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1 Overview

This article is an extremely rapid survey of the
modern theory of partial differential equations
(PDEs). Sources of PDEs are legion: mathemat-
ical physics, geometry, probability theory, contin-
uum mechanics, optimization theory, etc. Indeed,
most of the fundamental laws of the physical sci-
ences are partial differential equations and most
papers published in applied math concern PDEs.

The following discussion is consequently very
broad, but also very shallow, and will certainly
be inadequate for any given PDE the reader may
care about. The goal is rather to highlight some
of the many key insights and unifying principles
across the entire subject.

1.1 Confronting PDEs

Among the greatest accomplishments of the phys-
ical and other sciences are the discoveries of fun-
damental laws, usually partial differential equa-
tions. The great problems for mathematicians,
both pure and applied, are then to understand
the solutions of these equations, using theoreti-
cal analysis, numerical simulations, perturbation
theory, and whatever other tools we can find.

But this very success in physics, that some
fairly simple looking PDEs, for example the Eu-
ler equations for fluid mechanics (see (11) below),
model very complicated and diverse physical phe-
nomena, causes all sorts of mathematical difficul-
ties. Whatever general assertion we try to show
mathematically must apply to all sorts of solu-
tions with extremely disparate behavior.

It is therefore a really major undertaking to
understand solutions of partial differential equa-
tions, and for this there are at least three primary
mathematical approaches:
• discovering analytical formulas for solutions,

either exact or approximate,
• devising accurate and fast numerical methods,

and
• developing rigorous theory.

In other words, we can aspire to actually solve
the PDE more-or-less explicitly, to compute so-
lutions, or else to indirectly deduce properties of
the solutions (without relying upon formulas or
numerics). This article surveys these viewpoints,
with particular emphasis upon the last.

Terminology. A partial differential equation
(PDE) is an equation involving an unknown func-
tion u of more than one variable and certain of
its partial derivatives. The order of a PDE is the
order of the highest order partial derivative of the
unknown appearing within it.

A system of PDEs comprises several equations
involving an unknown vector-valued function u
and its partial derivatives.

A PDE is linear if it corresponds to a lin-
ear operator acting on the unknown and its par-
tial derivatives; otherwise the partial differential
equation is nonlinear.

Notation. Hereafter u usually denotes the
real-valued solution of a given PDE, and is usu-
ally a function of points x = (x1, . . . , xn) ∈ Rn,
typically denoting a position in space, and some-
times also a function of t ∈ R, denoting time. We
write uxk = ∂u

∂xk
to denote the partial derivative

of u with respect to xk, ut = ∂u
∂t , uxkxl = ∂2u

∂xk∂xl
,

etc for higher partial derivatives. The gradient of
u in the variable x is

∇u = (ux1 , . . . , uxn).

(In this article, ∇u always as above denotes the
gradient in the variables x, even if u also depends
on t.) We write the divergence of a vector field
F = (F 1, . . . , Fn) as div F =

∑n
i=1 F

i
xi .

The Laplacian of u is the divergence of its gra-
dient:

∆u = ∇2u =
∑n
k=1uxkxk . (1)

Let us also write u = (u1, . . . , um) to display
the components of a vector-valued function. We
always use boldface for vector-valued mappings.

The solid n-dimensional ball with center x and
radius r is denoted B(x, r), and ∂B(x, r) is its
boundary, a sphere. More generally, ∂U means
the boundary of a set U ⊂ Rn; and we denote by∫

∂U

f dS

the integral of a function f over the boundary,
with respect to (n− 1)-dimensional surface area.

1
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1.2 Some important partial
differential equations

Following is a listing of some of the most com-
monly studied PDEs. To streamline and clarify
the presentation, we have mostly set various phys-
ical parameters to unity in these equations.

1.2.1 First-order PDEs

First-order PDEs appear in many physical the-
ories, mostly in dynamics, continuum mechanics
and optics. For example, in the scalar conserva-
tion law

ut + div F(u) = 0 (2)

the unknown u is the density of some physically
interesting quantity and the vector field F(u), its
flux, depends nonlinearly upon u.

Another important first-order PDE, the
Hamilton-Jacobi equation

ut +H(∇u, x) = 0, (3)

appears in classical mechanics and in optimal con-
trol theory. In these contexts, H is called the
Hamiltonian.

1.2.2 Second-order PDEs

Second-order PDEs model a significantly wider
variety of physical phenomena than do first-order
equations. For example, among its many other
interpretations, Laplace’s equation

∆u = 0 (4)

records diffusion effects in equilibrium. Its time
dependent analog is the heat equation

ut −∆u = 0, (5)

also known as the diffusion equation.
The wave equation

utt − c2∆u = 0 (6)

superficially somewhat resembles the heat equa-
tion, but as the name suggests supports solutions
with utterly different behavior.

Schrödinger’s equation

iut + ∆u = 0, (7)

for which solutions u are complex-valued, is the
quantum mechanics analog of the wave equation.

1.2.3 Systems of PDEs

In a system of conservation laws

ut + div F(u) = 0, (8)

each component of u = (u1, . . . , um) typically
represents a mass, momentum or energy density.

A reaction-diffusion system of partial differen-
tial equations has the form

ut −∆u = f(u). (9)

Here the components of u typically represent den-
sities of, say, different chemicals, whose interac-
tions are modeled by the nonlinear term f .

The simplest form of Maxwell’s equations reads
Et = curl B

Bt = −curl E

div E = div B = 0,

(10)

in which E is the electric field and B the magnetic
field.

Fluid mechanics provides some of the most
complicated and fascinating systems of PDEs
in applied mathematics. The most important
are Euler’s equations for incompressible, inviscid
fluid flow: {

ut + u · ∇u = −∇p
div u = 0,

(11)

and the Navier–Stokes equations for incompress-
ible, viscous flow:{

ut + u · ∇u−∆u = −∇p
div u = 0.

(12)

In these systems u denotes the fluid velocity and
p the pressure.

1.2.4 Higher order PDEs

Equations of order greater than two are much
less common. Generally speaking, such higher or-
der PDEs do not represent fundamental physical
laws, but are rather derived from such.

For instance, we can sometimes rewrite a sys-
tem of two second–order equations as a single
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fourth–order PDE. In this way the biharmonic
equation

∆2u = 0 (13)

comes up in linear elasticity theory.

The Korteweg–deVries (KdV) equation

ut + auux + buxxx = 0, (14)

a model of shallow water waves, similarly ap-
pears upon our combining a complicated system
of lower order equations appearing in appropriate
asymptotic expansions.

1.3 Boundary and initial conditions

Partial differential equations very rarely appear
alone: most problems require us to solve the
PDEs subject to appropriate boundary and/or
initial conditions. If for instance we are to study
a solution u = u(x), defined for points x lying in
some region U ⊂ Rn, we usually prescribe also
something about how u behaves on the bound-
ary ∂U . Most common are Dirichlet’s boundary
condition

u = 0 on ∂U (15)

and Neuman’s boundary condition

∂u

∂ν
= 0 on ∂U, (16)

where ν denotes the outward-pointing unit nor-
mal to the boundary and ∂u

∂ν := ∇u ·ν is the outer
normal derivative. If, say, u represents a temper-
ature, then (15) specifies that the temperature is
held constant on the boundary, and (16) that the
heat flux through the boundary is zero.

Imposing initial conditions is usually appropri-
ate for time-dependent PDEs, for which we re-
quire for the solution u = u(x, t) that

u(·, 0) = g, (17)

where g = g(x) is a given function, comprising
the initial data. For partial differential equations
that are second order in time, such as the wave
equation (6), it is usually appropriate to specify
also

ut(·, 0) = h. (18)

2 Understanding PDEs

We explore in this section several general proce-
dures for understanding partial differential equa-
tions and their solutions.

2.1 Exact solutions

The most effective approach is of course just to
solve the PDE outright, if we can. For instance
the boundary–value problem{

∆u = 0 in B(0, 1)

u = g on ∂B(0, 1)

is solved by Poisson’s formula

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

g(y)

|x− y|n
dS,

α(n) denoting the volume of the unit ball in Rn.
The solution of the initial-value problem for the

wave equation in one space dimension,{
utt − c2uxx = 0 in R× (0,∞)

u = g, ut = h on R× {t = 0},

is provided by d’Alembert’s formula

u(x, t) =
g(x+ ct) + g(x− ct)

2
+

1

2c

∫ x+ct

x−ct
h(y) dy.

(19)
The wave equation can also be solved in higher
dimensions, but the formulas become increasingly
complicated. For example, Kirchhoff’s formula

u(x, t) =
1

4πc2t

∫
∂B(x,ct)

h dS

+
∂

∂t

{
1

4πc2t

∫
∂B(x,ct)

g dS

}
(20)

satisfies this initial-value problem for wave equa-
tion in 3 space dimensions:{

utt − c2∆u = 0 in R3 × (0,∞)

u = g, ut = h on R3 × {t = 0}.
(21)

The initial-value problem for the heat equation{
ut −∆u = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}
(22)
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has for all dimensions the explicit solution

u(x, t) =
1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t g(y) dy. (23)

Certain nonlinear PDEs, including the KdV
equation (14), are also exactly solvable; and dis-
covering these so-called integrable partial differ-
ential equations is a very important undertaking.

It is however a fundamental truth that we can-
not solve most partial differential equations, if by
“solve” we mean coming up with a more-or-less
explicit formula for the answer.

2.2 Approximate solutions,
perturbation methods

It is consequently important to realize that we
can often deduce properties of solutions without
actually solving the partial differential equation,
either explicitly or numerically.

One such approach develops systematic pertur-
bation schemes to build small “corrections” to a
known solution. There is a vast repertoire of such
techniques. Given a PDE depending on a small
parameter ε, the idea is to posit some form for
the corrections and to plug this guess into the
differential equation, trying then to fine tune the
form of the perturbations to make the error as
small as possible. These procedures do not usu-
ally amount to proofs, but rather construct self-
consistent guesses.

Multiple scales. Homogenization problems
entail PDEs with effects occurring on differing
spatial or temporal scales, say of respective orders
1 and ε. Often a goal is to derive simpler effective
PDE that yield good approximations. We guess
the form of the effective equations by supposing
an asymptotic expansion of the form

uε(x) ∼
∞∑
k=0

εkuk(x, x/ε)

and showing that the leading term u0 is a function
of x alone, solving some kind of simpler equation.

This example illustrates the insight that sim-
pler behavior often appears in asymptotic limits.

Asymptotic matching. Solution of PDEs of-
ten display differing properties in different subre-
gions. In this circumstance we can try to fashion
an approximate solution by first (a) constructing
simpler approximate solutions in each subregion
and then (b) appropriately matching these solu-
tions across areas of overlap.

A common such application is to boundary lay-
ers. The outer expansion for the solution within
some region often has a form like

uε(x) ∼
∞∑
k=0

εkuk(x). (24)

Suppose we expect different behavior near the
boundary, which we take for simplicity to be the
plane {xn = 0}. We can then introduce the
stretched variables yn = xn/ε

α, yi = xi (i =
1, . . . , n − 1) and put ūε(y) = uε(x). We look
then for an inner expansion

ūε(y) ∼
∞∑
k=0

εkūk(y). (25)

The idea now is to match terms in the outer ex-
pansion (24) in the limit xn → 0 with terms in the
inner expansion (25) in the limit yn →∞. Work-
ing this out determines for instance the value of
α in the scaling.

2.3 Numerical analysis of PDEs

Devising effective computer algorithms for PDEs
is a vast enterprise, far beyond the scope of this
article; and great ingenuity has gone into the de-
sign and implementation of such methods.

Among the most popular are the finite differ-
ence methods (which approximate functions by
values at grid points), the method of lines (which
discretizes all but the time variable), the finite
element method and spectral methods (which rep-
resents functions using carefully designed basis
functions), multigrid methods (which employ dis-
cretizations across different spatial scales), the
level set method (which represents free bound-
aries as a level set of a function), and many other
schemes.

The design and analysis of such useful numer-
ical methods [IV.29], especially for nonlinear
equations, depends upon a good theoretical un-
derstanding of the underlying PDE.
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2.4 Theory and the importance of
estimates

The fully rigorous theory of PDEs focuses largely
upon the foundational issues of the existence,
smoothness, and, where appropriate, uniqueness
of solutions. Once these issues are resolved, at
least provisionally, theorists turn attention to un-
derstanding the behavior of solutions.

A key point is availability, or not, of strong an-
alytic estimates. Many physically relevant PDEs
predict that various quantities are conserved, but
these identities are usually not strong enough to
be useful, especially in three dimensions. For non-
linear PDEs the higher derivatives solve increas-
ingly complicated, and thus intractable, equa-
tions. And so a major dynamic in modern theory
is the interplay between (a) deriving “hard” ana-
lytic estimates for PDEs and (b) devising “soft”
mathematical tools to exploit these estimates. In
the remainder of this article, we present for many
important PDEs the key estimates upon which
rigorous mathematical theory is built.

3 Behavior of solutions

Since PDEs model so vast a range of physical and
other phenomena, their solutions display an even
vaster range of behaviors. But some of these are
more prevalent than others.

3.1 Waves

Many partial differential equations of interest in
applied mathematics support at least some solu-
tions displaying “wavelike” behavior.

The wave equation. The wave equation is
of course an example, as is most easily seen in
one space dimension from d’Alembert’s formula
(19). This dictates that the solution has the gen-
eral form u(x, t) = F (x + ct) + G(x − ct) and
consequently is the sum of right- and left-moving
waves with speed c. The wave-like behavior en-
coded within Kirchhoff’s formula (20) in 3 space
dimensions is somewhat less obvious.

Traveling waves. A solution u of a PDE in-
volving time t and the single space variable x ∈ R
is a traveling wave if it has the form

u(x, t) = v(x− σt) (26)

for some speed σ. More generally, a solution u of
a PDE in more space variables having the form

u(x, t) = v(y · x− σt)

is a plane wave. An extremely useful first step
for studying a PDE is to look for solutions with
these special structures.

Dispersion. It is often informative to look for
plane wave solutions of the complex form

u(x, t) = ei(y·x−σt) (27)

where σ ∈ C and y ∈ Rn. We plug the guess (27)
into some given linear PDE, thereby to discover
the so-called dispersion relationship between y
and σ = σ(y) forced by the algebraic structure.

For example, inserting (27) into the Klein–
Gordon equation

utt −∆u+m2u = 0 (28)

gives σ = ±(|y|2 + m2)
1
2 . Hence the speed σ

|y|
of propagation depends nonlinearly upon the fre-
quency of the initial data eiy·x. So waves of dif-
ferent frequencies propagate at different speeds;
hence the dispersion.

Solitons. As a nonlinear example, putting
(26) into the KdV equation (14) with a = 6, b = 1
leads to the ODE

−σv′ + 6vv′ + v′′′ = 0,

a solution of which is the explicit profile

v(s) =
σ

2
sech2

(√
σ

2
s

)
for each speed σ. The corresponding traveling
wave u(x, t) = v(x− σt) is called a soliton.

3.2 Diffusion and smoothing

From the explicit formula (23) we can read off a
lot of interesting quantitative information about
the solution u of the initial-value problem (22) for
the heat equation.

In particular, notice from (23) that if the initial
data function g is merely integrable, the solution
u is infinitely differentiable in both the variables x
and t at later times. So the heat equation instantly
smooths its initial data; this observation makes
sense as the PDE models diffusive effects.
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3.3 Propagation speeds

It is also easy to deduce from (23) that if u solves
the heat equation, then values of the initial data
g(y) at all points y ∈ Rn contribute to determin-
ing the solution at (x, t) for times t > 0. We can
interpret this as an “infinite propagation speed”
phenomenon.

By contrast, for many time-dependent PDEs
we have “finite propagation speed”: there is no
influence of some of initial data upon the solution
until enough time passes. This is so for first-order
PDE in general, for the wave equation, and re-
markably also for some nonlinear diffusion PDEs,
such as the porous medium equation

ut −∆(uγ) = 0 (29)

with γ > 1. The particular explicit solution

u(x, t) =
1

tα

(
b− γ − 1

2γ
β
|x|2

t2β

) 1
γ−1

+

(30)

for α = n
n(γ−1)+2 , β = 1

n(γ−1)+2 and x+ =

max{x, 0} shows clearly that the region of pos-
itivity moves outward at finite speed.

3.4 Pattern formation

Nonlinear terms can interplay with diffusion and
create interesting effects. For example let Φ(z) =
1
4 (z2 − 1)2 denote a “two well” potential, hav-
ing minima at z = ±1. Look now at this scalar
reaction-diffusion problem in which ε > 0 is a
small parameter:{

uεt −∆uε = 1
ε2 Φ′(uε) in R2 × (0,∞)

uε = gε on R2 × {t = 0}.

For suitable designed initial data functions gε, it
turns out that that

lim
ε→0

uε(x, t) = ±1;

so that the solution asymptotically goes to one
or the other of the two minima of Φ. We can
informally think of these regions as colored black
and white.

For each time t ≥ 0, denote by Γ(t) the curve
between the regions {uε(·, t)→ 1} and {uε(·, t)→
−1}. Asymptotic matching methods reveal that

the normal velocity of Γ(t) equals its curvature.
This is a geometric law of motion for the evolving
black/white patterns emerging in the asymptotic
limit ε→ 0.

Much more complex pattern formation effects
can be modeled by systems of reaction-diffusion
PDEs of the general form (9): see pattern for-
mation [X.YY],

3.5 Blow-up

Solutions of time-dependent PDEs may or may
not exist for all future times, even if their initial
conditions at time t = 0 are well behaved. Note
for example that among solutions of the nonlinear
heat equation

ut −∆u = u2, (31)

subject to Neumann boundary conditions (16),
are those solutions u = u(t) that do not de-
pend on x and consequently that solve the ODE
ut = u2. It is not hard to show that solutions of
this equation go to infinity (“blow up”) at a finite
positive time, if u(0) > 0.

For more general initial data, there is an inter-
esting competition between the diffusive, and so
stabilizing, term ∆u and the destabilizing term
u2.

3.6 Shocks

Solutions of PDEs can fail to exist for large times
for other reasons than blow up in the sup-norm.
Another possibility is that the gradient of a solu-
tion becomes singular at some finite time.

This effect occurs for conservation laws (2).
Consider for example this initial-value problem
for Burgers’ equation:{

ut + 1
2 (u2)x = 0 in R× (0,∞)

u = g on R× {t = 0}.
(32)

Assume we have a smooth solution u and define
the characteristic curve x(t) to solve the ODE{

ẋ(t) = u(x(t), t) (t ≥ 0)

x(0) = x0.
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Then

d

dt
u(x(t), t) = ux(x(t), t)ẋ(t) + ut(x(t), t)

= ux(x(t), t)u(x(t), t) + ut(x(t), t) = 0,

according to the PDE (32). Consequently
u(x(t), t) ≡ g(x0) and also the characteristic
“curve” x(t) is in fact a straight line.

So far, so good; and yet the foregoing often
implies that the PDE does not in fact possess a
smooth solution, existing for all times. For we
can easily build initial data g for which the char-
acteristic lines emanating from two distinct initial
points cross at a later time.

A major task for the rigorous analysis of Burg-
ers’ equation and related conservation laws is
characterizing surfaces of discontinuity (called
shocks) for appropriately defined generalized so-
lutions.

3.7 Free boundaries

Some very difficult problems require not only
finding the solution of some PDE, but also the re-
gion within which it holds. Consider for example
the Stefan problem, which asks us to determine
the temperature within some body of water sur-
rounded by ice. The temperature solves the heat
equation inside a region whose shape changes in
time as the ice melts and/or the water freezes.
The unknowns are therefore both the tempera-
ture profile and the so-called free boundary of the
water.

There are in general two sorts of such free
boundary problems that occur in PDE theory:
those for which the free boundary is explicit, such
as the Stefan problem, and those for which it is
implicit. An example of the latter is the obstacle
problem:

min{u,−∆u− f} = 0.

The free boundary is

Γ = ∂{u > 0},

along which the solution satisfies the overdeter-
mined boundary conditions u = 0, ∂u∂ν = 0. Many
important physical and engineering free bound-
ary problems can be cast as obstacle problems.

Much more complicated free boundary prob-
lems occur in fluid mechanics, in which the un-
known velocity u satisfies differing sorts of PDE
within the sonic and subsonic regions. We say
that the equations change type across the free
boundary.

4 Some technical methods

So vast is the field of partial differential equa-
tions that no small handful of procedures can pos-
sibly handle them all. Rather, mathematicians
have discovered over the years, and continue to
discover, all sorts of useful technical devices and
tricks. This section provides a selection of some
of the most important.

4.1 Transform methods

A panoply of integral transforms is available to
convert linear, constant coefficient PDEs into al-
gebraic equations. The most important is the
Fourier transform [I.19]

û(y) :=
1

(2π)n/2

∫
Rn
e−ix·yu(x) dx.

Consider, as an example, the equation

−∆u+ u = f in Rn. (33)

We apply the Fourier transform and learn that
(1 + |y|2)û = f̂ . This algebraic equation lets us
easily find û, after which a somewhat tricky in-
version yields the formula

u(x) =
1

(4π)n/2

∫ ∞
0

∫
Rn

e−s−
|x−y|2

4s

sn/2
f(y) dyds.

Strongly related are Fourier series methods,
which represent solutions of certain PDEs on
bounded domains as infinite sums entailing sines
and cosines. Another favorite is the Laplace
transform, which for PDEs is mostly useful as a
transform in the time variable.

4.2 Energy methods; functional
analytic framework

For many PDEs various sorts of “energy esti-
mates” are valid, where we use this term loosely
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to mean integral expressions involving squared
quantities.

Integration by parts. Important for what
follows is the integration by parts formula:∫

U

uxiv dx = −
∫
U

uvxi dx+

∫
∂U

uvνi dS

for each i = 1, . . . , n. Here ν denotes the outward-
pointing unit normal to the boundary. This is a
form of the Divergence Theorem [x.yy] from
multivariable calculus.

4.2.1 Energy estimates

Assume that u solves Poisson’s equation

−∆u = f in Rn. (34)

Then, assuming u goes to zero as |x| → ∞ fast
enough to justify the integration by parts, we
compute that

∫
Rn
f2 dx =

∫
Rn

n∑
i,j=1

uxixiuxjxj dx

= −
∫
Rn

n∑
i,j=1

uxixixjuxj dx =

∫
Rn

n∑
i,j=1

(uxixj )
2 dx.

This identity implies something remarkable: if
the Laplacian ∆u (which is the sum of the
pure second derivatives uxixi for i = 1, . . . , n)
is square-integrable, then each individual sec-
ond derivative uxixj for i, j = 1, . . . , n is square-
integrable, even those mixed second derivatives
that do not even appear in the equation (34).

This is an example of regularity theory, which
aims to deduce the higher integrability and/or
smoothness properties of solutions.

4.2.2 Time dependent energy estimates

As a next example suppose u = u(x, t) solves the
wave equation (6) and define the energy at time
t:

e(t) :=
1

2

∫
Rn

(
u2t + c2|∇u|2

)
dx.

Then, assuming u goes to zero as |x| → ∞ fast
enough, we have

ė(t) =

∫
Rn

(
ututt + c2∇u · ∇ut

)
dx

=

∫
Rn
ut(utt − c2∆u) dx = 0;

This demonstrates conservation of energy.
For the nonlinear wave equation

utt −∆u+ f(u) = 0 (35)

a similar calculation works for the modified en-
ergy

e(t) =

∫
Rn

(
1

2
u2t +

1

2
|∇u|2 + F (u)

)
dx,

where f = F ′.

4.3 Variational problems

By far the most successful of the nonlinear the-
ories is the calculus of variations; and indeed a
fundamental question to ask of any given PDE is
whether or not it is variational, meaning that it
appears as follows.

Given the Lagrangian density function L =
L(v, z, x), we introduce the functional

I[u] :=

∫
U

L(∇u, u, x) dx,

defined for functions u : U → R, subject to given
boundary conditions that are not specified here.
Suppose hereafter that u is a minimizer of I[·].

We will show that u automatically solves an
appropriate partial differential equation. To see
this, put i(τ) := I[u+ τv], where v vanishes near
∂U . Since i has a minimum at τ = 0, we can use
the chain rule to compute

0 = i′(0) =

∫
U

(∇vL · ∇v + Lzv) dx;

and so

0 =

∫
U

(−div(∇vL) + Lz) v dx,

in which L is evaluated at (∇u, u, x). Here we
write ∇vL = (Lv1 , . . . , Lvn).
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This integral identity is valid for all functions
v vanishing on ∂U ; whence follows the Euler–
Lagrange equation

−div(∇vL(∇u, u, x)) + Lz(∇u, u, x) = 0. (36)

Nonlinear Poisson equation. For example
the Euler–Lagrange equation for

I[u] =

∫
U

1

2
|∇u|2 − F (u) dx,

is the nonlinear Poisson equation

−∆u = f(u) (37)

where f = F ′.

Minimal surfaces. The surface area of the
graph of a function u is

I[u] =

∫
U

(
1 + |∇u|2

) 1
2 dx,

and the corresponding Euler–Lagrange equation
is the minimal surface equation

div

(
∇u

(1 + |∇u|2)
1
2

)
= 0. (38)

The expression on the left is (n times) the mean
curvature of the surface; and consequently a min-
imal surface has zero mean curvature.

4.4 Maximum principles

The integral energy methods just discussed can
for certain PDEs be augmented with pointwise
maximum principle techniques. These are pred-
icated upon the elementary observation that if
the function u attains its maximum at an interior
point x0, then

uxk(x0) = 0, k = 1, . . . , n (39)

and

n∑
k,l=1

uxkxl(x0)ξkξl ≤ 0, ξ ∈ Rn. (40)

Linear elliptic equations. Such insights are
essential for understanding the general second-
order linear elliptic equation

Lu = 0, (41)

where

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
i=1

bi(x)uxi + c(x)u.

We say L is elliptic provided the symmetric ma-
trix ((aij(x))) is positive definite. In usual appli-
cations u represents the density of some quantity.
The second-order term

∑n
i,j=1 a

ijuxixj records

diffusion, the first-order term
∑n
i=1 b

iuxi repre-
sents transport, and the zeroth-order term cu de-
scribes the local increase or depletion.

We use the maximum principle to show for in-
stance that if c > 0, then u cannot attain a pos-
itive maximum at an interior point. Indeed if u
took on a positive maximum at some point x0,
then the first term of Lu at x0 would be nonneg-
ative (according to (40)), the next term would
be zero (according to (39)) and the last would
be positive. But this is a contradiction, since
Lu(x0) = 0.

Nonlinear elliptic equations. Maximum
principle techniques apply also to many highly
nonlinear equations, such as the Hamilton–
Jacobi–Bellman equation

max
k=1,...,m

{Lku} = 0. (42)

This is an important equation in stochastic op-
timization theory, in which each elliptic opera-
tor Lk is the infinitesimal generator of a different
stochastic process. We leave it to the reader to
use the maximum principle to show that a solu-
tion of (42) cannot attain an interior maximum
or minimum.

Related, but much more sophisticated maxi-
mum principle arguments can reveal many of the
subtle properties of solutions to the linear elliptic
equation (41) and the nonlinear equation (42).

4.5 Differential inequalities

Since solutions of PDEs depend on many vari-
ables, another useful trick is to design appropriate
integral expressions over all but one of these vari-
ables, so that these expressions satisfy interesting
differential inequalities in the remaining variable.
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4.5.1 Dissipation estimates, gradient
flows

For example, let u = u(x, t) solve the nonlinear
gradient flow equation

ut − div(∇L(∇u)) = 0 (43)

in Rn × (0,∞). Put

e(t) :=
1

2

∫
Rn
L(∇u) dx.

Then, assuming u goes to zero rapidly as |x| →
∞, we have

ė(t) =

∫
Rn
∇L(∇u) · ∇ut dx

= −
∫
Rn

(div∇L(∇u))ut dx = −
∫
Rn

(ut)
2 dx ≤ 0.

This is a dynamic dissipation inequality.

4.5.2 Entropy estimates

Related are entropy estimates for conservation
laws. For this assume that uε = uε(x, t) solves
the viscous conservation law

uεt + F (uε)x = εuεxx (44)

for ε > 0. Suppose Φ is a convex function and
put

e(t) :=

∫
R

Φ(uε) dx.

Then

ė(t) =

∫
R

Φ′uεt dx =

∫
R

Φ′(−Fx + εuεxx) dx

= −
∫
R

(
Ψ(uε)x + εΦ′′(uεx)2

)
dx

= −
∫
R
εΦ′′(uεx)2 dx ≤ 0,

where Ψ satisfies Ψ′ = Φ′F ′. What is important
is that we have found not just one, but rather
a large collection of dissipation inequalities, cor-
responding to each pair of entropy/entropy flux
functions (Φ,Ψ).

Finding and utilizing entropy/entropy flux
pairs for systems of conservation laws of the form
(8) is a major challenge.

4.5.3 Monotonicity formulas

For monotonicity formulas we try to find inter-
esting expressions to integrate over balls B(0, r),
with center say 0 and radius r. The hope is that
these integral quantities will solve useful differen-
tial inequalities as functions of r.

As an example, consider the system

−∆u = |Du|2u, |u|2 = 1. (45)

for the unknown u = (u1, . . . , um), where we
write |Du|2 =

∑n
i=1

∑m
j=1(ujxi)

2.
A solution u is called a harmonic map into the

unit sphere. It is a challenging exercise to derive
from (45) the differential inequality

d

dr

(
1

rn−2

∫
B(0,r)

|Du|2 dx

)

=
2

rn

∫
∂B(0,r)

∑
i,j,ku

k
xixiu

k
xjxj dS ≥ 0,

from which we deduce that

1

rn−2

∫
B(0,r)

|Du|2 dx ≤ 1

Rn−2

∫
B(0,R)

|Du|2 dx

if 0 < r < R. This inequality is often useful, as
it lets us deduce fine information at small scales
r from that at larger scales R.

5 Theory and application

The foregoing listing of mathematical viewpoints
and technical tricks provides at best a glimpse
into the immensity of modern PDE theory, both
pure and applied.

5.1 Well-posed problems

A common goal of most of these procedures is
to understand a given PDE (plus appropriate
boundary and/or initial conditions) as a well-
posed problem, meaning that (a) the solution ex-
ists, (b) is unique, and (c) depends continuously
on the given data for the problem. This is usually
the beginning of wisdom, as well-posed problems
provide the starting point for further theoretical
inquiry, for numerical analysis and for construc-
tion of approximate solutions.
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5.2 Generalized solutions

A central theoretical problem therefore is fashion-
ing for any given PDE problem an appropriate
notion of solution for which the problem is well-
posed. For linear PDEs the concept of “distribu-
tional solutions” is usually the best, but for non-
linear problems there are many, including “viscos-
ity solutions”, “entropy solutions”, “renormalized
solutions”, etc.

For example the unique entropy solution of the
initial–value problem (2) for a scalar conservation
law exists for all positive times, but may sup-
port lines of discontinuities across so-called shock
waves. Similarly, the unique viscosity solution of
the initial–value problem for the Hamilton–Jacobi
equation (3) generally supports surfaces of dis-
continuity for its gradient. The explicit solution
(30) for the porous medium equation is likewise
not smooth everywhere and so needs suitable in-
terpretation as a valid generalized solution.

The research literature teems with many such
notions and some of the deepest insights in the
field are uniqueness theorems for appropriate gen-
eralized solutions.

5.3 Learning more

This article, as promised, is a vast survey that
actually explains precious little in any detail.

To learn more, interested students should defi-
nitely consult other articles in this book, as well
as the following suggested reading. Markowich
[7] is a nice introduction, with lots of pictures,
and Strauss [10] is a very good undergraduate
text, containing derivations of the various formu-
las cited here. Klainerman’s survey article [6] is
extensive and provides some different viewpoints.
My graduate level textbook [3] carefully builds
up much of the modern theory of PDEs, but is
aimed at mathematically advanced students.
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