space.joint 1,525 0.980 0.747 16.0

MB.sep 1,555 0.940 0.706 16.9

MB.alpha 788 0.678 1.00 52.1

glasso.like 1,942 0.978 0.586 16.5
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are three obvious hub nodes in this network with degrees of at

least 20. The simulated nonzero partial correlations fall in the

range (�0.51, �0.08] [ [0.08, 0.51), with two modes around

�0.22 and 0.22. Similar to the simulation done for Hub net-

works, we generate 50 independent datasets each consisting of

n ¼ 250 iid samples. We then compare the number of correctly

detected edges by various methods. The result is shown in

Figure 4. On average, when the number of total detected edges

equals to the number of true edges, which is 495, space.dew

detects 406 correct edges, whereas MB detects only 378 and

glasso detects only 381 edges. In terms of hub detection, all

methods can correctly identify the three hub nodes for this

network.

Comments. These simulation results suggest that when the

(concentration) networks are reasonably sparse, we should be

able to characterize their structures with only a couple-of-

hundreds of samples when there are a couple of thousands of

nodes. In addition, space.dew outperforms MB by at least

6% on the power of edge detection under all simulation settings

above when FDR is controlled at 0.05, and the improvements

are even larger when FDR is controlled at a higher level say 0.1

(see Figure 3). Also, compared with glasso, the improve-

ment of space.dew is at least 15% when FDR is controlled at

0.05, and the advantages become smaller when FDR is con-

trolled at a higher level (see Figure 3). Moreover, the space

methods perform much better in hub identification than both

MB and glasso. We have also applied space methods, MB

and glasso on networks with nearly uniform degree dis-

tributions generated by following the simulation procedures in

Meinshausen and Buhlmann (2006), as well as the autore-

gressive network discussed in Yuan and Lin (2007) and

Friedman et al. (2007b). For these cases, the space methods

perform comparably, if not better than, the other two methods.

However, for these networks without hubs, the advantages of

space become smaller compared with the results on the

networks with hubs. Due to space limitation, detailed results

are not reported here.

We conjecture that, under the sparse and high dimensional

setting, the superior performance in model selection of the

regression based method space over the penalized likelihood

method is partly due to its simpler quadratic loss function.

Moreover, because space ignores the correlation structure of

the regression residuals, it amounts to a greater degree of

regularization, which may render additional benefits under the

sparse and high dimensional setting.

In terms of parameter estimation, we compare the entropy

loss of the three methods. We find that, they perform similarly

when the estimated models are of small or moderate size.

When the estimated models are large, glasso generally

performs better in this regard than the other two methods.

Because the interest of this article lies in model selection,

detailed results of parameter estimation are not reported here.

As discussed earlier, one limitation of space is its lack of

assurance of positive definiteness. However, for simulations

reported previously, the corresponding estimators we have ex-

amined (over 3,000 in total) are all positive definite. To further

investigate this issue, we design a few additional simulations.

We first consider a case with a similar network structure as the

Hub network, however having a nearly singular concentration

matrix (the condition number is 16,240; as a comparison, the

condition number for the original Hub network is 62). For this

case, the estimate of space remains positive definite until the

number of total detected edges increases to 50,000; whereas the

estimate of MB remains positive definite until the number of

total detected edges is more than 23,000. Note that, the total

number of true edges of this model is only 568, and the model

selected by space.joint has 791 edges. In the second

simulation, we consider a denser network (p ¼ 500 and the

number of true edges is 6,188) with a nearly singular concen-

tration matrix (condition number is 3,669). Again, we observe

that, the space estimate only becomes nonpositive-definite

when the estimated models are huge (the number of detected

edges is more than 45,000). This suggests that, for the regime

we are interested in in this article (the sparse and high

dimensional setting), nonpositive-definiteness does not seem to

be a big issue for the proposed method, as it only occurs when

the resulting model is huge and thus very far away from the true

model. As long as the estimated models are reasonably sparse,

the corresponding estimators by space remain positive defi-

nite. We believe that this is partly due to the heavy shrinkage

imposed on the off-diagonal entries to ensure sparsity.

Finally, we investigate the performance of these methods

when the observations come from a nonnormal distribution.

Particularly, we consider the multivariate tdf� distribution with

df¼ 3, 6, 10. The performances of all three methods deteriorate

compared with the normal case, however the overall picture in

terms of relative performance among these methods remains

essentially unchanged (detailed results not shown).

4. APPLICATION

More than 500,000 women die annually of breast cancer

world wide. Great efforts are being made to improve the pre-

vention, diagnosis, and treatment of breast cancer. Specifically,

in the past couple of years, molecular diagnostics of breast

cancer have been revolutionized by high throughput genomics

Figure 4. Simulation results for Power-law network. x-axis: the

number of total detected edges; y-axis: the number of correctly

identified edges. The vertical grey line corresponds to the number of

true edges.
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technologies. A large number of gene expression signatures

have been identified (or even validated) to have potential clin-

ical usage. However, because breast cancer is a complex dis-

ease, the tumor process cannot be understood by only analyzing

individual genes. There is a pressing need to study the inter-

actions between genes, which may well lead to better under-

standing of the disease pathologies.

In a recent breast cancer study, microarray expression

experiments were conducted for 295 primary invasive breast

carcinoma samples (Chang et al. 2005; van de Vijver et al.

2002). Raw array data and patient clinical outcomes for 244 of

these samples are available online and are used in this article.

Data can be downloaded at http://microarray-pubs.stanford.

edu/wound_NKI/explore.html. To globally characterize the

association among thousands of mRNA expression levels in

this group of patients, we apply the space method on this

dataset as follows. First, for each expression array, we perform

the global normalization by centering the mean to zero and

scaling the median absolute deviation to one. Then we focus on

a subset of p ¼ 1,217 genes/clones whose expression levels are

significantly associated with tumor progression (p values from

univariate Cox models < 0.0008, corresponding FDR ¼ 0.01).

We estimate the partial correlation matrix of these 1,217 genes

with space.dew for a series of l values. The degree dis-

tribution of the inferred network is heavily skewed to the right.

Specifically, when 629 edges are detected, 598 out of the 1,217

genes do not connect to any other genes, whereas five genes have

degrees of at least 10. The power-law parameter of this degree

distribution is a ¼ 2.56, which is consistent with the findings in

the literature for GRNs (Newman 2003). The topology of the

inferred network is shown in Figure 5(a), which supports the

statement that genetic pathways consist of many genes with few

interactions and a few hub genes with many interactions.

We then search for potential hub genes by ranking nodes

according to their degrees. There are 11 candidate hub genes

whose degrees consistently rank the highest under various l

[see Figure 5(b)]. Among these 11 genes, five are important

known regulators in breast cancer. For example, HNF3A (also

known as FOXA1) is a transcription factor expressed pre-

dominantly in a subtype of breast cancer, which regulates the

expression of the cell cycle inhibitor p27kip1 and the cell

adhesion molecule E-cadherin. This gene is essential for the

expression of approximately 50% of estrogen-regulated genes

and has the potential to serve as a therapeutic target (Nakshatri

and Badve 2007). Except for HNF3A, all the other 10 hub

genes fall in the same big network component related to cell

cycle/proliferation. This is not surprising as it is well-agreed

that cell cycle/proliferation signature is prognostic for breast

cancer. Specifically, KNSL6, STK12, RAD54L, and BUB1 have

been previously reported to play a role in breast cancer: KNSL6

(also known as KIF2C) is important for anaphase chromosome

segregation and centromere separation, which is overexpressed

in breast cancer cells but expressed undetectably in other

human tissues except testis (Shimo et al. 2008); STK12 (also

known as AURKB) regulates chromosomal segregation during

mitosis as well as meiosis, whose loss of heterozygosity con-

tributes to an increased breast cancer risk and may influence

the therapy outcome (Tchatchou et al. 2007); RAD54L is a

recombinational repair protein associated with tumor sup-

pressors BRCA1 and BRCA2, whose mutation leads to defect

in repair processes involving homologous recombination and

triggers the tumor development (Matsuda et al. 1999); in the

end, BUB1 is a spindle checkpoint gene and belongs to the

BML-1 oncogene-driven pathway, whose activation contrib-

utes to the survival life cycle of cancer stem cells and promotes

tumor progression. The roles of the other six hub genes in

Figure 5. Results for the breast cancer expression dataset. (a)

Network inferred from the real data (only showing components with at

least three nodes). The gene annotation of the hub nodes (numbered)

are given in Table 4. (b) Degree ranks (for the 100 genes with highest

degrees). Different circles represent different genes. Solid circles: the 11

genes with highest degrees. Circles: the other genes. The sd(rank) of the

top 11 genes are all smaller than 4.62 (4.62 is the 1% quantile of sd(rank)

among all the 1,217 genes), and thus are identified as hub nodes.
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breast cancer are worth of further investigation. The functions

of all hub genes are briefly summarized in Table 4.

5. ASYMPTOTICS

In this section, we show that under appropriate conditions,

the space procedure achieves both model selection con-

sistency and estimation consistency. Use �u and �s to denote the

true parameters of u and s. As discussed in Section 2.1, when

s is given, u is estimated by solving the following ‘1 penal-

ization problem:

bulnðsÞ ¼ argmin
u

Lnðu;s;YÞ þ lnkuk1; ð9Þ

where the loss function Lnðu;s;YÞ :¼ 1
n

Pn
k¼1 Lðu;s;YkÞ;

with, for k ¼ 1, . . ., n

Lðu;s;YkÞ :¼ 1

2

Xp

i¼1

wiðyki �
X

j 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sjj=sii

p
rijykj Þ

2: ð10Þ

Throughout this section, we assume Y1, . . ., Yn are iid samples

from Np(0,S). The Gaussianity assumption here can be relaxed

by assuming appropriate tail behaviors of the observations. The

assumption of zero mean is simply for exposition simplicity. In

practice, in the loss function (9), Yk can be replaced by Yk � �Y

where �Y ¼ 1
n

Pn
k¼1 Y

ka is the sample mean. All results stated in

this section still hold under that case.

We first state regularity conditions that are needed for the

proof. Define A ¼ ði; jÞ : �rij 6¼ 0f g.
C0: The weights satisfy 0 <w0#mini{wi}#maxi{wi}#w

‘
< ‘

C1: There exist constants 0 <Lminð�uÞ # Lmaxð�uÞ<‘, such
that the true covariance �S ¼ �Sð�u; �sÞ satisfies: 0 <Lmin

ð�uÞ # lminð�SÞ # lmaxð�SÞ # Lmaxð�uÞ<‘; where lmin and

lmax denote the smallest and largest eigenvalues of a matrix,

respectively.

C2: There exist a constant d < 1 such that for all (i, j); A

L
0

ij;Að�u; �sÞ L
0

A;Að�u; �sÞ
h i�1

signð�uAÞ
����

���� # dð < 1Þ;

where for 1 # i < j # p, 1 # t < s # p,

L
0

ij;tsð�u; �sÞ :¼ Eð�u;�sÞ
@2Lðu;s; YÞ
@rij@rts

ju¼�u;s¼�s

� �
:

Condition C0 says that the weights are bounded away from

zero and infinity. Condition C1 assumes that the eigenvalues of

the true covariance matrix S are bounded away from zero and

infinity. Condition C2 corresponds to the incoherence con-

dition in Meinshausen and Buhlmann (2006), which plays a

crucial role in proving model selection consistency of ‘1
penalization problems.

Furthermore, because �s is usually unknown, it needs to be

estimated. Use ŝ ¼ ŝn ¼ ŝii
� �p

i¼1
to denote one estimator.

The following condition says D: For any h > 0, there exists

a constant C > 0, such that for sufficiently large n,

max1 # i # p jŝii � �siij # Cð
ffiffiffiffiffiffiffi
log n

n

q
Þ holds with probability at

least 1 � O(n�h).

Note that, the theorems following hold even when ŝ is

obtained based on the same dataset from which u is estimated

as long as condition D is satisfied. The following proposition

says that, when p < n, we can get an estimator of �s satisfying

condition D by simply using the residuals of the ordinary least

square fitting.

Proposition 1: Suppose Y ¼ [Y1: . . .:Yn] is a p 3 n data

matrix with iid columns Yi
; Np(0,S). Further suppose that p

¼ pn such that p/n# 1� d for some d > 0; andS has a bounded

condition number (that is assuming condition C1). Let �sii

denote the (i, i)-th element ofS�1; and let ei denote the residual

from regressing Y
i on to Y(�i): ¼ [Y1: . . .:Yi�1: Yiþ1: . . .:Yn],

that is

ei ¼ Yi � YT
ð�iÞ Yð�iÞY

T
ð�iÞ

� 	�1

Yð�iÞY
i:

Define ŝii ¼ 1=ŝii;�ðiÞ, where

ŝii;�ðiÞ ¼
1

n� p� 1
eTi ei;

then condition D holds for ŝiif gpi¼1.

The proof of this proposition is omitted due to space limi-

tation.

We now state notations used in the main results. Let

qn ¼ jAj denote the number of nonzero partial correlations (of

the underlying true model) and let snf g be a positive sequence

of real numbers such that for any (i, j) 2A: j�rijj$ sn:Note that,
sn can be viewed as the signal size. We follow the similar

strategy as in Meinshausen and Buhlmann (2006) and Massam,

Paul, and Rajaratnam (2007) in deriving the asymptotic result:

(1) First prove estimation consistency and sign consistency for

the restricted penalization problem with uA
c ¼ 0 (Theorem 1).

We employ the method of the proof of Theorem 1 in Fan and

Peng (2004); (2) Then we prove that with probability tending to

one, no wrong edge is selected (Theorem 2); (3) The final

consistency result then follows (Theorem 3).

Theorem 1: Suppose that conditions C0-C1 and D are

satisfied. Suppose further that qn;oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
Þ;

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
! ‘ and

ffiffiffiffiffi
qn

p
ln;oð1Þ, as n ! ‘. Then there

Table 4. Annotation of hub genes

Index

Gene

Symbol

Summary

Function (GO)

1 CENPA Encodes a centromere protein

(nucleosome assembly)

2 NA Annotation not available

3 KNSL6 Anaphase chromosome segregation

(cell proliferation)

4 STK12 Regulation of chromosomal segregation

(cell cycle)

5 NA Annotation not available

6 URLC9 Annotation not available

(up-regulated in lung cancer)

7 HNF3A Transcriptional factor activity

(epithelial cell differentiation)

8 TPX2 Spindle formation (cell proliferation)

9 RAD54L Homologous recombination related DNA

repair (meiosis)

10 ID-GAP Stimulate GTP hydrolysis (cell cycle)

11 BUB1 Spindle checkpoint (cell cycle)
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exists a constant CðuÞ> 0, such that for any h > 0, the following

events hold with probability at least 1 – O(n�h):

(i) there exists a solution ûA;ln ¼ ûA;lnðŝÞ of the restricted

problem:

min
u:uAc¼0

Lnðu; bs;YÞ þ lnkuk1; ð11Þ

where the loss function Ln is defined via (10).

(ii) (estimation consistency) any solution ûA;ln of the restricted

problem (11) satisfies:kûA;ln � �uAk2 # Cð�uÞ ffiffiffiffiffi
qn

p
ln:

(iii) (sign consistency) if further assume that the signal

sequence satisfies: snffiffiffiffi
qn

p
ln
! ‘; n ! ‘, then signð�uA;ln

ij Þ ¼
signð�uijÞ, for all 1 # i < j # p.

Theorem 2: Suppose that conditions C0–C2 and D are

satisfied. Suppose further that p ¼ O(nk) for some k $ 0;

qn;oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqn log n=nÞ

p
¼ oðlnÞ; ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
!

‘ and
ffiffiffiffiffi
qn

p
ln;oð1Þ, as n ! ‘. Then for any h > 0, for n suffi-

ciently large, the solution of (11) satisfies

Pð�u;�sÞ max
ði;jÞ�Ac

jL9n;ijðû
A;ln

; ŝ;YÞj < ln
� �

$ 1� Oðn�hÞ;

where L9n;ij :¼ ð@Ln=@rijÞ:

Theorem 3: Assume the same conditions of Theorem 2.

Then there exists a constant Cð�uÞ> 0, such that for any h > 0 the

following events hold with probability at least 1 – O(n–h):

(i) there exists a solution û
ln ¼ û

lnðŝÞ of the ‘1 penalization
problem

min
u

Lnðu; ŝ;YÞ þ lnkuk1; ð12Þ

where the loss function Ln is defined via (10).

(ii) (estimation consistency): any solution û
ln

of (12) sat-

isfies:

kûln � �uk2 # Cð�uÞð ffiffiffiffiffi
qn

p
lnÞ:

(iii) (sign consistency):

signðûlnij Þ ¼ signð�uijÞ; for all 1 # i < j # p:

Proofs of these theorems are given in the Supplemental

Material. Finally, due to exponential small tails of the proba-

bilistic bounds, model selection consistency can be easily

extended when the network consists of N disjointed compo-

nents with N ¼ O(na) for some a $ 0, as long as the size and

the number of true edges of each component satisfy the cor-

responding conditions in Theorem 2.

Remark 1: The condition ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
! ‘ is indeed

implied by the condition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqn log n=nÞ

p
¼ oðlnÞ as long as qn

does not go to zero. Moreover, under the ‘‘worst case’’ sce-

nario, that is when qn is almost in the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn= log nÞ

p
, ln

needs to be nearly in the order of n–1/4. On the other hand, for

the ‘‘best case’’ scenario, that is when qn ¼ O(1) (for example,

when the dimension p is fixed), the order of ln can be nearly

as small as n–1/2 (within a factor of log n). Consequently, the

‘2-norm distance of the estimator from the true parameter is in

the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
, with probability tending to one.

6. SUMMARY

In this article, we propose a joint sparse regression mod-

el—space—for selecting nonzero partial correlations under

the high-dimension-low-sample-size setting. By controlling the

overall sparsity of the partial correlation matrix, space is able

to automatically adjust for different neighborhood sizes and thus

to use data more effectively. The proposed method also explic-

itly employs the symmetry among the partial correlations, which

also helps to improve efficiency. Moreover, this joint model

makes it easy to incorporate prior knowledge about network

structure. We develop a fast algorithm active-shooting to

implement the proposed procedure, which can be readily

extended to solve some other penalized optimization problems.

We also propose a ‘‘BIC-type’’ criterion for the selection of the

tuning parameter. With extensive simulation studies, we dem-

onstrate that this method achieves good power in nonzero partial

correlation selection as well as hub identification, and also

performs favorably compared with two existing methods. The

impact of the sample size and dimensionality has been examined

on simulation examples as well. We then apply this method on a

microarray dataset of 1,217 genes from 244 breast cancer tumor

samples, and find 11 candidate hubs, of which five are known

breast cancer related regulators. In the end, we show consistency

(in terms of model selection and estimation) of the proposed

procedure under suitable regularity and sparsity conditions.

The R package space—Sparse PArtial Correlation Estima-

tion—is available on http://cran.r-project.org.

[Received March 2008. Revised November 2008.]
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